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Towards End-to-End ECG Classification with Raw
Signal Extraction and Deep Neural Networks
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Abstract—This paper proposes deep learning methods with
signal alignment that facilitate the end-to-end classification of
raw electrocardiogram (ECG) signals into heartbeat types, i.e.,
normal beat or different types of arrhythmias. Time-domain sam-
ple points are extracted from raw ECG signals, and consecutive
vectors are extracted from a sliding time-window covering these
sample points. Each of these vectors comprises the consecutive
sample points of a complete heartbeat cycle, which includes not
only the QRS complex but also the P and T waves. Unlike
existing heartbeat classification methods in which medical doctors
extract handcrafted features from raw ECG signals, the proposed
end-to-end method leverages a deep neural network (DNN)
for both feature extraction and classification based on aligned
heartbeats. This strategy not only obviates the need to handcraft
the features but also produces optimized ECG representation for
heartbeat classification. Evaluations on the MIT-BIH arrhyth-
mia database show that at the same specificity, the proposed
patient-independent classifier can detect supraventricular- and
ventricular-ectopic beats at a sensitivity that is at least 10%
higher than current state-of-the-art methods. More importantly,
there is a wide range of operating points in which both the
sensitivity and specificity of the proposed classifier are higher
than those achieved by state-of-the-art classifiers. The proposed
classifier can also perform comparable to patient-specific clas-
sifiers, but at the same time enjoys the advantage of patient
independency.

Index Terms—ECG classification; arrhythmia classification;
end-to-end; deep neural networks, heartbeat alignment.

I. INTRODUCTION

HEart arrhythmias refer to the condition in which a pa-
tient’s heart beats irregularly. Most types of arrhythmias

have no symptoms and are not serious. However, arrhythmias
may cause symptoms of heart diseases, including lighthead-
edness, passing out, shortness of breath and chest pain. Some
types of arrhythmias such as atrial fibrillation, ventricular es-
cape and ventricular fibrillation may cause strokes and cardiac
arrest that are extremely dangerous and require immediate
treatment [1].

Heart arrhythmias can be detected by using Electrocardio-
graphy (ECG), which records the electrical activities of a
patient’s heart using two electrodes attached to the skin. In
general, an ECG recording session lasts several minutes, and
medical doctors examine the ECG waveforms beat-by-beat to
diagnose whether heart arrhythmias exist or not. The process
is very tedious and time-consuming. Therefore, automatic

S. S. Xu, M. W. Mak (enmwmak@polyu.edu.hk) and C. C. Cheung are
with Department of Electronic and Information Engineering, The Hong Kong
Polytechnic University, Hong Kong SAR of China. This project was in part
supported by the RGC of Hong Kong, Grant No. PolyU 1521371/17E.

heartbeat classification from ECG signals is important for
diagnosing heart arrhythmias in medical practice.

A standard ECG refers to a 12-lead ECG and some ECG-
based biometrics research [2], [3] was based on this conven-
tional 12-lead configuration. During measurement, patients are
asked to lie quietly on a bed so that high quality 12-lead ECG
signals can be recorded, but this arrangement is impractical
for long-term monitoring. A 2-lead configuration is routinely
used in Holter monitoring [4] and is widely accepted as a
practical means of long-term continuous heart monitoring.
In this work, the proposed end-to-end heartbeat classification
system is designed to detect some types of arrhythmias during
long-term continuous heart monitoring. Thus, we used the 2-
lead ECG configuration and also used MIT-BIH arrhythmia
database [5] for performance evaluation because it comprises
a standard set of Holter recordings for evaluating arrhythmia
detectors.

In the last two decades, much research effort [6]–[17]
has been spent on classifying heartbeats automatically. Many
of these studies used the MIT-BIH arrhythmia database for
performance evaluation. Most of these approaches involved
three steps: preprocessing, feature extraction and classification.
Preprocessing segments the heartbeats from the continuous
ECG signals into individual beats.1 Feature extraction converts
the variable-length time-domain heartbeats into fixed-length
feature vectors that encode the heartbeat’s characteristics.
Various features have been extracted from ECG signals to
represent the heartbeats, such as Hermite coefficients [8], mor-
phological features [7], wavelet transform features [9], [10],
heartbeat interval features [7], [11] and sparse decomposition
[17]. For classification, different machine learning algorithms
have been investigated, including support vector machines
(SVMs) [8], [10], [17], artificial neural networks (ANNs) [9],
deep neural networks (DNNs) [11], convolutional neural net-
works (CNNs) [12], [14]–[16], multi-view-based learning [13],
mixture-of-experts (MOEs) [6], and linear discriminants (LDs)
[7]. Note that the performance of previous approaches cannot
be compared directly because they used different standards
to preprocess the ECG data. Only the works in [6], [7], [9],
[10], [12], [13], [17] followed a well-known standard, i.e.,
American National Standard prepared by the Association for
the Advancement of Medical Instrumentation (ANSI/AAMI
EC57:1998) [18].

Hu et al. [6] proposed using MOEs for ECG classification.
In this approach, each heartbeat comprises 14 sample points

1In this work, we focused on the beat-by-beat classification of ECG signals
because most state-of-the-art ECG analysis algorithms [6]–[13], [16], [17]
adopt the beat-by-beat analysis strategy.
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on either side of its R peak. First, a classifier called the global
classifier was trained based on a number of ECG recordings
from different patients. Next, five minutes of doctor-annotated
ECG signals obtained from a new patient were used for
training a local classifier. Then, the global and local classifiers
were combined to form a patient-specific MOE classifier.
Although high accuracies have been achieved, the classifier
cannot be generalized to all patients.

Chazal et al. [7] utilized morphological and dynamic fea-
tures to represent heartbeats and then classified them into five
classes. The classifier is based on linear discriminants, and its
parameters are determined by maximum-likelihood estimation.
In [10], Ye et al. applied wavelet transform and independent
component analysis (ICA) to extract morphological features
from segmented heartbeats. Heartbeat intervals were also used
as dynamic features. The features were applied to an SVM for
classifying heartbeats into five classes. While the classification
processes in [7] and [10] are completely automatic and patient-
independent, the accuracies of their classifiers are significantly
lower than that of [6]. This is due to variability in ECG
characteristics among different patients.

In [9], Ince et al. applied wavelet transform and principal
component analysis (PCA) to extract morphological features,
which were then combined with temporal features to form
the final feature vectors. A multidimensional particle swarm
optimization method was proposed to train an artificial neural
network (ANN) based classifier using 245 common training
beats and a variable number of patient-specific beats.

In [12], the raw data of each beat in the MIT-BIH arrhyth-
mia database were downsampled to 64 or 128 time-points
centered on the R-peak. The time-domain signals or their
FFT representations are used as the input to patient-specific
1-D CNN. Each CNN was trained by 245 representative
beats that are common to all patients and 5 minutes of
patient-specific beats that are specific to the corresponding
patient. The CNNs were evaluated by using the remaining
25 minutes of the patient’s ECG recording. Results showed
that except for Class S, the CNNs outperform any existing
arrhythmia classifiers (including their earlier work in [9]) on
the same dataset. The high performance, however, relies on the
manual annotations of the 5-minute patient-specific data by
medical doctors. Furthermore, the CNN classifiers are patient-
dependent, meaning that any new patients wanting to use this
technology need to provide 5 minutes of ECG recordings,
followed by an expensive annotation process.

Ye et al. [13] proposed a subject-adaptable heartbeat clas-
sification model to overcome the problem of interpersonal
variations in ECG signals. The preprocessing and feature
extraction methods in [13] are identical to those in their earlier
work [10]. However, unlike [10], the classification models in
[13] are customized for each patient; also, unlike other patient-
specific classifiers, the subject-customized classifiers in [13]
can be trained on unlabeled patient-specific data, meaning that
no manual intervention is required during training. This is
achieved by dividing the classification models into a general
classifier and a specific classifier for each patient. The former
is trained on the data extracted from patients who are similar
to the target patient, whereas the latter is trained on a small

set of patient-specific heartbeats with high-confidence labels
hypothesized by multi-view learning models (multi-channels
plus temporal information). During classification, the decisions
of the general and specific classifiers are probabilistically
combined so that both the inter-patient and intra-patient per-
spectives of the classification task are considered in the final
decisions.

In [17], a new feature extraction method (sparse decom-
position over a Gabor dictionary) is proposed to represent
various classes of heartbeats. Four kinds of features (i.e., time
delay, frequency, width parameter and square of expansion
coefficient) are extracted from each of the significant atoms
of the dictionary and concatenated to constitute a feature
vector. The feature vectors are classified using some typical
classification models. Among the different proposed methods,
the performance of the particle swarm optimization (PSO)
optimized least-square twin SVM model achieves the best
performance.

In this paper, we evaluated the performance of the proposed
method on the MIT-BIH arrhythmia database and followed the
ANSI/AAMI EC57 standard to compare with those in [7], [9]–
[13], [17]. Study [11] was chosen for performance comparison
because it uses DNNs as classifiers. We did not compare our
results with [6] because its performance is poorer than that
of [9], [12], [13]. A comparative summary of these studies
[6]–[17] as well as our proposed method is shown in Table I.

We propose an end-to-end method with a deep neural
network (DNN) for both feature extraction and classification
based on aligned heartbeats. This method obviates the need to
handcraft the features and produces optimized ECG represen-
tation for heartbeat classification. Through the performance
investigation using the MIT-BIH arrhythmia database, the
proposed method performs better than current state-of-the-
art methods. The paper is organized as follows. Section II
introduces the proposed end-to-end ECG classification algo-
rithm. Section III outlines the experimental setting. Section IV
compares the performance of the end-to-end ECG classifier
against existing ECG classification methods. Finally, Section V
concludes our findings.

II. END-TO-END ECG CLASSIFICATION

In this section, we first explain the motivation to build
an end-to-end ECG classifier, and then provide a system
overview of the classifier. Next, we describe the deep neural
network inside the classifier, and finally, explain the heartbeat
segmentation and alignment procedures in the classifier.

A. Motivation

In most previous works [6]–[13], handcrafted feature2 vec-
tors were extracted from the QRS complex of heartbeats
because this region is thought to contain most ECG pulse
informantion. However, studies [20]–[22] show that the P and
T waves also contain important information relevant to heart
arrhythmias. In light of this observation, we proposed to use

2The term “handcrafted features” is frequently used in the machine learning
community to refer to features that are handcrafted by human experts of the
field based on their knowledge and past experience.
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TABLE I: Summary of the published studies [6]–[17] and the proposed method. (a) Studies that do not follow the ANSI/AAMI EC57
standard. (b) Studies that follow this standard. All studies in (a) use the class-oriented evaluation scheme. Therefore, their classifiers are
neither patient-specific nor patient-independent.

Ref. Classes Database Analysis
Strategy

Evaluation
Scheme Features Classifier Classifier Tpye

Osowski [8] 13 MITDB Beat-by-beat Class-
oriented Hermite SVM N/A

Jun [11] 2 MITDB Beat-by-beat Class-
oriented

Morphological,
RR-interval DNN N/A

Acharya [14] 4
MITDB,

CUDB [19],
AFDB [19]

Segments Class-
oriented

Downsampling,
Wavelet,

Sample points
CNN N/A

Tan [15] 2 PhysioNet
[19] Segments Class-

oriented

Upsampling,
Wavelet,

Sample points
CNN-LSTM N/A

Acharya [16] 2 PTB [19] Segments Class-
oriented Raw ECG CNN N/A

(a)

Ref. Classes Database Analysis
Strategy

Evaluation
Scheme Features Classifier Classifier Tpye

Hu [6] 4 MITDB Beat-by-beat Subject-
oriented

Downsampling,
Sample points MOE Patient-specific

with expert intervention

Chazal [7] 5 MITDB Beat-by-beat Subject-
oriented

Morphological,
RR-interval LD Patient-independent

Ince [9] 5 MITDB Beat-by-beat Subject
-oriented

Wavelet, PCA,
RR-interval ANN Patient-specific

with expert intervention

Ye [10] 5 MITDB Beat-by-beat Subject-
oriented

Wavelet, ICA,
RR-interval SVM Patient-independent

Kiranyaz [12] 5 MITDB Beat-by-beat Subject-
oriented

Downsampling,
FFT CNN Patient-specific

with expert intervention

Ye [13] 5 MITDB Beat-by-beat Subject-
oriented

Wavelet, ICA,
RR-interval

Multi-view
Learning

Patient-specific
without expert intervention

Raj [17] 5 MITDB Beat-by-beat Subject-
oriented Sparse Least-square

Twin SVM Patient-independent

Proposed
method 5 MITDB Beat-by-beat Subject-

oriented Raw ECG DNN Patient-independent
(b)

raw ECG waveforms as the input of a deep neural network
(DNN) classifier, which we refer to as end-to-end ECG
classification. The advantage of using raw ECG waveforms
is that the QRS complex and P and T waves can be included
in the extracted heartbeats so that better representations can
be obtained for classification.

CNN is another network type that can receive raw ECG
signals as input. One advantage of CNNs is that they are in-
variant to time-domain translation. Even with this translation-
invariant property, some CNN-based methods (e.g., [12], [16])
still require detecting the R peaks to fulfill the requirements
of beat-by-beat analysis. Only the methods in [14], [15] do
not require R peak detection because they segment the ECG
signals into fixed time intervals of 2 to 5 seconds. The fixed
time intervals may contain one or several heartbeat cycles, and
ECG segments are not applicable to the beat-by-beat analysis
strategy. Furthermore, the results in [14]–[16] were based on
others’ database and did not follow the ANSI/AAMI EC57
standard. Therefore, we did not compare the proposed method
with [14]–[16] in this work.

While both of our proposed DNNs and the CNNs in [12],
[14]–[16] use raw ECG signals as input, our raw signal
extraction method has two advantages over them. First, instead
of simply cropping equal numbers of time points from the left
and right of an R-peak as in [16], we align the heartbeats to
ensure that the input to the DNN contains the QRS complex,

the P wave and the T wave. Second, to fix the input dimension,
the method in [12], [14], [15] upsamples or downsamples
the raw ECG signals to certain time-points per beat, which
may cause information loss. In contrast, our alignment method
allows the DNN to fully utilize the information in the ECG
signals by keeping more time-points (417 in this paper, which
will be described in Section II-D) per beat.

B. System Overview

This paper proposes an end-to-end ECG classification sys-
tem shown in Fig. 1. The system receives raw ECG signals at
one end and produces beat-by-beat classification decisions at
the other end. In the figure, preprocessing refers to the process
of extracting heartbeats from continuous ECG signals, which
involves heartbeat segmentation and alignment. The DNN in
Fig. 1 is used for both feature extraction and classification,
which are achieved by the lower part and the upper part of
the network, respectively. The design of the DNN is discussed
in the Section II-C.

To extract fixed-length feature vectors from raw ECG sig-
nals, two steps must be performed: (1) heartbeat segmentation
and (2) heartbeat alignment. These two steps will be described
in the Section II-D and II-E respectively.
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Fig. 1: End-to-End heartbeat classification system.

C. Design of Deep Neural Networks

To apply DNNs for K-class classification, we can construct
a DNN with L− 1 hidden layers and a softmax output layer
with K output nodes. Specifically, denote a(L)

k as the activation
of the k-th neuron in the softmax layer, where k = 1, . . . ,K,
the softmax function gives the outputs:

yk =
exp

{
a
(L)
k

}
∑K

j=1 exp
{
a
(L)
j

} , k = 1, . . . ,K. (1)

With the softmax function, the outputs can be considered as
the posterior probabilities of individual classes given an input
vector x, i.e., yk = P (Class = k|x). The activation a

(L)
k is

the linear weighted sum of the hidden nodes’ output at the
(L− 1)-th hidden layer.

The weights in the hidden layers can be pre-trained by a
greedy layer-wise unsupervised training process [23] in which
each hidden layer is considered as a restricted Boltzmann
machine (RBM) [24], [25] whose weights are optimized by
the contrastive divergence algorithm [26]. Alternatively, the
weights can be initialized by the Xavier initializer [27]. Then,
the backpropagation algorithm is used to fine-tune the whole
network by minimizing the cross-entropy error between the
target outputs and the actual outputs:

Ece = −
∑
n

K∑
k=1

tn,k log yn,k, (2)

where yn,k is the actual output of node k, n indexes the
training vectors in a mini-batch, and tn,k ∈ {0, 1} are the
target outputs which follow the one-hot encoding scheme.

In this work, we used a DNN with stacked RBMs as shown
in Fig. 2. The RBM at the bottom layer has Gaussian visible
nodes and Bernoulli hidden nodes. The remaining RBMs
have Bernoulli distributions in both visible and hidden layers.
During fine-tuning, the pre-trained weights (W1, W2 and W3)
were used as the initial weights and the weights between the
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Fig. 2: DNN with stacked RBMs.
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Fig. 3: Hypothetical example illustrating the heartbeat segmentation
and alignment processes. In (c), bac means the integer (floor) of a.

upper two layers (W4) were initialized with small random
numbers. In addition, 30% of the training set was used for
computing the accuracy of the network after every epoch, so
that early stopping can be applied to prevent overfitting. Note
that the pre-training step can provide necessary regularization
to the network [28] and the early stopping strategy provides
guidance on how many iterations should be run before the
model begins to over-fit the training data.

D. Heartbeat Segmentation

The bottom of Fig. 1 shows a continuous ECG signal in the
MIT-BIH arrhythmia database. To extract a complete heartbeat
from the ECG signal, we need to define what a complete
heartbeat is and then perform heartbeat segmentation. Since
the R peak usually occurs around the middle of a heartbeat, we
can use it as an anchor point for locating a complete heartbeat.
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Fig. 4: Creating feature vector xj from uj by aligning sample uj(n
∗)

to the midpoint of xj . (a) Example of zero-padding, Hj < D. (b)
Example of truncation, Hj > D.

The positions of R peaks can be accurately determined (over
99%) by using Pan-Tompkins algorithm in [29]. We assume
that the R peak is located at the center of its corresponding
heartbeat, and thus the boundary of a complete heartbeat is
assumed to lie on the middle of two successive R peaks. Based
on this assumption, a complete heartbeat comprises the sample
points between the two middle points of three consecutive R
peaks. Fig. 3(a) shows an example of a complete heartbeat and
its relationship with its preceding and succeeding heartbeats.
In Fig. 3(a), t indexes the sample points of an ECG signal,
v(t) is the voltage (in mV) of the ECG signal at time index
t, Rj is the j-th R peak, and TRj is the time index of Rj .

After heartbeat segmentation, we obtain the j-th complete
heartbeat Hj, which is an integer set containing sample points
between

⌊
1
2 (TRj−1

+ TRj
)
⌋

and
⌊
1
2 (TRj

+ TRj+1
)
⌋
, where

bac means the integer (floor) of a. As illustrated in Fig. 3(b),
the elements in Hj are indexed by n = 0, . . . ,Hj − 1, where
Hj is the number of sample points in the complete heartbeat.
More precisely, we have

Hj =

⌊
1

2
(TRj

+ TRj+1
)

⌋
−
⌊
1

2
(TRj−1

+ TRj
)

⌋
+ 1. (3)

We may use a vector uj to represent Hj as follows:

uj = [uj(0), . . . , uj(n
∗), . . . , uj(Hj − 1)]

T
, (4)

where n∗ = TRj
−
⌊
1
2 (TRj−1

+ TRj
)
⌋

is the time index
corresponding to the peak in uj .

However, uj still cannot be directly used for training a DNN
because the number of sample points is not a constant (the
duration of each complete heartbeat is not the same). A fixed
number of samples (D) needs to be set for each heartbeat.
Thus, we measured the durations of all segmented heartbeats
and found a value that is larger than 95% of all durations. In
our experiments, D was found to be 417 and this value was
applied to all of the completed heartbeats.

E. Heartbeat Alignment

Because we use the R peak as the anchor point of a heartbeat
in the heartbeat segmentation process, it is necessary to align
it to the midpoint of the D consecutive time points of each
heartbeat. Fig. 3(b) and Fig. 3(c) show the alignment process.
We extract samples from uj in Eq. 4 to produce a feature
vector

xj = [xj(0), . . . , xj(D − 1)]
T (5)

such that the
⌊
D
2

⌋
-th element in xj is aligned to n∗-th element

in Eq. 4. Note that this procedure requires zero padding
and sample truncation for most heartbeats. Specifically, when
Hj > D, we may need to truncate some of the samples in the
head or tail or both the head and tail of uj . However, when
Hj < D, we may need to pad zeros to the head or tail or both
the head and tail of uj . In some rare cases, both zero padding
and sample truncation need to be performed. Fig. 4 shows
some examples of the alignment process. Given Eq. 4 and
Eq. 5, the alignment process can be implemented as follows:

xj(m) =


0, if m <

⌊
D
2

⌋
− n∗

or m >
⌊
D
2

⌋
+ (Hj − n∗)

uj(m−
⌊
D
2

⌋
+ n∗), otherwise

(6)

where m = 0, 1, . . . , D − 1.
After heartbeat segmentation and alignment, the set of

feature vectors in a dataset is denoted as

X = {x1, . . . ,xj , . . . ,xN}, (7)

where x1 and xN correspond to the second and the second last
beats in a record, and N is the number of complete heartbeats.

The process of heartbeat alignment is vital to the high per-
formance of the end-to-end DNN (see results in Section IV).
Because the DNN receives time-domain ECG signals as input,
its internal structure represents not only the pulse shapes of
heartbeats but also their relative positions along the time axis.
Without the R-peak alignment, the R peak in Fig. 3(c) could
be in many possible locations, causing high variability in the
feature vectors. By aligning the R peak to the mid-point of
xj(m) in Fig. 3(c), we essentially make the DNN invariant to
the phase shift of the ECG signals.

III. EXPERIMENTAL SETTING

In this section, we first briefly describe the data set, and then
introduce our evaluation scheme and some issues concerning
its implementation (i.e., evaluation protocol). Finally, since
DNN performance is greatly affected by its network structure,
we describe how we find the optimized network structure of
the DNN used in the classifier.

A. Data Set

The MIT-BIH arrhythmia database [5] contains 48 half-hour
excerpts of 2-lead ambulatory ECG recordings. It involves 47
subjects: 25 men aged between 32 and 89, and 22 women
aged between 23 and 89. Each record contains a continuous
recording of ECG signals from a single subject, except for
Records 201 and 202 in which the data were obtained from
the same male subject. The recordings were digitized at
360 samples per second per channel with 11-bit resolution
over a 10-mV range. All records contain raw ECG signals,
and they were independently labelled beat-by-beat by two or
more cardiologists. The total number of labelled heartbeats is
108,655. These heartbeats are divided into 15 different types.

Table II shows the 15 types of heart arrhythmia in the
MIT-BIH arrhythmia database. According to the American
National Standard (ANSI/AAMI EC57:1998) prepared by the
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TABLE II: Heartbeat types in the MIT-BIH arrhythmia database [5]
Class
Code Full Name No. of

Instances
NOR Normal beat 74,478

LBBB Left bundle branch block beat 8,074
RBBB Right bundle branch block beat 7,259

AP Atrial premature beat 2,544
aAP Aberrated atrial premature beat 150
NP Nodal (junctional) premature beat 83
SP Supraventricular premature beat 2

PVC Premature ventricular contraction 6,901
fVN Fusion of ventricular and normal beat 802
AE Atrial escape beat 16
NE Nodal (junctional) escape beat 215
VE Ventricular escape beat 106
P Paced beat 7,028

fPN Fusion of paced and normal beat 982
U Unclassifiable beat 15

TABLE III: Mapping the MIT-BIH arrhythmia types into five heart-
beat classes recommended by AAMI

AAMI Class
N S V F Q

MIT-BIH
Class Code

(see Table II)

NOR,
LBBB,
RBBB,
AE, NE

AP,
aAP,
NP,
SP

PVC,
VE fVN

P,
fPN,

U

No. of
Instances 90,042 2,779 7,007 802 15

Association for the Advancement of Medical Instrumentation,
these heartbeat types can be combined into five classes as
shown in Table III. These classes include normal beat (N),
ventricular ectopic beat (V), supraventricular ectopic beat (S),
fusion of a normal and a ventricular ectopic beat (F) and
unknown beat type (Q).

In most of the recordings in the MIT-BIH database, the
upper signal is a modified limb lead II (MLII), and the lower
one is a modified lead V1.3 In our experiments, only the upper
signal was used for ECG classification because normal QRS
complexes are usually prominent in it.

B. Evaluation Scheme

As mentioned in [10], two evaluation schemes, namely
“class-oriented” and “subject-oriented”, are commonly used
for ECG classification. Using the class-oriented evaluation
scheme, the performance of the classifiers in [8], [11], [14]–
[16] may be overestimated because signals in the training and
test sets could belong to the same patient. The “well trained”
classifier may fail to predict the ECG signals from an unseen
individual. The scheme is not applicable in practice because of
the significant variation in ECG characteristics among different
subjects. Using the subject-oriented evaluation scheme, the
data in [6], [7], [9], [10], [12], [13], [17] were divided into
the training and the testing set based on ECG recordings. This
means that the ECG signals in the training and test set were

3We adopted the terminology from MIT-BIH and used upper and lower
signals to refer to the two channels of ECG recordings.

definitely not from the same patient. The classifiers produced
by this scheme perform more realistically.

The subject-oriented evaluation scheme leads to two types
of classifiers—patient-independent classifiers (e.g., [7], [10],
[17]) and patient-specific classifiers (e.g., [6], [9], [12], [13]).
In general, patient-specific classifiers perform much better than
patient-independent classifiers because the formers are trained
on a small set of annotated data from the respective patients.
In contrast, the cost of patient-independent classifiers is much
lower because no patient-specific data or expert intervention is
required. Note that the proposed end-to-end method adopts the
subject-oriented evaluation scheme, and a patient-independent
classifier is built for beat-by-beat classification of ECG signals.

C. Evaluation Protocol

In compliance with the AAMI recommended practice, four
recordings containing paced beats were removed from the
dataset. The remaining 44 records were split into two datasets
(DS1 and DS2),4 with each dataset containing approximately
50,000 beats from 22 recordings. Note that this way of splitting
the data had also been used in [7], [10] and [17]. Follow-
ing their evaluation protocols (the subject-oriented evaluation
scheme), we applied 22-fold cross validation on DS1 in one
experiment (Exp. 1) and used DS1 as the training set and
DS2 as the test set in another experiment (Exp. 2). Note that
in Exp. 1, each record was used as test data in sequence and
the other 21 records were used as training data. Such process
was repeated 22 times so that each record had been used once
as the test data. As a result, we may compare our results with
previous studies.

As mentioned before, there are two evaluation schemes and
this paper follows the “subject-oriented” scheme because it
is more realistic. All research works (in Table I(b)) following
this scheme use ANSI/AAMI EC57 standard with MITDB for
performance investigation. As suggested by the ANSI/AAMI
EC57 standard [18], we focused on evaluating the classifi-
cation performance of the two majority arrhythmia classes
(Classes S and V). Among the performance indicators for
medical diagnoses, sensitivity (SEN) and specificity (SPC)
are two important measures of the diagnostic accuracy of a
test because a highly sensitive test can be useful for ruling
out a disease if a person has a negative result, whereas a
highly specific test can be useful for ruling in patients who
have a certain disease. Some medical publications [30], [31]
recommend clinicians to choose the most sensitive diagnostic
test to rule out disease and the most specific diagnostic test
to rule in disease. Therefore, in this work, the diagnostic
performance on Class S and Class V was measured using SEN
and SPC. Besides, because the overall accuracy measures the
overall system performance over all classes, it was also used
in this work.

We also used the receiver operating characteristics (ROCs)
[32] to show the performance on Class S and Class V of

4DS1 contains data from ECG recordings 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223
and 230; DS2 contains data from ECG recordings 100, 103, 105, 111, 113,
117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232,
233 and 234.
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Fig. 5: Network structure optimization

the end-to-end classifier. An ROC curve shows the tradeoff
between two performance measures (e.g., sensitivity versus
specificity) of a binary classifier when the decision threshold
varies. Because the threshold typically has a wide range,
ROC curves can provide more comprehensive information on
performance.

In addition, Table III shows the number of classes is highly
imbalanced. Matthews correlation coefficient (MCC) [33], [34]
is a better measure for imbalanced datasets. MCC is a value
between −1 and +1. A coefficient of “+1” represents a perfect
prediction, a “0” means it is not better than random prediction,
and a “−1” indicates total disagreement between prediction
and the ground truth.

D. Network Structure

Fig. 5(a) shows the effect of increasing the number of
hidden layers on the network’s ability to classify heartbeats.
22-fold cross validation was applied to DS1 and the total
number of heartbeats used for evaluation was 50,977. The
results show that the performance was the best when the
number of hidden layer was 3. To further optimize the network
structure, we fixed the number of hidden layers to 3 and
varied the numbers of hidden nodes (e.g., 50, 100, 150 and
200) per layer. According to Fig. 5(b), the best performance
was obtained when the number of hidden nodes equaled to
100. Therefore, in subsequent experiments, the DNN classifier
contained 3 hidden layers and each layer had 100 nodes.

IV. PERFORMANCE INVESTIGATION

This section first presents the feature extraction capability
of our proposed method, then it describes and compares our
method’s performance with current start-of-the-art methods.

Next, we compare our proposed method with other DNN
classifiers including comparing our proposed method with
patient-specific classifiers. Finally, we summarize our findings
in this section.

A. Hidden Node Representation

The t-distributed stochastic neighbor embedding (t-SNE)
[35] is a nonlinear dimension reduction method for visualizing
high-dimensional data on a two or three-dimensional space.
Using the 417-dimensional vectors as input, we extracted the
outputs from the first, second and third hidden layers of the
DNN. We applied t-SNE on the 417-dimensional vectors and
different hidden layers. The results are shown in Fig. 6 for
Classes N, S, V, F and Q. To allow a good visualization,
the number of samples of Class N is reduced in the figures.
No obvious clusters can be observed in the feature vectors
(Fig. 6(a)). When we progressively move up the hidden layers
(Figs. 6(b)–(c)), the clustering property becomes apparent.
However, in the first two hidden layers, each class still has
multiple clusters, meaning that further nonlinear operations
are required. In the third hidden layer (Fig. 6(d)), the clusters
are very obvious, and more importantly each class has fewer
clusters and the clusters of different classes become more
separated. This means that from the bottom to the top layers,
the representation becomes more and more discriminative.
From another perspective, the hidden layers progressively dis-
entangle the class information from the ECG signals, making
the representation of the final layer very discriminative. Unlike
the conventional handcrafted features, the feature extraction
process in the DNN is purely data-driven, without any expert
knowledge.

B. Performance of End-to-End ECG Classification

We applied the aligned feature vectors xi’s as described in
Section II to train a DNN. We set D = 417 for all vectors,
i.e., the DNN has 417 inputs and 5 output nodes, each output
node corresponds to one class in Table III. We used sigmoid
nonlinearity in the hidden layers. Stochastic mini-batch (batch
size of 128) gradient descent was used in the backpropagation
fine-tuning. The learning rate, momentum and maximum num-
ber of iterations were set to 0.001, 0.5 and 50, respectively.
The DNN has three hidden layers with a structure 417–100–
100–100–5. Four experiments were conducted to evaluate the
end-to-end approach.

1) Experiment 1 (Exp. 1): In the first experiment, 22-fold
cross validation was applied to DS1. Table IV compares the
performance of [7] with that of the end-to-end DNN classifier.
Note that the proportion of Classes F and Q in the dataset is
very small (less than 1%). Thus, the classification performance
on these two classes has insignificant contribution to the
overall performance. On the other hand, the proportion of
Classes S and V is much higher (about 10%) and these two
classes contain the majority of arrhythmias. Therefore, we
focused on these two classes. To improve the classification
performance of Classes S and V, Chazal et al. [7] investigated
different combinations of feature sets. For simplicity, their best
results are shown in Table IV. As can be seen, the overall
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Fig. 6: t-SNE plots of input feature vectors and hidden-layer outputs

TABLE IV: Performance of the classifiers in [7] and our end-to-end
classifier (Exp. 1)

Chazal et al. [7] Proposed method
Overall accuracy 84.5% 93.1%
Class S

(S vs. non-S)
SEN 53.3% 69.7%
SPC 86.7% 86.7%

Class V
(V vs. non-V)

SEN 67.7% 88.8%
SPC 86.7% 86.7%

accuracy of the end-to-end DNN is much higher than that of
[7]. In particular, at the same specificity, our DNN achieves a
much higher sensitivity for both Class S and Class V.

The MCCs of Classes N, S, V, F and Q achieved by the end-
to-end classifier are 0.67, 0.26, 0.67, 0.01 and 0, respectively.
To obtain a more balanced MCC performance of the end-to-
end classifier, a constant (δ) was added to the output nodes
corresponding to Classes S and F so that the classifier has a
higher chance of correctly classifying the instances of Classes
S and F. Through cross validation on DS1, we found that
δ = 0.997 can increase the MCC of Class F from 0.01 to 0.20
without significantly sacrificing the performance of the other
classes. More precisely, when δ = 0.997 was added to the
outputs of Classes S and F, the MCCs of Classes N, S, V, F
and Q become 0.59, 0.34, 0.51, 0.20 and 0, respectively.

Note that this paper does not aim to optimize the solution to
solve the data-imbalance problem [36], which is a branch of
machine learning research. Therefore, we propose the above

simple solution to handle this issue so that the classifier has
a greater chance of correctly classifying the instances of the
minority classes. The goal is to obtain more balanced MCC
values for performance comparison across the five classes.
Through the performance investigation, we find that the MCC
performance changed to become acceptable. Thus, the above
simple solution is sufficient in this work. Actually, we had
oversampled the minority classes to deal with this data-
imbalance issue. Specifically, we randomly duplicated samples
in the minority classes to ensure that the number of instances
of each class was balanced in each mini-batch. However, the
results were poorer than our current approach.

Fig. 7 shows the ROC curves of the end-to-end classifier
for Class S and Class V. Also shown are the operating points
(the red ×) of the best performing classifier in [7]. Fig. 7
clearly shows that the sensitivity-specificity points in [7] are
below the ROC curves of our DNN, suggesting that with a
certain range of decision thresholds our DNN achieves better
performance (in term of both sensitivity and specificity) than
the classifier in [7].

In this experiment, the accuracy of Record 203 was very low
(55.9%, the worst case). This record is special in MIT-BIH in
that it has the following note [5]:

“The PVCs are multiform. There are QRS mor-
phology changes in the upper channel due to axis
shifts. There is considerable noise in both channels,
including muscle artefact and baseline shifts. This is
a very difficult record, even for humans.”
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Fig. 7: ROC curves (SEN vs. SPC) of the end-to-end classifier in
Exp. 1. Left panel: Class S vs. non S (AUC = 0.858). Right panel:
Class V vs. non V (AUC = 0.951). Red markers correspond to the
best performance in [7]. AUC: Area under the ROC curve [37].

TABLE V: Performance of the classifiers in [7], [10], [17] and our
end-to-end classifier (Exp. 2)

[7] [10] [17] Proposed
Overall ACC 85.9% 86.4% 89.9% 94.7%

Class S
(S vs. non-S)

SEN 75.9% 60.8% 80.8% 77.3%
SPC 95.4% 97.7% 96.7% 97.7%

Class V
(V vs. non-V)

SEN 77.7% 81.5% 82.2% 93.7%
SPC 98.8% 96.4% 99.0% 98.8%

We suspect that the special characteristics of the heartbeats
in this record are not well represented by the training data
(in the other 21 records). To further investigate this issue, we
randomly selected 10% of the instances (299 instances) in
each class of Record 203, and then added them to the training
set. Note that the original number of training instances was
47,999, which is much larger than 299. We did the experiment
again, and the classification accuracy increased from 55.9% to
89.3%.

2) Experiment 2 (Exp. 2): In the second experiment, DS1
and DS2 were used as the training set and test set, respectively.
Table V shows the performance of the end-to-end classifier
and the best results in [7], [10] and [17]. Similar to the results
in Exp. 1, the overall accuracy of our approach (End-to-End
in Table V) is much higher than that of [7], [10] and [17].
The end-to-end DNN not only achieves a much higher overall
accuracy than that of [7], [10] and [17], it also yields a higher
sensitivity and specificity for Class S and Class V. Fig. 8 shows
the ROC curves of the end-to-end classifier in this experiment.
It shows that the best performance in [7], [10] and [17] are
below the ROCs of our DNN, which suggests that the end-to-
end approach is very promising.

Table VI shows the MCC performance of the classifiers in
[7], [10], [17] and our end-to-end classifier. OMCC in the
table refers to overall MCC of the five classes. For the end-to-
end classifier, the MCCs were obtained by adding the constant
(δ = 0.997) found in Exp. 1 to the outputs of Classes S and F.
More precisely, we applied cross validation on the training set
(DS1) to find an appropriate value for boosting the outputs of
Classes S and F to balance the MCCs across the five classes.
The results show that the MCC performance of the end-to-
end classifier is much better than that in [7] and [10]. Good
performance is not only found in Classes N, S, and V, but also
in the overall. Compared with [17], our MCC performance is
still better except for Class F.
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Fig. 8: ROC curves (SEN vs. SPC) of the end-to-end classifier in
Exp. 2. Left panel: Class S vs. non S (AUC = 0.970). Right panel:
Class V vs. non V (AUC = 0.991). The red crosses correspond to
the best performance in [7], [10], [17].

TABLE VI: MCC performance of the classifiers in [7], [10], [17] and
our end-to-end classifier (Exp. 2)

Method Class OMCCN S V F Q
Chazal et al. [7] 0.61 0.52 0.78 0.26 0 0.82

Ye et al. [10] 0.57 0.54 0.68 0.05 0 0.83
Raj et al. [17] 0.69 0.61 0.82 0.33 0 0.87

Proposed 0.69 0.67 0.91 0.22 0 0.88

3) Binary Classification: Jun et al. [11] proposed using
a 6-hidden-layer DNN for PVC beat detection based on the
MIT-BIH arrhythmia database. This is a two-class problem in
which normal and PVC (NOR and PVC in Table II) heartbeats
were extracted for evaluation. In contrast to our raw signal
extraction, six handcrafted features were used to represent
a heartbeat including R-peak amplitude, RR interval, QRS
duration, ventricular activation time, Q-peak amplitude and S-
peak amplitude. K-fold cross validation was used to evaluate
performance and the performance is optimal when K equals
8. Note that, although 8-fold cross validation was applied in
[11], the heartbeats in the cross validation training set and test
set could belong to the same patient. However, our previous
experiment (Exp. 1) is based on leave-one-subject/patient-out
cross validation.

In our experiment, 81, 379 heartbeats were retrieved from
the dataset, including 74, 478 normal heartbeats and 6, 901
PVC heartbeats. To make a fair comparison, we also performed
8-fold cross validations. The DNN has the same structure
(417–100–100–100–2) as before except for the number of
output nodes. Table VII shows the best performance of the
classifier in [11] and our end-to-end DNNs. Although the
overall accuracy in [11] is high (99.41%), ours (99.70%) is
0.29% higher. Moreover, at very high specificity (99.89%),
the sensitivity of the proposed method for Class PVC is still
higher than in [11]. Compared with the five-class classification
in the previous subsection, this two-class problem is much
easier. Not only is the overall accuracy close to 100%, but good
performance of detecting PVC beats can also be obtained.

4) Patient-Independent vs. Patient-Specific ECG Classifi-
cation Systems: Table VIII shows how the patient-specific
ECG classification systems in [9], [12], [13] and our patient-
independent end-to-end ECG classification system performed.
We followed the experimental protocols in [9], [12] and [13].
For the patient-specific classifiers with expert intervention [9],



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE VIII: Performance comparisons between the patient-specific classification systems in [9], [12], [13] and our patient-independent
classification system on seen patients and unseen patients.

Test on the remaining 25 min.
ECG of 24 seen patients Test on 22 unseen patients

Patient-specific classifiers
with expert intervention (Mode 1) Proposed

method

Patient-specific classifiers
without expert intervention (Mode 2) Proposed

methodInce et al. [9] Kiranyaz et al. [12] Ye et al. [13]
Class S

(S vs. non-S)
SEN 62.1% 64.6% 66.2% 61.4% 61.4%
SPC 98.5% 98.6% 98.6% 99.8% 98.3%

Class V
(V vs. non-V)

SEN 83.4% 95.0% 90.5% 91.8% 91.8%
PC 98.1% 98.1% 98.1% 99.9% 99.5%

TABLE VII: Performance of the classifiers in [11] and our end-to-end
classifier

Jun et al. [11] Proposed method
Overall accuracy 99.41% 99.70%

SEN of class PVC 96.08% 97.68%
SPC of class PVC Did not specify 99.89%

[12] (Mode 1), to be as fair as possible, we used the first 5
minutes of ECG records (Record No.: 200–234) of 24 patients
for training our patient-independent classifier. To evaluate the
performance of the classifiers on “seen” patients, we used the
remaining 25 minutes of ECG signals of these 24 patients
for testing. Note that we used 5 minutes of ECG signals
of 24 patients to train a patient-independent classifier. For
the patient-specific classifiers without expert intervention [13]
(Mode 2), to evaluate the performance of the classifiers on
“unseen” patients, we trained a patient-independent classifier
based on the ECG records of 22 patients in DS1, and tested
the classifier on the other 22 patients in DS2. Table VIII shows
that despite patient independency, our patient-independent
classifiers achieve comparable performance with the patient-
specific classifiers in [9], [12], [13], as evident in the fifth and
seventh columns in the table. Bear in mind that any patient-
specific classifier requires some patient-specific data or an
expensive annotation process for each new patient, therefore
our patient-independent classifier definitely has advantages.

C. Summary

The following are advantages of the proposed end-to-end
ECG classification method:

1) By using raw-signal extraction and DNNs, the classifica-
tion performance of our end-to-end system was found to
be much better than existing patient-independent systems
in terms of sensitivity-vs-specificity ROC and Mathews
correlation coefficients; besides that, without expert in-
tervention, its performance is still comparable to patient-
specific systems.

2) The end-to-end DNN can perform feature extraction and
classification at the same time. Traditional feature extrac-
tion methods are limited by the professional knowledge
of medical doctors. The end-to-end DNN can overcome
such limitation by using aligned raw ECG waveforms as
input so that better representations can be obtained for
classification.

Note that the classification performance of the proposed
method may not be much better than patient-specific classifiers
because patient-specific classifiers have patient-specific data,
which may be helpful in machine learning. However, the
proposed algorithm is a patient-independent classifier which
is universal, and it does not need patient-specific data and
expert intervention for new patients.

V. CONCLUSION

This paper introduced an end-to-end ECG classification
system. One end of the system receives raw ECG signals and
the other end gives beat-by-beat classification decisions. A new
preprocessing method, which involves heartbeat segmentation
and heartbeat alignment, was proposed to facilitate a deep
neural network to form optimal representation of ECG signals
and for the classification of heartbeat types.

Four experiments based on the MIT-BIH arrhythmia
database were conducted. In the first experiment, 22-fold cross
validations on a dataset comprising 50,977 heartbeats and five
arrhythmia classes suggest that at the same specificity, the
sensitivities of the end-to-end method for Class S and Class V
are 16.4% and 21.1% higher (absolute) than those achieved by
a conventional method. For all of the five classes, the proposed
method achieved higher MCCs and its ROC curves were
above the operating points reported in the literature. In the
second experiment, the proposed end-to-end DNN was trained
on 50,977 heartbeats from 22 patients and tested on 49,668
heartbeats from another 22 patients. Results demonstrated that
this end-to-end DNN can capture useful information from the
raw ECG signals, enabling it to outperform state-of-the-art
arrhythmia classifiers (using either SVM or DNN) that rely on
handcrafted ECG features. The third experiment showed the
excellent performance (AUC = 0.999) of the proposed method
in dealing with the binary ECG classification.

The fourth experiment compared our patient-independent
end-to-end ECG classification system with patient-specific
ECG classification systems. The results demonstrated that
the patient-independent DNN-based classifier generalizes very
well to new/unseen patients. The effect of the proposed
raw signal extraction method (including segmentation and
alignment of complete heartbeats) is remarkable. Thus, the
end-to-end ECG classification approach not only outperforms
the existing patient-independent classification system, but also
performs as well as the patient-specific classification systems.

After using more data to train the patient-independent clas-
sifier and testing with more patients, the proposed end-to-end
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(input: raw ECG signals; output: beat-by-beat classification
decisions) ECG classification system can be introduced as a
tool to assist clinicians in diagnosing arrhythmias.

In future we will use long short-term memory (LSTM) [38]
instead of DNN classifiers because ECG signals are time series
data and LSTM is capable of learning long-term dependencies.
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