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ABSTRACT
Blind super-resolution (SR) of blurry and noisy low-resolution
(LR) images is still a challenging problem in single image
super-resolution (SISR). The performance of most existing
convolutional neural network (CNN)-based models is in-
evitably degraded when LR images are corrupted by both
blur and noise. For those blind SR methods based on kernel
estimation, accurate estimation is barely attained under com-
plex degradations and this gives rise to poor-quality results.
To address these problems, we propose a deep progressive
network under a probabilistic framework and a novel up-
sampling method for blind super-resolution with multiple
degradations, which effectively utilizes image priors across
scales. Experimental results show that the proposed method
achieves promising performance on images with multiple
degradations.

Index Terms— blind super-resolution, deep progressive
network

1. INTRODUCTION

SISR aims to reconstruct a high-resolution (HR) image from
its low-resolution (LR) counterpart, which is an ill-posed
problem in low-level vision tasks. In a typical SISR frame-
work, a LR image is usually generated by downsampling a
HR image using bicubic interpolation with anti-aliasing filter
H , and ignoring extra degradations, such as blur, noise, etc.
The downsampling process is formulated as follows:

ILR = (H ∗ IHR) ↓s (1)

where ILR and IHR represent the synthesized LR image and
the HR image. ↓s is the bicubic downsampling kernal with
scaling factor s in a typical SISR framework.

Recently, CNN-based models for SISR have achieved
significantly improved performance in terms of Peak signal-
to-noise ratio (PSNR) [1, 2, 3] and perceptual quality [4, 5, 6].
However, most of these methods follow the degradation-free
assumption, and belong to non-blind super-resolution ap-
proaches, i.e. downsampling kernel and degradation settings
are given. Therefore, these methods achieve poor perfor-
mance when they are applied to real images or the assumption

is violated. To address these problems, some blind SR meth-
ods have been proposed recently, in which degradations ap-
pearing in LR images are unknown. Wang et al. [7] proposed
patch-based method to estimate the unknown point spread
function (PSF) parameters under a probabilistic framework.
Michaeli and Irani [8] proposed a non-parametric approach
to estimate the optimal kernel, according to recurrence of
patches within a natural image. Furthermore, Shocher et
al.[9] proposed an image-specified model to blindly super-
resolve corrupted images, which uses a deep CNN model
to approximate the degradation process. However, accurate
kernel estimation is barely attained when the degradation
process is complex. In addition to blind methods, some noisy
super-resolution approaches [10, 11] have been proposed, but
blurring issues are not considered in degraded process.

Besides the structural design of CNN models, learning an
effective upsampling method for CNN-based models is an-
other important issue. In general, upsampling methods used
in CNN-based models can be classified into three categories,
including the interpolation-based method, transposed convo-
lution, and sub-pixel convolution. For example, bicubic inter-
polation was used in SRCNN [12]. Due to the high computa-
tional complexity of the preprocessing stage, FSRCNN [13]
adopted transposed convolution to improve performance and
speed. Sub-pixel convolution was proposed for ESPCN [14].
Instead of explicitly enlarging the resolution in the height and
width channels as transposed convolution does, extra pixels
in other channels are utilized and rearranged to construct the
HR image. These three upsampling methods tend to generate
blurry and over-smoothed images [15], so extra error is easily
introduced when they are applied to super-resolving degraded
images.

In this paper, we consider multiple degradations, i.e. blur
and noise simultaneously, and blindly super-resolving cor-
rupted LR images. Motivated by the cascaded structure of
LapSRN [16], we combine a probabilistic graphical model
with a deep convolutional network to form a multistage CNN
model, which takes blurry and noisy LR images as input and
progressively estimate high-frequency information based on
output images of previous stages. The structure of our pro-
posed network is different from LapSRN in two aspects. First,
instead of using residual learning in LapSR, we adopt the
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dense net structure to effectively reuse multi-layer features.
Second, we design a novel upsampling module, namely resid-
ual upsampling, instead of using transposed convolution as
LapSRN does, to further improve the performance.

2. PROPOSED METHOD

2.1. Problem Formulation

To blindly super-resolve corrupted images, a degradation
model should first be defined. We follow the degradation
model defined in [17], as follows:

ILR = ((IHR ∗K) ∗H) ↓s + ε (2)

where ILR and IHR denote the LR image and its correspond-
ing HR image, ∗ is the convolution operation,K represents a
blurring kernel, and ε is an additive white Gaussian noise.

2.2. Analysis under a Probabilistic Framework

In typical SISR framework, given a LR image ILR, the cor-
responding HR image IHR is estimated by maximizing the
posterior distribution, as follows:

max
θ
pθ(IHR|ILR) (3)

where θ denotes the parameters of the model. In our study,
blurry and noisy LR images ĨLR are considered. Instead of
maximizing the individual posterior distribution for each scal-
ing factor, we maximize the joint distribution of the clean LR
image ÎLR, SR×2 image Î×2, and SR×4 image Î×4, i.e.

max pθ(ÎLR, Î×2, Î×4|ĨLR) (4)

where θ = (θ1, θ2, θ3) are the model parameters for estimat-
ing ÎLR, Î×2, and Î×4 respectively. The above formulation
can be decomposed as follows:

max
θ1,θ2,θ3

pθ1(ÎLR|ĨLR)× pθ2(Î×2|ÎLR, ĨLR)

× pθ3(Î×4|Î×2, ÎLR, ĨLR)
(5)

and can be represented by a direct probabilistic graphical
model (DPGM), as illustrated in Fig.1

Fig. 1. DPGM model of Eqn 5. Shaded nodes represent dis-
tributions of latent images.

In Fig. 1, Eqn.(5) is represented as a progressive estima-
tion method, where pθ1 and pθ2 can be viewed as a prior of
pθ3 , and pθ1 is a prior of pθ2 . In other words, Î×2 can be in-
ferred based on the prior knowledge of ÎLR and ĨLR learned
from previous stages. Similarly, estimating Î×4 only lever-
ages the information from Î×2, ÎLR, and ĨLR.

2.3. Proposed Network

From the above analysis, we propose a progressive CNN
model for blind super-resolution with multiple degradations.
Our proposed model is denoted as PCSR, and the overall
structure of PCSR is illustrated in Fig.2

Fig. 2. The overall structure of PCSR net.

PCSR cascades three base modules: the restoration mod-
ule, the SR×2 module, and the SR×4 module. Two Resid-
ual upsampling (Res-up) modules are used to generate super-
resolved images. A blurry and noisy LR image is input to the
restoration module, which converts a degraded image into a
clean image. Then, the two SR modules, each with a Res-up
module, are responsible for super-resolution. High-frequency
information in HR image is progressively predicted based on
the feature maps produced by SR networks, which combined
with the estimated image generated in the previous stage to
form a clean SR image.

Each base module adopts the dense connected structure,
so that feature maps from previous layers can be reused ef-
fectively. The output feature map of one module contains
information from that stage, and thus it can be propagated
to subsequent modules, due to the use of the dense structure.
The structure of the restoration module and the SR module are
similar, except the output unit. The restoration module uses 1
conv layer, with 1× 1 kernel size, as the output unit for chan-
nel information compression, while the output unit of a SR
module is a sub-pixel upsampling layer for super-resolution.
The head unit as the input part of each module contains 3 lay-
ers of conv-PReLU-conv to pre-process the input image. The
dense unit stacks 3 conv layers alternatively, with 3×3 kernel
size, for feature extraction, and they all are fully connected
with each other. We apply a transition unit after a dense unit,



which includes 1 conv layer with kernel size 1 × 1 for fea-
ture map compression. In PCSR, a batch normalization (BN)
layer is adopted after the conv layer to stabilize the network
and prevent it from divergence. In all the modules, the activa-
tion function used is the PReLU function, followed by a BN
layer.

2.4. Residual Upsampling Module

The structure of the proposed Residual upsampling (Res-up)
module is shown in Fig.3. The module consists of one sub-
pixel upsampling layer and 4 conv layers, with kernel size
3× 3, followed by the PReLU function. The output is a conv
layer with 1 × 1 kernel size. A Short connection is inserted
between the output of the sub-pixel upsampling layer and the
output of 4 conv layers.

Fig. 3. The structure of residual upsampling layer

The residual upsampling module learns the residues r be-
tween the ground-truth HR image IHR and the corresponding
estimated SR image ÎSR for the SR networks, i.e.

r = IHR − ÎSR (6)

2.5. Loss function

To maximize Eqn. (5) is equivalent to maximizing all of its
three terms simultaneously. Therefore, the optimization prob-
lem can be converted into a sequential optimization problem
under the MAP framework, as follows:

θ∗1 = argmax
θ1

d(F1(ĨLR; θ1), ILR) (7)

θ∗2 = argmax
θ2

d(F2(ÎLR, fÎLR
; θ2), IHR×2) (8)

θ∗3 = argmax
θ3

d(F3(Î×2, fÎ×2
; θ3), IHR×4) (9)

where d(·) is a distance metric function. F1, F2, and F3 with
parameters θ1, θ2 and θ3 represent the restoration module,
SR×2 network with its corresponding Res-up modules, and
SR×4 network with its corresponding Res-up modules, re-
spectively. fÎLR

and fÎ×2
denote the output feature map of

the restoration module and the SR×2 module, respectively.
ILR, IHR×2, and IHR×4 denote the clean LR image, HR×2
image, and HR×4 image. In our method, the L2 norm func-
tion is adopted, and thus the total loss function of our model

is

L(θ1, θ2, θ3) = λ‖F1(ĨLR; θ1)− ILR‖2

+ (1− λ)‖F2(ÎLR, fÎLR
; θ2)− IHR×2‖2

+ (1− λ)‖F3(Î×2, fÎ×2
; θ3)− IHR×4‖2

(10)
where λ is the weight to balance the restoration loss and the
super-resolution loss.

3. EXPERIMENTS

3.1. Training Data and Experiment Settings

In this paper, we synthesize a LR image from its HR image
according to Eqn. (1). For the blur kernel, we adopt isotropic
Gaussian kernel with fixed-size kernel width. Specifically, the
range of the kernel width is set to [0.2, 2], with a step size of
0.1. In both the training and testing phases, kernel size is set
at 15 × 15. Bicubic interpolation is used for downsampling,
and we adopt the default setting of Matlab function imresize,
in which an anti-aliasing filer is added before downsamping.
The range of noise level, is within [0, 50]. We train our model
from scratch, without performing any fine-tuning. The data
sets include 800 DIV2K dataset [18] and 5,411 images se-
lected from VOC 2012 [19].

We train our network using LR-HR image patch pairs. In
the training phase, to synthesize LR images , the kernel width
is selected randomly to blur the given HR images, which are
then downsampled by bicubic interpolation, with a down scal-
ing factor of s. Finally, Gaussian noise, with noise level σ, is
added. The size of the LR image patch is set to 126× 126 for
both the scale factors 2 and 4. In each epoch, 12,422 LR/HR
image pairs were randomly selected for training. The mini-
batch size is set to 10. We optimize the loss function using
Adam, and run 500 epochs in total. The learning rate is set
to 10−5 with decay factor 0.1, shrunk in the 300th epoch and
400th epoch. The early-stopping strategy is used if the perfor-
mance is not improved in 20 epochs. 5 dense units and tran-
sition units are stacked alternatively in the restoration mod-
ule, and 20 (15) dense units and transition units are used in
SR×2 (SR×4) modules. Training the model with Pytorch
and 2 Nvidia Titan 1080 ti GPUs took about two days.

3.2. Experiment on Multiple Degradations

To evaluate the effectiveness of our proposed method for blind
super-resolution with blurry and noisy image, isotropic Gaus-
sian kernel with different widths and differnent noise levels
are adopted to generate degraded images. The degradation
settings are given in Table 1. We compare our proposed PCSR
with bicubic interpolation, EDSR[1], ZSSR[9], SRMD[17].

The quantitative results, in terms of PSNR and the struc-
ture similarity (SSIM) index with different degradations on
Set 14 and with scale factor 4, are tabulated in Table 1. We



Table 1. The average PSNR and SSIM of different methods with different degradation settings on set14, with an upscaling
factor 4. The best results are highlighted in bold. B denotes blind super-resolution, and NB means non-blind super-resolution.

Degradation Setting Bicubic(B) EDSR(B) ZSSR(B) Ours(B) SRDM(NB) SRMD(B)
Kernel Width Noise Level PSNR/SSIM

0.5

0 25.93/0.699 28.95/0.779 25.00/0.700 27.25/0.736 28.15/0.770 15.54/0.444
5 25.75/0.684 27.47/0.697 24.63/0.640 26.89/0.704 27.64/0.749 15.01/0.344
15 24.58/0.595 23.58/0.459 22.78/0.443 25.14/0.575 26.43/0.701 13.09/0.248
50 19.38/0.303 16.01/0.162 16.84/0.160 19.73/0.294 23.90/0.609 12.26/0.130

1.5

0 25.23/0.668 26.75/0.714 24.61/0.671 26.99/0.717 28.15/0.770 17.59/0.540
5 25.08/0.653 26.23/0.646 24.27/0.610 26.47/0.673 27.30/0.733 16.33/0.381
15 24.06/0.565 23.32/0.424 22.52/0.413 24.69/0.674 25.93/0.676 14.13/0.235
50 19.21/0.281 15.97/0.143 16.73/0.144 19.57/0.271 23.54/0.595 12.19/0.113

(a) GT (b) Bicubic(20.83dB) (c) EDSR(22.13dB) (d) ZSSR(20.45dB) (e) Ours(22.94dB) (f) SRMD(24.58dB)

Fig. 4. Visual results of ground truth (GT), bicubic interpolation, EDSR, ZSSR, PCSR (ours) and SRMD.

can observe the following: 1). When the degradation process
becomes more complicated and does not follow the bicubic
downsampling assumption, the performance of EDSR dete-
riorates seriously, and is even worse than bicubic interpola-
tion. 2). PCSR can produce much better results than bicu-
bic, EDSR, and ZSSR under complicated degradations, and is
also comparable to SRDM, which is a non-blind CNN-based
model. 3).When the kernel information and noisy information
are blind, i.e. unknown, the performance of SRDM degrades
significantly.

Fig. 4 compares the visual quality of the different meth-
ods. We also enlarge the region inside the green rectangle, so
we can see the super-resolved results more clearly. The re-
sult based on bicubic interpolation contains lots of distortions
and fine details are lost, even though it attains a high PSNR
compared to ZSSR. Both bicubic interpolation and EDSR am-
plify the noise effect in the super-resolution process. Our pro-
posed method can effectively reduce noise effects and pro-
duce more detailed information, compared to bicubic interpo-
lation, EDSR and ZSSR.

Table 2. The average performance in term of PSNR
and SSIM, of different upsampling methods used in super-
resolution. The best results are highlighted in bold.

kernle width: 1.0, noise: 5 SP-up
Res-up
w/o SC Res-up

Set 5
×2

PSNR 30.05 30.93 31.49
SSIM 0.898 0.908 0.909

×4
PSNR 27.94 28.90 29.20
SSMI 0.781 0.790 0.807

Set 14
×2

PSNR 28.73 29.45 29.88
SSMI 0.843 0.853 0.856

×4
PSNR 25.86 26.58 26.82
SSMI 0.671 0.685 0.694

3.3. Ablation Study on Different Upsampling Methods

In this section, we evaluate our proposed method based on
different upsampling approaches, i.e. sub-pixel convolution
(SP-up), residual upsampling method without short connec-
tion (Res-up w/o SC) and residual up-sampling method (Res-
up). PSNR and SSIM are measured on Set14 and Set5. The
kernel width and noise level are set to 1.0 and 0.5, respec-
tively. The quantitative results are shown in Table 2. We
can observe that residual learning improves the performance.
Compared with the SP-up method, Res-up combines the sub-
pixel upsampling method with residual learning. The learning
capacity is increased and adaptive for degradations. There-
fore, the Res-up method is the most effective for degraded
image super-resolution, and can lead to better performance.

4. CONCLUSION

In this paper, we proposed a progressive CNN-based model
from the perspective of direct probabilistic graphical model,
for blind super-resolution with multiple degradations. The
main contributions in this paper are: 1). Due to the use of
dense connection and a progressive strategy, our model can
effectively utilize image prior across scales. 2). Combined
with residual learning, a novel upsampling method is pro-
posed for blind super-resolution. We have shown that the
proposed upsampling method can produce better performance
compared with existing upsampling methods. With extensive
experiments, our proposed model outperforms bicubic inter-
polation, EDSR and ZSSR, and achieves comparable perfor-
mance to a state-of-the-art non-blind model, when the images
are of low-resolution and with multiple degradations.
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