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Abstract—The Intelligent Transportation System with the in-
tegration of machine learning and inter-vehicle communications
can enable various active safety measures in internet-of-vehicles.
Specifically, the environmental perception is processed by the
deep learning module from vehicular sensor data, and the
extended perception range is achieved by exchanging traffic-
related information through inter-vehicle communications. Under
such condition, the intelligent vehicles can not only percept the
surrounding environment from self-collected sensor data, but also
expand their perception range through the information sharing
mechanism of VANET (Vehicular Ad-hoc Network). However,
the dynamic urban environment in VANET leads to a number
of issues, such as the effect of packet loss on the real-time
perception accuracy of the received sensor data. In this work, we
propose a point cloud object detection module via an end-to-end
deep learning system and enable the wireless communications
between vehicles to enhance driving safety and facilitate real-
time 3D mapping construction. Besides, we build a semi-realistic
traffic scenario based on the Mong Kok district in Hong Kong to
analyze the network performance of data dissemination under the
dynamic environment. Finally, we evaluate the impact of data loss
on the deep learning-based object detection performance. Our
results indicate that data loss beyond 50% (which is a common
scene based on our simulation) can lead to a rapid decline of the
object detection accuracy.

Index Terms—3D Point Cloud, VANET, autonomous driving,
deep learning, SUMO

I. INTRODUCTION

Vehicular safety is improved in automated systems with
accurate perception from sensors. Furthermore, the informa-
tion shared through VANET (Vehicular Ad-hoc Network)
can greatly increase vehicular perception range. Thus, if au-
tonomous vehicles could cooperate with one another through
inter-vehicle communications, and exchange sensor data for
real-time mapping and deep learning-based safety alert, both
the distant and hidden objects can be easily detected to
enhance driving safety.

From the above two directions, the first is sensor data
perception. Sensors relevant to autonomous driving include
GPS (Global Positioning System), cameras, LiDAR (Light
Detection and Ranging), etc. GPS data is widely used in
both path planning and VANET Basic Safety Message (BSM)
since it can provide the velocity and position coordinates
in a straightforward way. However, the accuracy of GPS
localization is highly related to the satellite signal condition.
When comparing LiDAR data to the camera data (2D infor-
mation that is constrained by lighting condition), LiDAR data

contain 3D metric information and can directly measure the
surrounding environment with accurate localization and 360-
degree coverage.

The second direction is the integration of connected vehicles
through wireless communications and deep learning-based
intelligent driving. More specifically, with the installation of
wireless units for Dedicated Short Range Communications
(DSRC) on light-duty vehicles in the US [1], and the devel-
opment of the vehicle-to-everything (V2X) communications
for improving road safety, VANET can thus be a strong cata-
lyst to enhance traffic efficiency through information sharing
mechanism. Besides, intelligent driving requires the ability
to identify navigable terrain through various sensing systems.
The implementation of end-to-end deep learning modules from
vehicular-sensor data for perception and decision making can
enhance the on-road driving safety in an intelligent manner.
With more sensor data coming in, some of the blind spots of
vehicles can be eliminated for better safety.

Therefore, information sharing and intelligent processing
can be achieved on-the-fly through the integration of VANET
and the end-to-end deep learning perception system. This
has several challenges. Despite the increasing interests in the
separate world of either data dissemination in VANET [2], [3]
or deep learning-based 3D object detection [4], [5], very few
studies considered the multimodal framework of the integrated
VANET with deep learning [6]. The consideration of either the
real VANET communication protocols or adequately exploit
the urban vehicular mobility patterns is absent. In addition,
the information dissemination in vehicular networks seldom
considers the delivery of both point cloud data and the deep
learning-based perception results, let alone the analysis of the
impact of VANET Packet Loss Ratio (PLR) under dynamic
urban environment on the deep learning-based 3D object
detection performance.

To address these challenges, we investigate the feasibility
of integrating VANET data dissemination of both BSM and
original point cloud data with the end-to-end deep learning
module for 3D point cloud object detection. For analyzing
the dynamic VANET environment and its impact on the deep
learning-based object detection accuracy, we also developed a
semi-realistic urban traffic scenario with the consideration of
various traffic infrastructures.

Overall, the major contributions of this work are three-fold:
• We propose a system architecture that integrates vehicular
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Fig. 1: System architecture.

communications and deep learning based object detection
for analyzing the impact of communication loss on 3D
object detection;

• We build a semi-realistic traffic scenario to evaluate the
amount of packet loss due to fading and signal attenuation
in dense city like downtown Hong Kong. We found that
the amount of packet loss could be up to 90% depending
on the transmission power and vehicular density in the
surroundings;

• Through the integrated system framework, we identified
that a packet loss of more than 50% can already lead to
a rapid decline of object detection accuracy.

II. RELATED WORK

Environmental sensing devices with the application of deep
learning allow the autonomous driving vehicles to perceive
the surrounding environment in an intelligent manner. There
is considerable research on the accurate localization [7] and 3D
object detection [5], [8] with LiDAR data and end-to-end deep
learning. This shows 3D LiDAR can conquer the degrade GPS
localization accuracy in urban scenarios, and its 360-degree
sensing offers a solution to the decreased camera sensitivity
in challenging lighting conditions. However, with the absence
of vehicular sensor networks, both the perception range lim-
itation of an individual vehicle and physical occlusion in the
environment make it challenging to ensure traffic safety.

Works related to the collaborative perception through inter-
vehicle communications [9], [10] aim to alleviate this prob-
lem by leveraging additional sensor information from other
vehicles. For example, [11] shows that 3D sensor fusion is
achieved with the aid of vehicle-to-vehicle (V2V) communi-
cations. In short, VANETs can help achieve a global view
of the traffic environment through the benefits of wireless
networks. However, information dissemination in VANETs
under the real-scene, especially the urban scenario, has long
being a problem [3]. The Quality of Service (QoS) will be
highly affected due to the distributed, intermittently connected,
and time-critical nature among high-mobility of vehicular
networks. Therefore, with the merits of receiving extra sensor
information in VANETs to expand the vehicular perception
range, the demerits of the packet loss ratio with side effects to
the deep learning perception performance are non-negligible.

III. RESEARCH METHODOLOGIES

Our work integrates inter-vehicle communications and deep
learning perception in a whole system, as shown in Fig.1. Deep
learning is responsible for the real-time object detection from
LiDAR point cloud data. VANETs in urban traffic scenarios
can expand the on-road perception range into a global view.
Furthermore, we use different data dissemination services to
analyze the dynamic VANET environment and its impact
on the perception performance in deep learning. In detail,
BSMs are broadcast through the DSRC control channel and
the original point cloud data is transmit through the service
channel. To evaluate the impact of data loss to the deep
learning performance, we link the consequent packet loss
ratios to various point cloud sparsity degrees. The following
subsections explain each part in Fig.1.

A. Vehicular mobility modeling in VANET
Urban traffic is the communication carrier between vehicles.

In VANET, the motion of vehicles vary greatly within time
and space. It needs to be considered under dynamic road usage
conditions (such as the sparse, moderate and congestion traffic)
and real vehicle driving routes. Due to the differentiation of
the traffic simulator and network simulator, in this work, the
vehicular mobilities are generated from the traffic simulator
of SUMO (Simulation of Urban Mobility) [12] with various
traffic conditions. Then, we further export the mobility traces
into the network simulator of NS3 [13] for the inter-vehicle
communications.

In our experiments, Mong Kok road topology is extracted
from OpenStreetMap [14]. Then, we use JOSM (Java Open
Street Map Editor) to analyze the location data of bus stops,
traffic lights, fixed bus routes and building topologies. The
traffic signal duration and the buses’ dwell time are determined
according to the empirical data. These are combined into
our vehicular mobility scenario. This process resulted in 23
bus stops, 29 traffic lights, and 5 fixed bus routes. The road
usage condition is also an important factor of the VANET
connectivity. Given the constant number of 60 buses, to
generate different types of traffic flows, we vary the number
of other generic vehicles, including sparse (with extra 14
vehicles), moderate (extra 55 generic vehicles) and congestion
(139 generic vehicles). Table I provides an overview.



TABLE I: Different levels of traffic flows

Traffic Condition Vehicular numbers
(Bus/Total Vehicles ) Congestion rate

Sparse 60/74 —
Moderate 60/111 15%

Congestion 60/199 53%

B. Inter-vehicle communication

The dynamic environment with diverse road topologies and
uneven vehicular density distributions leads to the instability
of inter-vehicle communications. In this work, with the above
traffic scenario, our VANET simulation implements the IEEE
802.11p standard on all vehicular nodes. The simulation pa-
rameters are listed in Table II. Specifically, we use the ITU-
R1411Los propagation loss model, which is suitable for the
short-range outdoor communication. Besides, routing protocol
plays an important role to ensure the successful wireless
communication between vehicles. We adopt the OLSR (Op-
timized Link State Routing)1 routing protocol for the BSMs
dissemination. In addition, the traffic simulation duration is
1200s within the scenario range of 274.441m × 433.396m.
We also vary the wireless transmission power (from 16 dBm
to 28 dBm) and the transmission range (from 50 m to 400
m) for the analysis of numerical vehicular communication
conditions. Furthermore, in order to disseminate both the deep
learning perception results and the original point cloud data,
we propose two VANET scenarios, summarized below:

• Scenario 1: Deep learning-based 3D object detection
results as the 200 Bytes BSMs and broadcast through
the DSRC control channel to all other vehicles under the
sparse, moderate and congestion traffic conditions;

• Scenario 2: The dissemination of the original point cloud
data (4 MB) as the infotainment service through the
service channel. We assume 30 user-pairs apply this
customized service under the moderate traffic condition.

C. 3D point cloud object detection with deep learning

In order to assist intelligent vehicles with a clear under-
standing of the surrounding environment, the representation
and extraction of useful features from high-volume point
cloud data with deep learning is necessary. For this, we use
VoxelNet [5] as our object detection benchmark. This end-
to-end deep learning framework can detect 3D objects with
an efficient implementation and includes three major parts,
namely, feature learning network, convolutional middle layer
and region proposal network. The feature learning network can
organize the orderless point cloud data through voxel feature
encoding layers. Meanwhile, the 3D convolutional middle
layer is responsible for the spatiotemporal feature learning,
while the region proposal network detects the vehicles.

The dataset we applied is the KITTI Velodyne 64E range
scan data [15], which contains 7481 annotated training data.
As we explained in the beginning of Section III, our major

1This routing protocol shows the best performance than AODV (Ad
Hoc On-Demand Distance Vector), DSDV (Destination-Sequenced Distance
Vector) and DSR (Dynamic Source Routing) through our experimental study.

TABLE II: VANET Simulation Parameters

Scenario size 274.441m× 433.396m
Simulation duration 1200s
Transmission power 16dBm - 28dBm

Routing protocol OLSR
Physical mode OFDMRate6MbpsBW10MHz

80211mode MAC:802.11p / 5.9GHz

Packet size 200 bytes (Basic Safety Message) &
4,000,000 bytes (3D point cloud data)

Transmission range 50m - 400m
Porpagation loss model ITUR1411LosPropagationLossModel

TABLE III: Bird’s eye view performance evaluation

Easy Moderate Hard
Our repeated results (AP) 83.70% 74.22% 67.20%
Original results (AP) [10] 89.35% 79.26% 77.39%

aim is to evaluate the effect of the dynamic environment
with packet loss to the deep learning perception accuracy.
Thus, in our experiments, we use the annotated training
data only and randomly separate this data into 50% training,
30% validation and the rest 20% (1500 frames data) for the
offline performance analysis. The VoxelNet was trained with
a NVIDIA Geforce GTX1080 GPU, and we measured the
performance on the bird’s eye view with Average Precision
(AP). Table III shows the results of the detection accuracy
and the comparison with the original VoxelNet results.

D. The effect of the packet loss to the deep learning accuracy

Fig. 2: VANET packet loss to the deep learning performance.
Training the deep neural network from high-volume his-

torical data is necessary. But it’s also important to use on-
road data to ensure quality of real-time intelligent control.
The problem is that with the pre-traind deep learning module
from historical data, the information loss in VANET could
degrade the detection performance. Fig.2 shows the VANET
information loss to the different sparsity levels of point cloud
data, and further to the effect of deep learning performance.
The transmission of the point cloud data is based on the
UDP protocol under the dynamic VANET scenario. For this
experiment, we follow [16] and assumes the interleaving
techniques are used to ensure that the packet loss will disperse
uniformly in the point cloud, and will not affect the point-
cloud-visualization at the receiver side.

Based on the prerequisite in [16], we assume a least serious
condition that 50% data loss can only leads to 50% random
sparsity of the original point cloud data, and we set the pre-
trained deep learning module as the no-missing-data baseline,



TABLE IV: Packet Loss Ratio based on the BSMs data dissemination(%)

Packet Loss Ratios under various transmission power, different vehicular density and various transmission ranges.
Txp 16dBm 18dBm 20dBm 22dBm 24dBm 26dBm 28dBm

Dis.
Den. S M C S M C S M C S M C S M C S M C S M C

50m 22.20 28.11 54.53 20.71 25.88 51.46 27.67 23.97 48.46 18.29 21.95 45.74 16.56 19.00 41.62 14.71 16.55 37.96 13.05 13.93 33.69
100m 46.27 58.08 80.57 45.24 56.78 79.26 50.05 55.67 77.98 43.58 54.59 76.74 42.38 52.28 75.05 41.10 51.34 73.46 39.96 49.81 71.60
150m 56.32 71.25 88.24 55.49 70.35 87.44 59.40 69.59 86.64 54.13 68.79 85.59 53.16 67.61 85.93 53.16 66.62 83.93 51.19 65.58 82.80
200m 63.48 78.86 91.96 62.79 78.19 91.41 60.06 77.64 90.88 61.65 77.05 90.37 60.84 76.18 89.67 60.84 75.46 89.01 59.19 74.68 88.24
250m 68.46 82.03 92.64 67.86 81.47 92.64 70.68 80.99 92.18 66.89 80.49 91.74 66.18 79.76 91.15 65.43 79.15 90.58 64.76 78.49 89.92
300m 70.64 83.45 93.62 70.08 82.93 93.19 72.70 82.49 92.77 69.16 82.03 92.36 68.51 81.35 92.39 67.81 80.79 91.28 67.19 80.18 90.67
350m 78.22 86.31 94.07 77.80 85.88 93.67 79.75 85.52 93.28 77.13 85.14 92.93 76.64 84.58 92.90 76.13 84.11 91.90 75.66 83.61 91.33
400m 78.22 86.31 94.07 77.80 85.88 93.67 79.75 85.52 93.28 77.13 85.14 92.93 76.64 84.58 92.90 76.13 84.11 91.90 75.66 83.61 91.33

TABLE V: PLR based on the point cloud data dissemination

Transmission power 16dBm 24dBm 28dBm
Transmission distance 100m 150m 200m
Packet Loss Ratio 90.03% 89.68% 89.63%

with the performance in Table III. To evaluate the effect of
packet loss on the deep learning-based perception accuracy,
we mapped various VANET PLRs to different levels of point
cloud sparsity in the test data. Table IV shows the BSMs’ PLR
and Table V shows the PLR on the original point cloud data.

IV. SIMULATION RESULTS AND DISCUSSION

We now show our traffic scenario and VANET communi-
cations. Mobility traces are generated with the professional
traffic simulator SUMO to better reflect the realistic vehicular
traffic. The generated urban scenario offers a benchmark
for inter-vehicle communications. Moreover, we consider two
VANET communication scenarios, and one of them is the
broadcasting of BSMs through VANET control channel. The
PLR under this condition is shown in Table IV. As the results
show, increasing the transmission distance2 (i.e., marked as
Dis.), the communication range will be enlarged. This can
introduce more frequent contention and collision among neigh-
boring vehicles, and thus a higher packet loss ratio. On the
contrary, the adjustment of the transmission power (Txp in
dBm) can provide better connectivity of nodes and improves
the packet delivery ratio. With the various traffic scenarios
in Table I, we also analyze the effect of traffic conditions
(i.e., marked as Den.) to the PLR (’S’ means sparse traffic,
’M’ means moderate and ’C’ represents congestion condition).
Through our extensive simulation, the dense traffic condition
is likely to suffer more packet loss than the sparse traffic due
to message collision.

We also considered the original point cloud data (4 MB)
dissemination. To cover the Non-Line-of-Sight condition in
inter-vehicle communications, we added the real world build-
ing topology with extra 14 dBm [3] wall-penetration loss
in VANETs. As we can see in Table V, with a 16 dBm
transmission power (consistent with the 100 m transmission
distance), the packet loss ratio can reach more than 90%.
Increase the transmission power to 28 dBm only gives minor
improvements.

2A simulation setting in NS3 for calculating different values of Packet
Delivery Ratio.

Based on the above analysis, we can conclude that the PLR
within urban area could range from 10% to 90% depending
on the transmission power and vehicular density. Then, we
re-arrange the point-cloud data with various information loss
conditions into 10 different datasets (as shown in the x-axis
in Fig.4), such that the data can have different sparsity degree
due to the dynamic VANET communication. After that, these
10 datasets served as input to our pre-trained deep learning
module for the object detection task. The detection accuracy
is shown in Fig. 4 and further illustrated in Fig.3. It is clear to
see that with less than 50% data loss, the detection accuracy
only decreases 4.21% in the easy level and more than 3% in
the hard level. This means that deep learning module is robust
enough (only suffers a slight accuracy decline) to handle the
on-road intelligent perception with even 50% VANET data
loss. When data loss beyond 50% (which is more common
based on our PLR simulation in both Tables IV&V), the rapid
decline of the object detection accuracy occurs. With a 90%
data loss, the detection accuracy in the moderate level is lower
than 35%, while the hard level is even worse (31.90%). Note
that the static historical dataset with more than 83% accuracy
in Table III was proven to be efficient. However, under the
dynamic VANET environment with information loss, the static
pre-trained module is obviously not sufficient to be directly
applied for the real-time use of on-road dynamic applications.

To further illustrate the insufficient use of deep learning,
we analyze our detection results from Fig.3 with three rep-
resentable conditions, namely, sparse traffic (2 vehicles under
this example), dense traffic (9 vehicles) and the urban scenario
(one vehicle under a complex scene). Specifically, under the
sparse traffic condition (Fig.4 a, d, g), it is clear to see
that 50% data loss can still generate an accurate detection.
However, detection fails with a 90% information loss ratio. In
addition, under the dense vehicle scenario in Fig. 4 (b, e, h),
the 50% data loss can maintain the true positive detection but
introduce more false positives at the same time. When data loss
becomes larger (90%), the vehicles in the distance cannot be
well detected. Besides, the urban scenario in Fig. 4 (c) makes
the things worse due to the complexity of the background.
The 90% data loss in Fig.4 (i) can mix the noise data
with the object features together and generate numerical false
detections. Notice that the corresponding minimal distance for
the KITTI object detection of moderate and hard level is 47m
(25px pixel height) [8]. The 31.90% detection accuracy due



(a) Sparse traffic (Without data loss) (b) Dense traffic (Without data loss) (c) Urban scenario (Without data loss)

(d) 50% data loss (e) 50% data loss (f) 50% data loss

(g) 90% data loss (h) 90% data loss (i) 90% data loss

Fig. 3: Deep learning-based object detection results with various packet loss degree. ((a, b, c) are qualitative results. We
projected the point cloud detection results on RGB-images for better explanation.)

Fig. 4: Data loss to the effect of object detection accuracy.

to the 90% data loss is obviously not enough to ensure the
driving safety.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel system framework to integrate
the inter-vehicle communication and deep learning-based ob-
ject perception for the high-efficiency safety measurement in
intelligent driving. We address the concern of the potential
issue under such framework: the VANET packet loss to the
effect of the deep learning-based object detection performance.
As explained, under the dynamic urban environment, the
packet loss can greatly affect the compliance of the received
data. The vehicular perception range and deep learning ac-
curacy will thus be affected. As future work, in order to
tackle this issue, reducing the packet loss ratio through the
global adjustment of inter-vehicle communications could be
a straightforward way. Meanwhile, the interpretability of the
deep neural network is also important to avoid the opacity of
the decision-making process.
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