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SNR-Invariant Multi-Task Deep Neural Networks
for Robust Speaker Verification

Qi YAO and Man-Wai MAK, Senior Member, IEEE

Abstract—A major challenge in speaker verification is to
achieve low error rates under noisy environments. We observed
that background noise in utterances will not only enlarge the
speaker-dependent i-vector clusters but also shift the clusters,
with the amount of shift depending on the signal-to-noise ratio
(SNR) of the utterances. To overcome this SNR-dependent clus-
tering phenomenon, we propose two deep neural network (DNN)
architectures: hierarchical regression DNN (H-RDNN) and multi-
task DNN (MT-DNN). The H-RDNN is formed by stacking two
regression DNNs in which the lower DNN is trained to map noisy
i-vectors to their respective speaker-dependent cluster means of
clean i-vectors and the upper DNN aims to regularize the outliers
that cannot be denoised properly by the lower DNN. The MT-
DNN is trained to denoise i-vectors (main task) and classify
speakers (auxiliary task). The network leverages the auxiliary
task to retain speaker information in the denoised i-vectors.
Experimental results suggest that these two DNN architectures
together with the PLDA backend significantly outperform the
multi-condition PLDA model and mixtures of PLDA, and that
multi-task learning helps to boost verification performance.

Index Terms—Deep learning; speaker verification; i-vectors,
multi-task learning; noise robustness

I. INTRODUCTION

SPeaker verification (SV) aims to verify the identity of
a claimant through analysing his/her voice. Despite the

success of the i-vector/PLDA framework [1]–[3] in text-
independent SV, applying the standard i-vector/PLDA frame-
work to real-world noisy environments is still challenging. To
tackle the noise robustness problem, a promising approach is
to confine the noisy acoustic features to a low-dimensional
subspace through feature-domain factor analysis [4]. Another
approach is to consider i-vectors as features and apply transfor-
mation techniques, such as linear discriminant analysis (LDA)
[5] and within-class covariance normalization (WCCN) [6], to
transform the i-vectors to a subspace that is less sensitive to
the noise. As for the backend PLDA modeling, multi-condition
PLDA training [7], [8] and soft-aligned mixtures of PLDA [9],
[10] have also demonstrated noise robustness.

The relationship between acoustic noise and i-vectors is
rather complex and possibly nonlinear. Because LDA, WCCN,
and PLDA are linear models, their capability in dealing with
the nonlinear noise effect on the i-vectors is limited. Recent
studies have shown that deep neural networks (DNNs) are
better candidates for addressing this nonlinearity. For example,
in [11], speaker vectors are extracted from i-vectors by disen-
tangling the latent dependence between speaker and channel
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components. In [12], [13], the PLDA model parameters are
replaced by the weights learned from stacked restricted Boltz-
mann machines (RBM). In [14], a discriminative denoising
autoencoder (DDAE) is used to map the noisy i-vectors to
their clean counterparts directly by explicitly using clean i-
vector information and speaker identity information.

This paper analyzes how noisy speech affects the distribu-
tion of i-vectors. The analysis suggests that channel effects
could cause large intra-speaker variability of speaker clusters
and that the variability depends on the SNR levels. This SNR-
dependent noise effect, referred to as SNR variability, makes
the backend PLDA model difficult to separate the speaker
variability and the channel variability from noisy i-vectors.
To address this issue, we propose two DNN-based model to
suppress both channel and SNR variabilities directly in the i-
vector space. The first model, referred to as hierarchical regres-
sion DNNs (H-RDNNs), comprises two denoising regression
DNNs stacked hierarchically. The second model is a multi-task
DNN (MT-DNN) trained to perform both i-vector denoising
(regression) and speaker classification.

II. VARIABILITY ANALYSES AND PROPOSED MODELS

I-vectors capture not only the speaker characteristics but
also other characteristics in the utterances. In [15], the authors
observed that noise-contaminated i-vectors with similar SNRs
tend to form clusters in the i-vector space. This SNR-grouping
phenomenon motivates the use of PLDA mixture models in
[9], [10] so that each SNR group can be handled by a PLDA
model. We argue that instead of tackling the SNR-dependent
i-vector groups as in [9], it is more effective to compensate
for such variability in the i-vector space directly.

A. Hierarchical Regression DNN
The structure of a hierarchical regression DNN (H-RDNN)

is shown in Fig. 1. Denote xn as training i-vectors pre-
processed by WCCN and length normalization (LN), and tn
as target i-vectors obtained by averaging speaker-dependent i-
vectors from clean utterances. Given a training set S composed
of N utterances: S = {xn, tn;n = 1, . . . , N}, in the first
stage, the regression network fregΘ (·) aims to minimize the
MSE and the Frobenius norm of weight paramters:1

min
Θ

1

N

N∑
n=1

1

2
||fregΘ (xn)− tn||22 +

βreg1
2
||Θ||22, (1)

where fregΘ (xn) is the output of the top regression layer of the
first (left) DNN in Fig. 1; Θ comprises all of the weights in the

1If xn and tn are obtained from a noise-contaminated utterance and its
clean counterpart, Eq. 1 leads to the denoising autoencoder (DAE) [16].
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Fig. 1. The proposed H-RDNN. The blue arrows represent the data flow.
Noisy i-vector xn is fed to the 1-st regression DNN. The 2-nd regression
DNN takes the output x′n of the 1-st regression DNN and produces the final
denoised i-vector x′′n. freg

Θ (·) and gregΦ (·) are the mapping functions of the
1-st and 2-nd regression networks, respectively. tn and t′n are the target
i-vectors in Eq. 1 and Eq. 2, respectively. MSE: mean squared error.

first regression network and βreg1 is a coefficient controlling
the degree of regularization. After training, the first regression
DNN is able to suppress both channel and SNR variations
within each speaker cluster simultaneously.

After the first denoising stage, a second regression DNN
is trained to regularize the outliers that cannot be denoised
properly by the first regression DNN. Suppose all i-vectors
have been processed by the first DNN followed by whitening
and LN. Given a training set composed of N utterances: S ′ =
{x′n, t′n;n = 1, . . . , N}, the MSE of the regression network
gregΦ (·) and a regularization term are jointly minimized:

min
Φ

1

N

N∑
n=1

1

2
||gregΦ (x′n)− t′n||22 +

βreg2
2
||Φ||22, (2)

where x′n is the n-th i-vector denoised by the first DNN,
i.e., x′n = fregΘ (xn); t′n is the corresponding i-vector from the
original i-vector set (no noise corruption) and then denoised
by the first DNN, i.e., t′n = fregΘ (xorg

n ); x′′n = gregΦ (x′n) is the
output of the regression layer of the second regression DNN;
Φ represents the weights in the second regression network and
βreg2 is a coefficient controlling the degree of regularization.

B. Multi-Task DNN

To reduce speaker information loss in the regression task,
we need to ensure a large between-speaker scatter and a small
within-speaker scatter in the DNN-transformed i-vectors. This
can be achieved by training a multi-task DNN (MT-DNN) as
shown in Fig. 2. Denote xn, tn, and `n as the pre-processed i-
vector, the target i-vector, and the speaker label vector (in one-
hot format) of the n-th utterance (could be clean or noisy), re-
spectively. Suppose we have a training set S ′ of N utterances:
S ′ = {xn, tn, `n;n = 1, . . . , N}. For the regression network
fregΘ1

(·), the MSE is minimized in the same way as Eq. 1. The
output of the top regression layer is the denoised i-vector x′n,
i.e., x′n = fregΘ1

(xn). For the classification network f clsΘ2
(·), the

cross-entropy (CE) cost together with the Frobenius norm of

Regression
Network

Input 
layer

Hidden 
layers

Regression 
layer

MSE

Whitening & LN

xn

tn
Target

 i-vector
x0

n
Classification 

layer

Classification
Network

CE Speaker
label

`n,k

yn,k

freg
⇥1

(·) f cls
⇥2

(·)

Fig. 2. The proposed MT-DNN. Noisy i-vector xn is used as the input. The
output of the regression task is x′n and the output of the classification task
is yn,k . The target i-vector for the regression task is tn in Eq. 1 and the
target label for the classification task is `n,k in Eq. 3. The regression and
classification tasks are trained in an alternating manner. MSE: mean squared
error; CE: cross entropy.

weights in the classification network are jointly minimized:

min
Θ2

− 1

N

N∑
n=1

K∑
k=1

`n,k log yn,k +
βcls
2
||Θ2||22. (3)

In Eq. 3, `n,k is the k-th element of `n; if the utterance of xn

is spoken by the k-th speaker, then `n,k = 1, otherwise it is
equal to 0; yn,k is the posterior probability of the k-th speaker
(K speakers in total) and is an element of yn, where yn is the
output of the classification network, i.e., yn = f clsΘ2

(xn); Θ2

represents the weights of the classification network and βcls
is the coefficient controlling the degree of regularization.

The regression and classification tasks are trained in an
alternating manner, i.e., for each iteration, the gradients for
updating network parameters are computed either from the re-
gression cost function or from the classification cost function.

III. EXPERIMENTAL SETUP

A. Speech Data and Acoustic Features

Evaluations were performed on common conditions 4 (CC4,
male) and 5 (CC5, male) of NIST 2012 SRE [17]. Speech
files from NIST 2005–2010 SREs were used as development
data. Speech regions were extracted by performing a two-
channel voice activity detection (VAD) [18]. A 25-ms Ham-
ming window with a frame shift of 10 ms was used for
extracting windowed speech signals. For each frame, 19 Mel
frequency cepstral coefficients (MFCC) with the log energy
and their first and second derivatives were computed to form
a 60-dimensional acoustic feature vector. Then, cepstral mean
normalization [19] followed by feature warping [20] with a
3-second window were applied to the acoustic features.

Three types of noise were considered. They are babble noise
from the PRISM dataset [21], heating, ventilation, and air
conditioning noise (HVAC) from freesound.org, and factory
noise from NOISEX-92 [22]. These noises were added to the
evaluation test set in CC4 at SNR of 15 dB, 6 dB and 0
dB using the FaNT tool [23]. Likewise, the original telephone
speech files from 2006–2010 SREs were also corrupted by the
three different noises at SNR of 15 dB and 6 dB to form 3
SNR groups. Therefore, for each noise type, multi-condition
training was applied to train the DNNs and PLDA models
using the 3 SNR groups.
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TABLE I
PERFORMANCE OF PLDA BASELINE, MIXTURES OF PLDA AND 3 NEURAL NETWORK-BASED MODELS IN CC 4 AND CC 5 OF NIST 2012 SRE.

WCCN+LN+LDA-WCCN IS THE i-VECTOR PRE-PROCESSING METHOD FOR PLDA-BASED MODELS. WCCN IS THE i-VECTOR POST-PROCESSING
METHOD FOR DNN-BASED MODELS. SI-MPLDA: SNR-INDEPENDENT MIXTURE OF PLDA [9]; SD-MPLDA: SNR-DEPENDENT MIXTURE OF PLDA

[9]; DAE: DENOISING AUTOENCODER; H-RDNN: HIERARCHICAL REGRESSION DNN; MT-DNN: MULTI-TASK DNN. WCCN: WITHIN-CLASS
COVARIANCE NORMALIZATION; LDA: LINEAR DISCRIMINANT ANALYSIS; LN: LENGTH NORMALIZATION.

Model Main Task Auxiliary Task Noise Type
CC 4 CC 5

Original Original
EER(%) minDCF EER(%) minDCF

Multi-condition PLDA
N/A

Babble 4.02 0.352 3.61 0.343
HVAC 4.23 0.331 3.24 0.307
Factory 4.23 0.348 3.44 0.301

SI-mPLDA (4 mixtures) Babble 3.88 0.333 3.21 0.306
SD-mPLDA (4 mixtures) 3.80 0.353 3.48 0.338

DAE+PLDA
Regression None Babble

3.32 0.339 2.93 0.329
H-RDNN+PLDA 3.24 0.348 2.95 0.338
MT-DNN+PLDA Classification 3.12 0.325 2.76 0.307

DAE+PLDA
Regression None HVAC

3.18 0.322 2.68 0.301
H-RDNN+PLDA 3.08 0.341 2.66 0.305
MT-DNN+PLDA Classification 2.92 0.304 2.52 0.271

DAE+PLDA
Regression None Factory

3.23 0.315 2.62 0.308
H-RDNN+PLDA 3.06 0.325 2.67 0.320
MT-DNN+PLDA Classification 3.09 0.302 2.72 0.298

TABLE II
PERFORMANCE IN CC4 OF NIST 2012 SRE UNDER 3 DIFFERENT TYPES OF NOISE AND 3 SNR CONDITIONS IN THE TEST SEGMENTS.

Model Main Task Auxiliary Task Noise Type 15 dB 6 dB 0 dB
EER(%) minDCF EER(%) minDCF EER(%) minDCF

Multi-condition PLDA
N/A

Babble 2.54 0.266 2.84 0.325 4.56 0.500
HVAC 2.55 0.263 3.07 0.290 4.58 0.411
Factory 2.63 0.244 2.74 0.263 4.15 0.385

SI-mPLDA (4 mixtures) Babble 2.42 0.237 2.85 0.314 4.55 0.478
SD-mPLDA (4 mixtures) 2.68 0.271 2.91 0.335 4.36 0.497

DAE+PLDA
Regression None Babble

2.13 0.278 2.55 0.337 3.89 0.437
H-RDNN+PLDA 2.15 0.280 2.56 0.341 3.92 0.435
MT-DNN+PLDA Classification 2.05 0.272 2.48 0.316 3.82 0.428

DAE+PLDA
Regression None HVAC

2.02 0.281 2.56 0.311 3.90 0.396
H-RDNN+PLDA 2.04 0.279 2.53 0.310 3.89 0.394
MT-DNN+PLDA Classification 1.94 0.260 2.57 0.298 4.00 0.380

DAE+PLDA
Regression None Factory

2.21 0.265 2.41 0.293 3.83 0.359
H-RDNN+PLDA 2.16 0.266 2.39 0.296 3.81 0.357
MT-DNN+PLDA Classification 2.05 0.249 2.34 0.281 3.86 0.366

B. I-Vector/PLDA System

The i-vector extractor is based on a gender-dependent UBM
with 1024 Gaussian mixtures and a total variability matrix
with 500 total factors. Microphone and telephone speech files
from 2005–2008 SREs were used to train the UBM and total
variability matrix. 500-dimensional i-vectors, derived from 3
SNR groups comprising 21,468 utterances from 763 speakers,
were pooled together and then processed by WCCN and LN.
Thereafter, a projection matrix computed by LDA and WCCN
was applied to reduce the dimensionality of i-vectors from 500
to 200. A Gaussian PLDA model was then trained using 200-
dimensional i-vectors with 150 speaker factors.

C. Neural Network Systems

We evaluated three neural network systems: conventional
DAE, H-RDNN (Fig. 1) and MT-DNN (Fig. 1). The DAE
consists of one input layer (500 nodes), two hidden layers

(2000 nodes each) with hyperbolic tangent (tanh) activations
and one output layer (500 nodes) with linear activations. The
sub-networks of H-RDNN have the same setup as the DAE.
For the MT-DNN, the regression network is the same as that
of the H-RDNN in the first stage. The classification network
has a softmax layer with 763 nodes (one per speaker). Before
training, all weights were initialized using Xavier initialization
[24] with parameters suitable for tanh activations. Dropout
[25] together with L2-norm weight decay were applied to
provide regularization. Adadelta [26] with a batch size of 150
was used as the gradient descent algorithm. All DNN programs
were run on the TensorFlow platform [27].

IV. RESULTS AND DISCUSSIONS

Fig. 3 shows the distributions of 20 speaker clusters formed
by the raw i-vectors (original, 15 dB, and 6 dB) and the
i-vectors transformed by different DNN models. Evidently,
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(b) DAE-transformed i-vectors
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(c) H-RDNN-transformed i-vectors
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(d) MT-DNN-transformed i-vectors

Fig. 3. T-SNE plots [28] of 20 speaker clusters from 3 SNR groups
(org+15dB+6dB, telephone speech, babble noise). The raw i-vectors in (a)
were transformed by DAE (b), H-RDNN (c), and MT-DNN (d). Speakers are
marked with different colors and i-vectors from the three SNR groups are
marked with ◦, ×, and ∗, respectively.
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Fig. 4. Dispersion of 20 speaker clusters from 3 SNR groups (org+15dB+6dB,
telephone speech, babble noise). The x-axis indicates the types of DNN
transformation methods applied to the raw i-vectors. The y-axis indicates the
values of Tr(S−1

w Sb). The colors in the legend denotes different i-vector
post-processing methods applied to the DNN-transformed i-vectors.

the speaker clusters of the original i-vectors (top-left) are
less distinguishable than those of the DNN-transformed i-
vectors. Taking the 6-th speaker cluster (wathet blue) in the
top-left subfigure as an example, the left-most • of this speaker
deviates significantly from its centroid. As this i-vector is
derived from an uncontaminated utterance, the deviation is
mainly caused by channel effects. The 15-dB and 6-dB i-
vectors marked with crosses and asterisks exhibit severe vari-
ations within each speaker cluster. After denoising, i-vectors
processed by the MT-DNN have the most compact clusters.
This suggests that the MT-DNN-transformed i-vectors are less
channel- and SNR-dependent and more speaker-dependent,
which is a favorable property for PLDA modeling.

Fig. 4 shows the trace of S−1w Sb obtained from the same
set of i-vectors used for producing Fig. 3, where Sb and Sw

are the between- and within-speaker scatter matrices. This

value measures the dispersion of speaker clusters. The bars
indicated by different colors represent different i-vector post-
processing methods. Since Tr{S−1w Sb} is invariant to the linear
transformation of WCCN, the first two bars (None, WCCN)
have the same values. Moreover, it shows that the speaker
clusters processed by the MT-DNN have the largest degree of
separation.

Table I shows the results with respect to EER and SRE12
minDCF [17] achieved by the conventional methods and the 3
DNN-based methods. This table shows the best combination
of WCCN, LN and LDA-WCCN for the PLDA baseline,
SI-mPLDA model and SD-mPLDA model. We found that
WCCN is the most suitable post-processing method for DNN-
transformed i-vectors. The 4-th column in Table I reveals
that DNN-based models significantly outperform the multi-
condition PLDA and mixtures of PLDA under 3 different
noise types. Among 3 DNN-based models, conventional DAE
shows some denoising effects, with 21.0% reduction in EER
and 3.1% reduction in minDCF on average when compared
with the PLDA baseline. The performance of H-RDNNs is
very close to that of the DAEs. A possible reason is that the
i-vectors processed by H-RDNN in the first stage is already
close to clean. Therefore, the denoising effect may not gain
a lot from the second stage of H-RDNN. MT-DNN, with the
speaker classification task, achieves the best performance with
24.5% reduction in EER and 8.7% reduction in minDCF on
average when compared with the PLDA baseline.

Table II shows the performance achieved by different mod-
els under 9 different acoustic conditions (3 types of noise and
3 SNR groups). Three phenomena can be observed. First, the
EERs and minDCFs (15 dB and 6 dB) in Table II are lower
than those in Table I. It is possible because the SNRs of the
noise-contaminated test segments in Table II do not vary a lot,
which is easier for the DNNs and PLDA models to handle.
Second, the DNN-based models show noise robustness under
9 different noise conditions. Third, MT-DNN together with the
PLDA backend perform better than other DNN-based models
and PLDA-based models in most cases.

Table I shows that the MT-DNN performs significantly
better than the DAE; but in Table II, the MT-DNN performs
slightly better only. A possible reason is that the wide SNR
range in the original test segments of CC4 and CC5 makes the
denoising task very difficult. The DAE is not good enough to
handle the task. On the other hand, the narrow SNR ranges in
Table II make the job of denoising easier, which reduces the
performance gap between the two models.

V. CONCLUSIONS

This paper presents a DNN approach to compensating for
channel and SNR variabilities. We demonstrated the noise
effects on the compactness of speaker-dependent i-vector
clusters. From this starting point, we illustrated why the
noise sources have negative effects on PLDA modeling and
proposed H-RDNN and MT-DNN to address the problem.
Results showed that the MT-DNN with regression and classi-
fication tasks trained alternatively can improve the robustness
of speaker verification systems.
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