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ABSTRACT

Because of the advancement of capturing devices, both im-
age resolution and image quality have been significantly im-
proved. Efficiently utilizing facial information is beneficial in
enhancing the performance of face recognition methods. For
high-resolution face images, pore-scale facial features can be
observed. The positions and local patterns of pore features
are biologically discriminative, so they can be explored for
face identification. In this paper, we extend the previous work
on pore-scale features, by proposing a new learning-based
descriptor, namely PoreNet. Experiment results show that our
proposed descriptor achieves an excellent performance on two
high-resolution face datasets, namely Bosphorus and Multi-
PIE. More importantly, our proposed method significantly out-
performs the state-of-the-art Convolutional Neural Network
(CNN)-based face recognition method, when query faces are
highly occluded. The code of our proposed method is available
at: https://github.com/johnnysclai/PoreNet.

Index Terms— Face recognition, high-resolution face
recognition, feature extraction, pore-scale facial feature.

1. INTRODUCTION

Nowadays, it is easy to obtain high-quality face images with
resolution in the size of over 10 megapixels. What would be
interesting to know is how we can make use of the information
gain to achieve highly accurate face recognition. Face recogni-
tion is a well-studied research topic, because the human face is
the most outstanding biometrics. Recent deep Convolutional
Neural Network (CNN)-based approaches [1, 2, 3, 4] achieve
over 99% verification rate on the Labeled Faces in the Wild
(LFW) [5] benchmark. Despite this remarkable improvement,
face recognition is still challenging. For example, identifying
the similar facial parts between two face images is essential for
forensics and law enforcement, and it will solve the occluded
face recognition problem as well. However, the existing CNN-
based face recognition models cannot achieve this capability,
because the global representation is used, i.e. a face image is
represented by a single feature vector.

Our work is an extension of [6, 7]. In the previous works,
local facial patterns are represented by using a variant of the

Fig. 1: Matching results, from top to bottom, based on 4
different methods. The gallery and query faces have a 30�

pose difference. The two subjects in the left column are of the
same subject, while the two subjects in the right column are of
different subjects. The number of matched keypoints is listed
at the bottom of the two subjects being matched.

Scale Invariant Feature Transformation (SIFT) [8] descriptor,
namely Pore-SIFT (PSIFT). However, it is a handcrafted de-
scriptor and is not optimized from local skin patterns. [6, 7]
had attempted to learn the discriminative feature represen-
tations by using Linear Discriminant Analysis (LDA) and
Principal Component Analysis (PCA), but the improvements
are limited as the learning algorithms are not trained in an
end-to-end manner.

Our work aims to learn a robust local descriptor for facial
skin patches, so that pore patterns or facial skin regions can
be matched. In this paper, we propose a descriptor by a spe-
cially designed CNN to learn the local feature representations,
namely PoreNet. Compared to other existing CNN-based local
descriptors [9, 10, 11], which extract features from generic
local patches, PoreNet is optimized for pore pattern represen-
tations.
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Fig. 2: The network architecture of PoreNet, adapted from
HardNet [11]. Each skin patch is concatenated with the i-
coordinate and the j-coordinate channels, corresponding to
the (x, y) coordinates, as the input. Stride of 2 is denoted as
s2.

In summary, our contributions are threefold: 1. A learning-
based descriptor is proposed to extract the pore-feature
representations from skin patches. 2. A simple yet effective
feature matching framework is proposed for high-resolution
face recognition. This matching method, with the high-
performance descriptors proposed, can greatly improve the
recognition rate, and is robust to different variations. 3. We
have demonstrated that our proposed method is robust to the
highly occluded face recognition problem, while the perfor-
mance of those state-of-the-art CNN-based methods drops
significantly.

2. REVIEW ON HIGH-RESOLUTION FACE
RECOGNITION

In the early study of high-resolution (HR) face recognition, Lin
and Tang [12] used Gabor filters to extract features from local
skin regions. By considering the cheek and forehead regions,
an accuracy of over 60% is achieved on a HR face dataset
collected in their laboratory. In the study of soft biometrics
traits, [13] suggested that facial marks, including moles, scars,
freckles, wrinkles, and birthmarks, are distinctive and useful
for face recognition. However, usually, there are only a few
of these microscopic features on faces, and they cannot be
observed when the resolution is not sufficiently high. Recently,
Li and Lam [6] proposed a pore-scale feature extraction frame-
work, adapted from SIFT detector and descriptor, to establish
a dense set of correspondences from a pair of HR face im-
ages of the same identity. Furthermore, the correspondences
of the pore-scale facial features have been explored for face
recognition [7] and 3D face reconstruction [14].

3. PROPOSED METHOD

Our proposed method follows the standard paradigm of local
feature matching, including: 1. pore detection (Section 3.1),
2. pore description (Section 3.2) and 3. matching and outlier
rejection (Section 3.4). Our work is an extension of [6, 7]. We
aim to improve the HR face recognition accuracy by using a ro-
bust, end-to-end learning-based local descriptor. To emphasize
the importance of the local descriptor in our discussion, the

HardNet baseline Ours
RGB input? 7 3 3 3

With coordinate channels? 7 7 3 3
Input size = 42 ⇥ 42? 7 7 7 3

FPR95 18.27 11.64 11.01 10.37

Table 1: Ablation study of each component. Performance is
measured on the test set.

pore detection and outlier rejection scheme are kept as simple
as possible. In the proposed method, the similarity score of
two faces is based on the number of inliers because we expect
that matching two distinct subjects should produce a sparse
set of false matches. Experiments have shown that, with a
high-performance local descriptor, a simple similarity mea-
surement is sufficient to achieve an excellent face recognition
performance.

Motivated by the success of the learning-based local de-
scriptors [9, 10, 11], we propose to learn a CNN-based local
descriptor for extracting features from local facial skin patches,
namely PoreNet. For this research, a local facial skin patch
dataset was first constructed for training and evaluation. The
details will be discussed in Section 3.3.

3.1. Pore detection

Pore detection means to locate the pore features in facial
skins. Pore features are small, dark, and blob-shaped, in-
cluding pores, moles, fine wrinkles, and hairs. Therefore,
we employ a scale-normalized Laplacian of Gaussian (LoG)
blob detector to locate potential pore keypoints. This is more
accurate than the PSIFT detector [6], because the PSIFT de-
tector employs Difference of Gaussians (DoG), which is an
approximation of LoG. Our detector uses the first octave
to construct 10 scale-space images, where the scale � =
1/

p
2, 1.5/

p
2, . . . , 5.5/

p
2, in order to detect the pore fea-

tures of diameter d from 3 to 10 pixels (no keypoint is detected
at the first and the last layers), given that d = 2

p
2�. Each

local maximum is compared to its 26 neighbors in a 3⇥3⇥3 re-
gion, and its value should be larger than a threshold ⌧ . A 2⇥2
Hessian matrix H is computed for each keypoint position. If
the value of (Tr (H))2/Det (H) is greater than a threshold r,
the keypoint is considered unstable and will then be discarded.
We set ⌧ and r at 0.006 and 5, respectively, by experiments.
These values are not optimal as the roughness of facial skin
is different from person to person. However, empirically, we
found that most of the pore features can be detected with these
settings. Therefore, we fix these two threshold values in all of
the experiments.

3.2. Pore descriptor

The network architecture of PoreNet is shown in Fig. 2. It is
adapted from the HardNet [11] with minimal modifications
(0.086% of parameters added), but the performance is substan-



Fig. 3: Visualization of the matched correspondences of a
subject across 4 adjacent poses. 729 inliers are detected for
this subject.

tially improved. We keep other settings the same as HardNet,
including weight initialization, the optimization method, and
the loss function. We conducted an ablation study to demon-
strate the performance of each component of our proposed
method. We consider the trained-from-scratch HardNet model
as our baseline, which produces the false positive rate at 95%
true positive rate (FPR95) of 18.27%. In all the experiments,
except for the indicated change(s), other settings remained
unchanged. The experiment results are tabulated in Table 1.

First, our model extracts features from color patches in-
stead of grayscale patches. This is because most face images
are almost color images. Second, we provide the scale infor-
mation, �, to network, so as to better understand the local
patterns. As long as the face images are of similar size, the
scale of the matched keypoints should be more or less the
same. Inspired by [15], we explicitly embed the (x, y) coordi-
nates, by concatenating the i-coordinate channel, Ii, and the
j-coordinate channel, Ij , together with the RGB input, where
Ii, Ij 2 RH⇥W . The entries of the i-th column of Ii are all
equal to i, and those of the j-th row of Ij are all equal to j,
where i = 0, . . . ,W�1, j = 0, . . . , H � 1, and W and H are
the original width and height of a local skin patch, respectively.
Ii and Ij are normalized to the range of [�1, 1], and they will
be resized to the accepted input size of the network by bilinear
interpolation. Third, we slightly increase the accepted input
size in order to find the optimal input size of the network. For
a fair comparison, a global average pooling layer is added at
the end such that the network always produces a 128-D feature.
As a trade-off between computational complexity and accu-
racy, we consider input size of 42⇥42 pixels. By combining
the above changes, our final model (i.e., PoreNet) achieves an
FPR95 of 10.37%. We do not observe over-fitting problem as
the FPR95 on the test set decrease gradually during training.

3.3. Dataset

We use the author-released pre-trained model of HardNet [11]
as our preliminary local descriptor, called HardNet++, which
was trained on the union of Brown [16] and HPatches [17]
datasets. For each pore features, a local patch size of 48�⇥48�
pixels is considered, where � is the scale of the keypoint. Then,
the grayscale patch is resized to 32⇥32 pixels, which is the
required input size of the HardNet++.

We select faces from 4 poses (10�, 20�, 30�, and 45�) from

Fig. 4: Illustration of the measurement of the occluded regions
(left), and occluded regions of a query image (right).

all the 105 subjects in the Bosphorus dataset [18]. The original
resolution is used and the two eyes in each image are hori-
zontally aligned. We consider those keypoints inside a tightly
cropped facial bounding box only. Matched keypoints are es-
tablished between a pair of face images of adjacent poses, and
they are the nearest neighbor in both images. Then, outliers are
discarded by using Grid-based Motion Statistics (GMS) [19].
Those correspondences that are consistently matched across
all the 4 poses form our dataset. Although there are some
incorrect correspondences, as shown in Fig. 3, most of them
are visually convincing.

We split the database into a test set and a training set,
which contain the correspondences from the first 30 subjects
and the remaining 75 subjects, respectively. Therefore, the
subjects in the training set and the test set are mutually exclu-
sive. For the evaluation protocol, we follow the design of the
Brown benchmark [16], where the test set contains a set of
matching pairs and a set of non-matching pairs. To reflect the
performance properly, each of the non-matching keypoints is
the hardest one, which is randomly chosen from 1,000 non-
matching keypoints. Finally, the training set consists of 62,524
classes (250,096 patches), and the test set consists of 19,495
matching pairs and 19,495 non-matching pairs.

3.4. Pore-keypoint matching and outlier rejection

In [6], Random Sample Consensus (RANSAC) [20] was em-
ployed to perform outlier rejection from a geometric point
of view. However, the human face is highly non-rigid, and
the transformation between two faces cannot be modeled by
a homography matrix. In our proposed method, we employ
GMS [19] as the outlier rejection scheme. The main idea of
GMS is to consider the local statistical information, rather
geometric information. This is because we should expect that
the supported matches around an inlier (i.e., a true positive)
should be statistically more than that around an outlier (i.e.,
a false positive). Therefore, a match with statistically fewer
supported matches in its surroundings can be considered an
outlier and discarded. The details of GMS are beyond the
scope of this paper, and we use it as an off-the-shelf outlier
rejection method. In all of our experiments, we use the of-
ficial implementation1 with the authors suggested parameter

1https://github.com/JiawangBian/GMS-Feature-Matcher (commit:2c8ff5f)



Method Descriptor P-R10 P-R20 P-R30 P-R45 P-L45 P-All E-Ha E-Su E-Fe E-Sa E-An E-Di E-All T-S0 T-S1 T-S2 T-S3 T-All

Li et al. [7] PSFIT 1.49 3.37 6.88⇤ 12.01 11.14 7.58 1.65 0.7 1.7 1.58 0.76 2.06 1.05 0.55 1.2 1.11 1.21 0.91
PPCASIFT 1 1.9 2.77 5.82 9.28 4.64 2.02 1.01 2.4 3.12 1.51 3.92 2.25 0.47 1.18 1.74 2.24 1.29

Bian et al. [19] ORB 0.25 2.86 7.4 30.02 26.42 15.7 0.94 0 0 0.22 0.14 2.9 1.08 0 4.65 6.98 7.22 5.28

Ours
HardNet++ 0.99 2.85 3.81 5.71 3.81 7.07 0.94 1.41 1.55 1.52 2.82 2.9 1.77 0.08 0.21 0.78 0.07 0.19

HardNet baseline 0.15 0.95 1.9 1.9 2.86 2.86 0.12 0.24 1.43 1.23 1.49 1.45 0.96 0.1 0.02 0.78 0.01 0.19
PoreNet 0.05 0.77 1.99 2 1.35 2.86 0.05 0.21 1.43 0.73 1.41 1.45 0.88 0 0.78 1.31 0.16 0.58

Table 2: Equal error rate (%) of different approaches. The result marked with an ⇤ is estimated from Fig. 8 in [7].

Method Descriptor P-R10 P-R20 P-R30 P-R45 P-L45 P-All E-Ha E-Su E-Fe E-Sa E-An E-Di E-All T-S0 T-S1 T-S2 T-S3 T-All
SphereFace [2] - 7.12 8.39 13.44 18.6 21.44 15.54 5.14 14.08 10.24 9.09 8.88 8.44 9.39 2.33 6.57 8.07 7 6.23
Bian et al. [19] ORB 1.9 14.95 31.29 44.15 43.23 30.61 0.94 1.41 4.27 1.52 1.29 4.27 2.43 0 4.65 6.98 7.22 5.28

Ours
HardNet++ 0.95 2.86 6.51 15.03 21.75 12.19 0.59 0.43 2.86 1.52 2.82 1.45 1.32 0 0.78 0.78 1.55 0.78

HardNet baseline 0.01 0.57 1.9 3.28 4.61 3.22 0.05 0.04 1.43 0.79 1.41 1.45 0.07 0 0.78 0.78 0.78 0.63
PoreNet 0 0.16 1.9 1.9 3.81 2.86 0.01 0.03 1.43 0.2 0.18 1.45 0.48 0.04 0.78 1.55 1.55 1.16

Table 3: Equal error rate (%) of different approaches when query faces are manually occluded.

settings. Same as mentioned in Section 3.3, those keypoints
whose descriptors are the nearest neighbor to each other in a
pair of images are selected.

4. EXPERIMENTS

We have conducted extensive experiments on two HR face
datasets: Bosphorus [18] and Multi-PIE [21], to evaluate the
performance and robustness of our proposed method for HR
face recognition. We follow the protocol used in [7]. For
the Bosphorus database, the gallery set is formed based on
the first frontal-view faces from all the 105 subjects. Then,
all the face under the 5 pose variations: R10�, R20�, R30�,
R45�, and L45� (prefixed with P-), and 6 facial-expression
variations: happy, surprise, fear, sadness, anger, and disgust
(prefixed with E-), form the query set. Original images, whose
resolution is about 1,400⇥1,200 pixels, are used. For the Multi-
PIE database, only the 129 subjects that appeared in all the
four sessions are selected. All faces with neutral expression in
Session 0 are used to form the gallery set, and all the remaining
faces in Sessions 0 to 3 (prefixed with T-) form the query
set. The face images are loosely cropped and downsampled
to about 900⇥700 pixels. All the faces in both datasets are
slightly rotated so that the two eyes are horizontally aligned.
Each of the query faces is matched with all the gallery faces.
Matching results based on the different methods are shown
in Fig. 1, where the subjects were selected from the test set.
Furthermore, we have conducted an additional experiment to
mimic the occluded face recognition problem. The eyes and
mouth regions of the query images are manually occluded, as
illustrated in Fig. 4.

First, our method, based on the 3 different descriptors, is
compared to Li et al. [7] (results are directly cited from the
paper), and Bian et al. [19]. In fact, [19] can be regarded as
our method with the keypoint detector and descriptor replaced
by a weaker one (i.e., ORB [22] features with the maximum
feature number of 10,000). As shown in Table 2, our method
is robust to pose, expression, and age variations, and it out-

performs the other methods. This reveals the importance of
using a high performance local descriptor. In the Bosphorus
dataset, PoreNet consistently outperforms the pre-trained and
trained-from-scratch HardNet models, denoted as HardNet++
and HardNet baseline, respectively. It is worth noting that
the HardNet baseline and PoreNet are trained with the same
training set, and the same setting. However, this advantage
cannot be generalized to the Multi-PIE dataset. The reason for
this is that the color tones and lighting conditions of the two
datasets are visually distinct.

Second, our method is compared to Bian et al., and a
state-of-the-art CNN-based face recognition method, namely
SphereFace [2], for the occluded face recognition problem.
We use the author-released 20-layer SphereFace model and
follow the pre-processing steps. SphereFace achieves a near
perfect performance on both datasets when the faces are not
occluded. However, as shown in Table 3, the performance of
SphereFace is degraded significantly when occlusion happens.
With our proposed method, the performance can be retained
under heavy occlusion, and consistently outperforms other
methods.

5. CONCLUSION

In this paper, a novel local descriptor for high-resolution face
recognition is proposed. Compared to other existing local
descriptors, the proposed descriptor is specifically designed
for extracting the feature representations for the local facial-
skin pore patterns. We have demonstrated the face recognition
performance with the proposed local descriptor. More impor-
tantly, the accuracy of our proposed method can be retained
when face images are under heavy occlusion, and it does not
require any facial landmark labels. For our future work, we
will consider high-resolution face recognition in the wild.
Acknowledgement: The work described in this paper was
supported by the GRF Grant PolyU 152765/16E (project code:
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