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Abstract—Screen content coding (SCC) is the extension to High 

Efficiency Video Coding (HEVC) for compressing screen content 

videos. New coding tools, intra block copy (IBC) and palette (PLT) 

modes, are introduced to encode screen content (SC) such as texts 

and graphics. IBC mode is used for encoding repeating patterns 

by performing block matching within the same frame, while PLT 

mode is designed for SC with few distinct colors by coding the 

major colors and their corresponding locations using an index 

map. However, the use of IBC and PLT modes increases the 

encoder complexity remarkably though coding efficiency can be 

improved. Therefore, we propose to have a mode skipping 

approach to reduce the encoder complexity of SCC by making use 

of SC characteristics, neighbor coding unit (CU) correlations, and 

intermediate cost information via random forest (RF). Detailed 

feature analyses and sample preparation are also described. A 

novel hyperparameter tuning approach with the consideration of 

coding bitrate and encoding time is proposed for RFs at each CU 

size to further boost the encoding process. Experimental results 

show that our proposed approach can obtain 45.06% average 

encoding time reduction with only 1.08% increase in Bjøntegaard 

delta bitrate (BD-rate). Average encoding time can even be 

reduced to 58.57% by regulating the hyperparameters.   

Index Terms—HEVC, machine learning, random forest, screen 

content coding, video coding 

I. INTRODUCTION

ITH the recent rapid development of technologies in

networking and thin-client devices, computer screen 

sharing applications have become more popular. They include 

remote desktop, video conferencing with documents or slides 

sharing, etc. In addition, there are many television programs 

(e.g. finance or business news) and many curriculum videos in 

the Internet that contain mixtures of camera-captured content 

(CC) and screen content (SC). There will be even more cloud

services using screen sharing technology in the near future [1].

These applications result in a substantial demand for the

efficient compression of SC. In January 2014, there was Call

for Proposal (CfP) [2] of screen content coding (SCC) [3-4] as

the extension to High Efficiency Video Coding (HEVC) [5-6]

by the Joint Collaborative Team on Video Coding (JCT-VC).

SC is the video content containing computer-generated 

content such as texts, computer graphics and graphical user 
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Fig. 1. Illustrations of (a) INTRA, (b) PLT, and (c) IBC modes. 

interface while CC is the video content captured by camera. 

Videos sometimes contain a mixture of SC and CC. CC can be 

encoded by HEVC efficiently. However, SC has discontinuous-

tone characteristics [7-8] which is different from CC, such as 

complex structure with sharp edges, limited number of colors 

and sometimes high contrast between colors like texts.  

The conventional HEVC intra (INTRA) mode [9-10] shown 

in Fig. 1(a) uses the neighbor boundary pixels to predict a 

coding unit (CU) with 33 directional predictions plus planar and 

DC predictions [9]. To reduce the complexity, rough mode 

decision (RMD) [10] is performed to select a subset of intra 

prediction candidates first. Then the optimal one is chosen by 

rate distortion optimization (RDO) where the full rate-distortion 

(RD) cost for every candidate in the subset is estimated. 

However, it cannot efficiently encode the CUs with screen 

content such as the example shown in Fig. 1(a) since neighbor 

boundary pixels cannot predict the pixels with abrupt change 

within the CU. Hence, two new coding tools are introduced in 

SCC to solve this problem. They are palette (PLT) mode [11] 

and intra block copy (IBC) mode [12]. 

For PLT [11] as demonstrated in Fig. 1(b), a CU is separated 

into color data and structural data. The color data consists of 

few major colors which are predicted from color table or from 

neighbor CUs. When the colors are not in the major color tables, 

they are regarded as escape colors and are explicitly coded. The 

structural data is then represented by an index map and the 

corresponding indices are entropy coded. Thus, PLT helps to 

encode SC which contains few colors like texts and icons. 

Further improvements were also suggested in [13-16] to further 

increase the coding efficiency of PLT. IBC mode, as in Fig. 

1(c), is a block matching technique to find the repeating patterns 

within the same frame which frequently occurs in SCs [12]. For 

instance, repeating numbers and characters can be found within 

a document and spreadsheet. If IBC is used by one particular 
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CU, each prediction unit (PU) within the CU is encoded with a 

block vector (BV), as well as the residual signal of that CU 

which is similar to an inter mode in inter-frame motion 

estimation. Besides, merge mode and skip mode are also 

performed in IBC. Further enhancements can be found in [17-

21] to improve the coding efficiency of IBC. Moreover, the 

algorithms in [22] and [23] proposed Pseudo 2D String 

Matching (P2SM) and Universal String Matching (USM), 

respectively, to have a more flexible string matching compared 

with the conventional IBC to further boost the coding efficiency 

of SCC. 

Although PLT and IBC can essentially increase the coding 

efficiency of SCC, the encoder complexity is impractically 

high. Therefore, numerous fast approaches [24-40] were 

proposed to reduce the complexity of SCC. Budagavi et al. [24-

25] proposed to limit the search area for IBC, skip IBC based 

on CU size, and use different searching strategies in IBC based 

on the horizontal and vertical CU activity. The proposed 

approaches have already been adopted in the current SCC 

reference software. Full-frame hash search was suggested in 

[26] by only performing block matching between those block 

candidates which have the same hash value as the current CU. 

The hash value is estimated based on the number of color 

transitions along the row and column. Zhang et al. [27] 

proposed to exploit the CU mode from the collocated CUs of 

the previous frame. This method is mainly targeted for 

stationary CUs. Fast CU partitioning based on the CU entropy 

and the coding bits was designed in [28]. Lei et al. [29] 

proposed to utilize the content property analysis, bits per pixel 

information as well as neighbor and collocated CUs’ depth 

information to classify CUs into screen content CU (SCCU) or 

camera-captured content CU (CCCU), and then simplify 

INTRA mode, mode elimination and fast CU partitioning with 

numerous pre-defined thresholds. By checking whenever 

neighbor boundary pixels are exactly the same, we proposed a 

simple intra prediction (SIP) [30] to skip the RMD [10] and 

RDO for reducing the complexity of INTRA. IBC and PLT are 

also skipped when the residual error obtained by INTRA is 

zero. In [31], we suggested to skip IBC and PLT when every 

row or column of pixels are equal or it is smooth within the CU 

by checking if the CU has zero CU activity or low gradient 

smooth area. Our previous work in [32] suggested using the 

hash checking during block matching to reduce the complexity 

within IBC. The algorithm in [33] made use of sharp and 

directional edges for mode and CU depth skipping. But the 

results are worse than [30]. For machine learning approaches, 

we proposed [34] to use Bayesian decision rules based on 

corner point detection for fast mode decision plus online 

learning approaches with scene change detection.  In [35], a 

neural network based fast algorithm was proposed to make fast 

CU partitioning by utilizing features that describe CU statistics 

and sub-CU homogeneity. However, high RD performance loss 

is induced by this approach. In [36], a decision tree based 

classifier was firstly designed to classify CUs into CCCUs and 

SCCUs, intuitive logics are then applied by only checking 

INTRA for CCCUs and evaluating IBC and PLT for SCCUs. 

Besides, to speed up the encoding process of CCCUs, two 

classifiers were designed to predict the Intra mode direction 

from 35 prediction modes and early terminate the partitions of 

CCCUs, respectively. There are still pre-defined thresholds for 

these classifiers. Yang et al. [37] proposed to have two decision 

tree classifiers for fast CU partitioning and CU type 

classification. If a CU is classified as a partition CU, it directly 

goes to the next CU size. Otherwise, it is further classified as a 

CCCU or SCCU. If it is a SCCU, both IBC and PLT modes are 

checked. If it is a CCCU, only INTRA mode is tested. Recently, 

we also proposed two rule-based approaches [38-39], in which 

the results are not good enough, and one decision tree approach 

[40] in which handcrafted decisions using neighboring CU 

modes are still needed. 

In this paper, we propose a mode skipping approach for 

INTRA, IBC and PLT, via random forest (RF), based on the SC 

characteristics, neighbor CU modes, and intermediate cost 

information. As machine learning approach is used, our design 

has no pre-defined thresholds for features. Instead of classifying 

CU into CCCUs and SCCUs [29,36-37], before checking each 

mode, we rather perform feature extraction and classification 

using RF to decide whether the current mode should be skipped 

or not. Therefore, the latest CU information such as the least 

RD cost as well as the associated distortion and coding rate 

before the current mode can be obtained, and are input into RF 

together with other features for mode skipping decision. So, 

intuitive logics in [29,36-37] are removed. Moreover, among 

various machine learning algorithms, we choose to apply RF 

for our proposed approach. This is because multiple trees are 

used within a RF for voting such that only the decision with 

majority votes is performed. This property makes RF become 

not greedy which can preserve the video quality and coding 

bitrate while speeding up the encoding process to some extent. 

There are many successful applications of RF for image/video 

coding and enhancement. For example, Liu et al., and Huang et 

al. [41-42] used RF for super resolution by enhancing the 

bicubic interpolated image. Fang et al. [43] proposed to have 

single image depth estimation by learning the structure 

properties based on RF. Du et al. [44] used RF for fast CU 

partitioning in HEVC, but did not use RF in mode decision 

since there is only INTRA mode in HEVC.  The introduction of 

IBC and PLT modes make the necessity of a completely new 

fast mode decision method in SCC as they take up significant 

amount time for mode selection. To the best of our knowledge, 

we are the first to use RF for fast mode decision in SCC.  

The rest of the paper is organized as follows. We start by 

introducing the SCC intra coding in Section II. We then proceed 

to describe our proposed fast mode decision using RF and the 

corresponding training and validation processes including 

feature analyses, sample preparation and the hyperparameter 

tuning process in Section III. Finally, experimental results of 

our proposed approach are shown in Section IV followed by 

conclusions drawn in Section V. 

II. SCC INTRA CODING 

In SCC intra coding, each video frame is divided into coding 

tree units (CTUs) of 64×64 size. A recursive quad-tree coding 

structure is applied to each CTU. For each CTU, it has the size 
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of 2N×2N and can be split into four smaller CUs of N×N, 

namely sub-CUs. This splitting process is repeated recursively 

until the smallest CU (SCU) size of 8×8 is reached. In SCC, 2N 

can be chosen as 64, 32, 16 or 8. To find the best combination 

of CU sizes within a CTU, the encoder performs the RDO 

process that chooses the optimal CU size by comparing the RD 

cost obtained by the current CU and the sum of RD costs 

obtained by its four sub-CUs. In other words, for each CU size, 

the mode that obtains the least RD cost among INTRA, IBC and 

PLT, is selected as the optimal mode, m*, as follows: 
 

𝐽𝑚 = 𝐷𝑚 + 𝜆 ∙ 𝑅𝑚 

𝑚∗ = arg min
𝑚∈𝑀

(𝐽𝑚)                                                                      (1) 

𝑀 = {𝐼𝑁𝑇𝑅𝐴, 𝐼𝐵𝐶, 𝑃𝐿𝑇} 
 

where 𝐷𝑚, 𝑅𝑚 and 𝐽𝑚, respectively, are the distortion, coding 

rate and RD cost obtained by the mode m, and λ is the 

Lagrangian multiplier controlled by the quantization parameter 

(QP). The CU is then split if the sum of the RD costs of the four 

sub-CUs, 𝐽𝑁,𝑖, is smaller than the cost of the current CU, 𝐽2𝑁, or 

otherwise the CU is not split, as in: 
 

{
∑ 𝐽𝑁,𝑖

3
𝑖=0 < 𝐽2𝑁 , Split        

∑ 𝐽𝑁,𝑖
3
𝑖=0 ≥ 𝐽2𝑁 , Not Split

                                                                      (2) 

 

where i is the index of sub-CU. As a result, the complexity of 

encoding a CTU is largely increased in SCC compared with 

HEVC because there are additional IBC and PLT modes for 

each CU candidate. 

To reduce the coding complexity, the current mode decision 

process is varied depending on the CU size shown in Fig. 2. If 

the CU size is 32×32 or smaller, IBC is firstly checked by using 

a set of BVs including the two last coded BVs as well as the 

neighbor BVs. If there is distortion, the conventional INTRA is 

checked. After that, the candidates are checked using the 

skip/merge mode BV predictors. If skip mode is chosen as the 

best mode, the encoding process of a CU is finished. Otherwise, 

if the CU size is 16×16 or smaller, IBC is checked by exhaustive 

block matching with different PU sizes and strategies 

depending on the CU size [25,31-32]. At last, if the CU size is 

32×32 or smaller, PLT is checked. 

To analyze the additional complexity brought by IBC and 

PLT, we encode the first 100 frames of testing sequences with 

QPs of 22, 27, 32, and 37 under all intra (AI) configuration, 

which are the settings recommended by common test conditions 

(CTC) for SCC [45]. The testing sequences are YUV 4:4:4 

sequences which include camera-captured content (CC), 

animation (ANI), text and graphics with motion (TGM), and 

mixed (MIX) content. Reference software HEVC Test Model 

Version 16.12 Screen Content Model Version 8.3 (HM-

16.12+SCM-8.3, hereafter called SCM-8.3 for the sake of 

simplicity) [46] is used. Table I tabulates the Bjøntegaard delta 

bitrate (BD-rate) [47] and the encoding time difference (∆Time) 

of the conventional SCC increased by IBC and PLT compared 

to SCC with both IBC and PLT disabled. ∆Time is defined as 

the percentage difference of the encoding time using a new 

approach, Time𝑁𝑒𝑤 , and the encoding time using the 

conventional SCC encoder, Time𝑂𝑟𝑖𝑔: 
 

 
Fig. 2. SCC intra coding process. 

 

TABLE I 

BD-RATE (%) AND ΔTIME (%) OF SCC COMPARED TO SCC WITH BOTH IBC 

AND PLT DISABLED 

Sequences Type BD-rate ∆Time 

 BasketballScreen MIX -52.47   87.50 

 MissionControlClip2 MIX -48.78   99.70 

 MissionControlClip3 MIX -66.92   87.90 

 ChineseEditing TGM -60.68 104.04 

 Console TGM -69.34   52.41 

 Desktop TGM -83.47   66.60 

 FlyingGraphics TGM -63.79   89.28 

 Map TGM -25.87 143.37 

 Programming TGM -52.96   73.50 

 SlideShow TGM -23.38   52.94 

 WebBrowsing TGM -80.32   66.16 

 Robot ANI   -2.67 112.42 

 EBURainFruits CC   -0.08   91.35 

 Kimono1 CC    0.03   74.30 

Average -45.05   85.82 
 

∆Time = 100 × (Time𝑁𝑒𝑤 − Time𝑂𝑟𝑖𝑔) Time𝑂𝑟𝑖𝑔⁄                           (3) 
 

It can be observed that the BD-rate is decreased by 45.05% 

on average and up to 83.47% which indicates that IBC and PLT  

are efficient coding tools for SC. However, the encoding time 

is also increased largely by 85.82% on average and up to 

143.37% when both IBC and PLT are enabled. Thus, in this 

paper, a mode skipping approach using RF is proposed to speed 

up the encoding process of SCC. 

III. PROPOSED MODE SKIPPING VIA RANDOM FOREST 

As aforementioned, the complexity of SCC is largely 

increased by IBC and PLT though they are efficient coding 

tools for SC. We therefore propose the mode skipping approach 

for INTRA, IBC and PLT modes via random forest (RF) so that 

the number of RD cost computation in (1) can be reduced while 

still maintaining the coding efficiency. There is only one RF 

added as a decision block before each mode to be checked. Fig. 

3 shows the complete framework of our proposed mode 

skipping process via RFs. In HEVC, there are four CU sizes 

from 64×64 to 8×8. Thus, four RFs are required to decide 

whether IBC skip/merge mode should be skipped for all CU 

sizes.  Similarly, four RFs for INTRA are needed.  From Fig.3,  

since not all CU sizes are used in IBC matching and PLT, two 

RFs are used in IBC block matching for 16×16 and 8×8 CU 
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Fig. 3. Our mode skipping approaches via random forests. 

 

 
Fig. 4. Proposed mode skipping via random forest. 

 

sizes, while three RFs are used in PLT for 32×32, 16×16 and 

8×8 CU sizes. It is noted that there is no RFs prior to the 

checking of IBC using a set of BVs. This is because within this 

process, the best BV is determined by the low complexity cost 

which is the sum of distortion estimated by sum of absolute 

difference (SAD) computation plus the scaled BV cost by 

checking the pre-calculated look-up tables. It is relatively 

computational friendly compared with others. Only the best BV 

involves the RD computation in (1). Moreover, its RD cost, 

distortion and rate obtained can be good features for the next 

RF to check whether the next mode is skipped. By taking these 

into consideration, we suggest not using RF for deciding 

whether skip or check this process. 

During the coding of the i-th CU, for each RF, as in Fig. 4, 

features fi are extracted and fed into the trained RF with T 

number of trees. A binary vote, or predicted label, �̂�𝑡,𝑖 where 

�̂�𝑡,𝑖 ∈ {0,1} is the predicted output from t-th tree where t is the 

tree index. The predicted outputs of 0 and 1 indicate the mode 

is voted to be skipped and checked, respectively. If the total sum 

of �̂�𝑡,𝑖 is smaller than a threshold th, the mode is skipped. 

Otherwise, it is checked: 
 

∑ �̂�𝑡,𝑖
𝑇
𝑡=1 {

< 𝑡ℎ , Skip the mode  
≥ 𝑡ℎ , Check the mode

                                                                      (4) 

 

In the conventional binary classification problem, th is equal 

to T/2 so that the class with majority votes is labelled or 

classified. We suggest making th to be variable such that 

classification rate can be controllable. For the instance with th 

equal to 1, even if only one tree votes for checking the mode, 

the mode is checked. This voting makes RF become not greedy 

which is particularly useful for preserving the video quality 

during the mode skipping process while achieving complexity 

reduction to some extent since the mode is skipped only if all 

trees vote for skipping the mode. We will elaborate more about 

the tuning of th in the hyperparameter tuning in Section III.B.3. 

There is a special case for 8×8 CU size. When all the modes are 

decided to be skipped, the mode with the largest number of 

votes of 1 is checked. If there are more than one modes having 

the same largest number of votes, those modes are checked. 

In the followings, we will describe the features extracted for 

each CU with analyses. Then, the sample preparation process, 

which is dedicated to video coding, is presented. Last but not 

least, the new hyperparameter tuning process with the 

consideration of bitrate and encoding time will be presented. 

A. Feature Selection 

Extracting good features are the key step to predict the 

necessary modes being checked and improve the prediction 

accuracy. Extracting inappropriate features leads to negative 

influence on the prediction accuracy and increase the 

computational complexity. Therefore, the feature selection 

must be related to the characteristics of SC. To have feature 

analyses, only the first frames of each second from the YUV 

4:4:4 sequences in Table I are extracted and encoded with the 

same setting mentioned in Section II. We will discuss how to 

deal with RGB and YUV 4:2:0 sequences in Section IV.A.6. 

1) Screen Content Characteristics  

As compared with CC, SC has different characteristics that 

has complex structure with sharp edges, has only limited 

number of colors and sometimes has high contrast between 

colors. Some SC also contain mainly horizontal or vertical 

edges. The horizontal activity 𝐴𝑐𝑡𝐻  and vertical activity 𝐴𝑐𝑡𝑉 

are extracted as features as follows: 
 

𝐴𝑐𝑡𝐻 = ∑ |𝑝𝑌(𝑖, 𝑗) − 𝑝𝑌(𝑖 − 1, 𝑗)|𝑝𝑌∈𝑃

𝐴𝑐𝑡𝑉 = ∑ |𝑝𝑌(𝑖, 𝑗) − 𝑝𝑌(𝑖, 𝑗 − 1)|𝑝𝑌∈𝑃
                                         (5) 

 

where P is the set of pixels within the CU and 𝑝𝑌(𝑖, 𝑗) is the 

luminance value at the relative location (𝑖, 𝑗) within the CU. 

𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 are used because SC usually contains sharp 

edges. These are also the features used in [25] to decide whether 

the 2D search is employed for IBC, and this fast searching 

strategy has already been adopted in SCM-8.3 [46]. Boxplots 

[48] are shown in Fig. 5 for all features related to screen content 

characteristics used in this paper for 32×32 CU size. More 

boxplots for other CU sizes can be found in our website [49]. 

As in Fig. 5(a), the band within the box is the median, i.e. 50th 

percentile (Q2), while the bottom and top of the box are the 

lower quartile (25th percentile, Q1) and upper quartile (75th 

percentile, Q3), respectively. And the range from Q1 to Q3 is 

called interquartile range (IQR). The lower and upper whiskers 



THIS IS THE SUBMISSION OF MM-009417 5 

are the Q1-1.5×IQR and the Q3+1.5×IQR, respectively. The 

remaining points are the outliers. Fig. 5(b) and (c) show the 

boxplots of 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 for each coding mode, respectively. 

It can be seen that, for the CUs coded as INTRA, they have 

much lower 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 values compared with the CUs 

coded as IBC and PLT. This indicates that 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉  are 

good features to distinguish INTRA and IBC/PLT. 

In addition, the variance of a CU is also selected as a feature 

in the following: 
 

𝑉𝑎𝑟 =
1

(2𝑁)2
∑ (𝑝

𝑌
(𝑖, 𝑗) − �̅�)

2
𝑝

𝑌
∈𝑃                                                        (6) 

 

where �̅� is the mean intensity of all pixels in the CU. Variance 

can help to measure the diversity of pixels within the CU. With 

larger CU variance, the conventional INTRA is less effective to 

encode the CU and the chance of using IBC and PLT is larger, 

which can be shown in Fig. 5(d). 

Moreover, the number of high-gradient pixels is estimated as 

a feature. A pixel is defined as a high-gradient pixel if the 

luminance difference between itself and one of the neighboring 

pixels is larger than a pre-defined threshold THHG as below: 
 

𝑝
𝑌
(𝑖, 𝑗) ∈ 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) if 

|𝑝
𝑌
(𝑖, 𝑗) − 𝑝

𝑌
(𝑖 ± 1, 𝑗)| > 𝑇𝐻𝐻𝐺 ,  or 

|𝑝
𝑌
(𝑖, 𝑗) − 𝑝

𝑌
(𝑖, 𝑗 ± 1)| > 𝑇𝐻𝐻𝐺 .                                          (7) 

 

𝑁𝐻𝐺(𝑇𝐻𝐻𝐺) = |𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)| 
 

where 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) is the set of high-gradient pixels within the 

CU with different values of THHG. They are set to 4, 8, 16, and 

32 in this paper. The number of elements in 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺), 

|𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)|, are counted as NHG(THHG) which represents the 

number of high-gradient pixels. NHG(THHG) with different 

values of THHG are shown in Fig. 5(e) to (h). From these figures, 

it can be observed that the range by the box of INTRA has less 

overlap with the box of PLT as THHG increases. And there are 

still CUs coded by IBC when the value of NHG is low. This is 

because there are SCs with low contrast such as icons, and also 

there are SCs with high contrast such as texts.   

 Besides, by concatenating the components of the luminance 

and chrominance values, i.e. 𝑝
𝑌
, 𝑝

𝑈 and 𝑝
𝑉
, the number of distinct 

colors, NDC, is counted since SCs often contain limited number 

of colors. Higher values of NDC within the CU decreases the 

chance of choosing PLT as seen in Fig. 5(i) because it probably 

increases the coding rate of PLT, as demonstrated by Fig. 6(a) 

which shows coding rate of PLT against NDC.  In this figure, it 

is clearly found that RPLT is small when NDC is low, and vice 

versa. Also, it can be seen in Fig. 5(i) that IBC is only effective 

for CUs with small NDC such as texts. 

Finally, the number of background colors, NBC, is also 

considered as a feature by concatenating 𝑝
𝑌
, 𝑝

𝑈 and 𝑝
𝑉
. The 

background color is defined to be the most frequently occurred 

color within the CU. Higher values of NBC within the CU is 

more likely to be the SC as the SC is computer captured which 

has no sensor noise. This can be reflected in Fig. 5(j). 

2) Neighbor CU Modes  

It is logical that when neighbor CUs contain SC, the current 

CU is likely to be SC. For instance, a word document which 

contains large amount of texts. Therefore, the modes of left,   

 
  (a) 

 
  (b) 

 
  (c) 

 
  (d) 

 
  (e) 

 
  (f) 

 
  (g) 

 
  (h) 

 
  (i) 

 
  (j) 

Fig. 5. (a) Illustration of a boxplot and boxplots of screen content characteristics 

for 32×32 CU size: (b) 𝐴𝑐𝑡𝐻, (c) 𝐴𝑐𝑡𝑉, (d) Var, (e) NHG(4), (f) NHG(8), (g) 

NHG(16), (h) NHG(32), (i) NDC, and (j) NBC. 
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TABLE II 
AVERAGE NUMBER OF NEIGHBOR CU MODES FOR EACH CODING MODE AT 

16×16 CU SIZE 

Neighbor CU Modes 
Current CU Coding Mode 

INTRA IBC PLT 

NeighborINTRA 2.74 0.37 0.70 

NeighborIBC 0.39 3.14 1.46 

NeighborPLT 0.75 0.38 1.53 

NeighborNA 1.13 1.10 1.32 
 

above, above right, left bottom and above left CUs are extracted 

to count the numbers of neighbor CU modes that are INTRA, 

IBC and PLT, i.e. NeighborINTRA, NeighborIBC and NeighborPLT, 

respectively, as features. Moreover, the neighbor CU location 

is outside the frame for CUs at the frame boundaries, thus the 

number of neighbor CU mode that is unavailable, NeighborNA 

is also counted which is useful for CU mode decision at the 

boundary. The average values of NeighborINTRA, NeighborIBC, 

NeighborPLT and NeighborNA of each coding mode for 16×16 

CU size are tabulated in Table II. It is noted that those CUs with 

other sizes have similar results as Table II which can be found 

in our website [49]. When the current CU is coded as INTRA, 

the value of NeighborINTRA is 2.74. It means that more than 2 

neighbor CUs on average are coded as INTRA when the current 

CU is also coded as INTRA. This phenomenon also appears in 

IBC and PLT. For NeighborNA, the smallest value of 1.10 is 

obtained for the current CU coded as IBC. It can be explained 

that an increase in coding cost of BV happens when the current 

CU at the left or top boundary in which numerous BV predictors 

are unavailable. Besides, the search window for IBC becomes 

restricted which limits the chance of finding repeating patterns. 

If repeating patterns cannot be found, they are either coded as 

INTRA and PLT depending on the SC characteristics 

mentioned in the previous sub-section. 

3) Intermediate Cost Information 

The best mode mbest just before the mode being checked or 

skipped, as well as the corresponding RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
, distortion 

𝐷𝑚𝑏𝑒𝑠𝑡
, and the coding rate 𝑅𝑚𝑏𝑒𝑠𝑡  as in (1), are also selected as 

features. This is because if the RD cost, distortion or coding rate 

of the best mode is very small, it is able to give an insight to the 

encoder that the previously checked modes may be sufficiently 

effective that the current mode can be skipped. In contrast to 

CC, the chance of getting the exact or very close match within 

the same frame of SC is higher resulting in very low 𝐽𝑚𝑏𝑒𝑠𝑡
, 

𝐷𝑚𝑏𝑒𝑠𝑡
, and 𝑅𝑚𝑏𝑒𝑠𝑡

. Therefore, we collect the latest intermediate 

cost information, i.e. the RD cost, distortion and coding rate of 

the best mode just before the target mode to decide whether it 

should be skipped or not. For example, if a CU is already well 

coded by IBC with a very low RD cost, it is likely to skip the 

following PLT with negligible impact to the coding efficiency. 

We further analyze the least RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
 just before the 

checking of PLT against the number of distinct colors NDC for 

32×32 CU size in Fig. 6 (b). 32×32 CU size is chosen for 

analysis because the number of samples is fewer for the sake of 

clearer visualization. In Fig. 6(b), with high 𝐽𝑚𝑏𝑒𝑠𝑡  before the 

checking of PLT and low NDC, CUs are most likely coded as 

PLT. This is because high 𝐽𝑚𝑏𝑒𝑠𝑡
 means that the modes checked 

before PLT cannot encode those CUs efficiently. But with low 

  
Fig. 6. (a) The coding rate of PLT against NDC, and (b) the least RD cost just 

before PLT against number of distinct colors, with the modes encoded as 

INTRA (green triangle), IBC (red circle) and PLT (blue square) for 32×32 CU 

size. 
 

NDC, those CUs can be encoded by PLT efficiently. We can also 

see that with low 𝐽𝑚𝑏𝑒𝑠𝑡  before the checking of PLT, as NDC 

increases, more CUs are coded as INTRA. It is noted that there 

are relatively few CUs coded as IBC because repeating patterns 

tend to be small size and block matching is only performed for 

16×16 and 8×8 CU sizes. Thereby, 𝐽𝑚𝑏𝑒𝑠𝑡
 is a useful feature, 

with the collaboration of other features such as NDC, for 

deciding whether the mode should be skipped or not. 

4) Feature Vector and Sample Formation 

After extracting the features, a feature vector f is formed, 

which is input to a RF for mode skipping decision, as follows: 
 

𝒇 = (𝐴𝑐𝑡𝐻 , 𝐴𝑐𝑡𝑉 , 𝑉𝑎𝑟, 𝑁𝐻𝐺(4), 𝑁𝐻𝐺(8), 𝑁𝐻𝐺(16),                

𝑁𝐻𝐺(32), 𝑁𝐷𝐶 , 𝑁𝐵𝐶 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐼𝑁𝑇𝑅𝐴 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐼𝐵𝐶 ,       
    𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝐿𝑇 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑁𝐴, 𝐽𝑚𝑏𝑒𝑠𝑡

, 𝐷𝑚𝑏𝑒𝑠𝑡
, 𝑅𝑚𝑏𝑒𝑠𝑡

, 𝑚𝑏𝑒𝑠𝑡)
(8) 

 

Each sample si has its associated feature vector 𝒇𝑖 and label 

yi as below: 
 

𝑠𝑖 = (𝒇𝒊, 𝑦𝑖)                                                                                      (9) 
 

where 𝑦𝑖 ∈ {0,1} which is the true label of the i-th sample. The 

value of 1 means the mode of this sample is encoded into the 

bitstream while the value of 0 means the mode of this sample is 

not encoded into the bitstream. 

B. Training and Validation 

In this sub-section, firstly, we define the training, validation 

and testing sets for our proposed mode skipping approach. 

Secondly, the way to collect and define the samples is 

discussed. Then, the hyperparameter tuning which is based on 

the BD-rate and encoding time reduction is described. 

1) Training, Validation and Testing Sets  

To train the RFs with the features mentioned in the previous 

sub-section, training and validation sets are totally independent 

of the test set in Table I. The training set are BigDuck, 

CadWaveform, ChineseDocumentEditing, EBULupo-

Candlelight, KristenAndSaraScreen, MissionControlClip1, 

ParkScene, PcbLayout, RealTimeData, Seeking, VenueVu, 

V i k i n g ,  a n d  W o rd Ed i t in g .  T h e  v a l id a t io n  s e t  i s 

VideoConferencingDocSharing. These sequences are either 

from JCT-VC [50] or from Joint Video Exploration Team 

(JVET) for Versatile Video Coding (VVC) [51]. Only the first 

frames of each second from the sequences are extracted and 

formed as frame-skipped sequences for both training and 
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TABLE III 

NUMBER OF SAMPLES FOR EACH MODE AT VARIOUS CU SIZES 

CU Sizes INTRA IBC PLT 

64×64     43052     21524     N/A 

32×32   346352   205056 135328 

16×16 1013232 1090568 329132 

8×8 4086116 4686888 675536 

 

validation sets. After hyperparameter tuning using the training 

and validation sets, testing process will be performed to 

evaluate our proposed approach in Section IV. 

2) Sample Preparation 

The sample preparation for video coding is different from 

other conventional object classification problems. In details, the 

training set is required to be encoded by SCM-8.3 [46] using 

QPs of 22, 27, 32 and 37 with AI configuration which is 

recommended by CTC [45]. The CUs that are encoded into the 

bitstream are treated as positive and negative samples according 

to which mode being skipped. For example, if a RF is to skip 

INTRA mode, then the CUs which are encoded as INTRA into 

the bitstream are considered as the positive samples while the 

CUs which are encoded as IBC or PLT into the bitstream are 

the negative samples. Also, as the optimal CU size is chosen 

through the quad-tree encoding process based on (2), there is a 

sub-optimal mode for each CU size based on (1). Only those 

with the least RD costs based on (1) and (2) are truly encoded 

into the bitstream. Therefore, those sub-optimal modes for 

different CU sizes are treated as negative samples for all modes 

being skipped. For instance, if the mode is optimal at 32×32 CU 

size, all the sub-optimal modes obtained at 64×64, 16×16, 8×8 

CUs are also treated as the negative samples at those particular 

CU sizes since at the end they are not encoded into the 

bitstream. Thus, the CUs consist of mixed SC and CC and may 

be encoded at smaller CU sizes are also included as the negative 

samples for training.  

As the number of negative samples is always larger than that 

of positive samples and RFs needs for balanced data, the 

negative samples are randomly sub-sampled to make the 

number of negative samples equal to that of positive samples to 

avoid the data imbalance problem. Table III tabulates the 

number of samples used for training for each mode at various 

CU sizes. 

3) Hyperparameter Tuning 

Our proposed RFs are trained using the random forest 

package [52] in a free statistical computing language and 

software called R [53]. Suppose there are T number of trees for 

a RF and d number of features for each RF, √𝑑 number of 

features (with rounded down) at each node of a tree are selected 

randomly out of d features with replacement. Each node is split 

using the best feature based on the Gini impurity or information 

gain among that subset of features. The split is terminated if 

either one of the leaf nodes, i.e. the left and right leaf nodes, has 

the number of samples smaller than s of the total samples to 

limit the depth of each tree [54-56]. After that, a threshold th in 

(4) is used in the voting to make skipping decision. The 

selection of these model parameters, including T, s, and th, is 

optimized by hyperparameter tuning in our training process. 

One of the conventional ways for hyperparameter tuning of 

a RF is to measure the out of bag (OOB) error rate and the one 

with the lowest OOB error rate is chosen as optimal. For each 

tree, 63.2%, roughly two-third, of the total training samples S, 

by bootstrap sampling, are input for training. After training, the 

leftover 36.8% samples, SOOB,t, are used for calculating the 

misclassification rate of t-th tree, i.e. the out of bag (OOB) error 

rate 𝐸𝑅𝑂𝑂𝐵,𝑡  where t is the tree index. And the OOB error rate 

of a RF 𝐸𝑅𝑂𝑂𝐵,𝑅𝐹  can be obtained by getting the average OOB 

error rates from all trees as follows: 
 

𝐸𝑅𝑂𝑂𝐵,𝑡 = ∑ |�̂�𝑡,𝑖 − 𝑦𝑖|𝑖∈𝑆𝑂𝑂𝐵,𝑡
/|𝑆𝑂𝑂𝐵,𝑡|

𝐸𝑅𝑂𝑂𝐵,𝑅𝐹 =
1

𝑇
∑ 𝐸𝑅 𝑂𝑂𝐵,𝑡

𝑇
𝑡=1                     

                                        (10) 

 

where 𝑦𝑖 and �̂�𝑡,𝑖 are the true and predicted labels respectively 

as in (4), and |𝑆𝑂𝑂𝐵,𝑡| is the number of samples in the set 𝑆𝑂𝑂𝐵,𝑡. 

That is the merit of random feature subspace and random data 

subset which makes RF not greedy [54-56]. However, the RF 

trained with the least OOB error rate may not be best fitted for 

video coding optimization because the OOB error rate only 

measures the misclassification rate in which it does not well 

consider the BD-rate and encoding time in SCC. This is because 

misclassification does not necessarily increase BD-rate. If a 

mode of a CU should be skipped but wrongly classified by the 

RF that the mode is going to be checked. In this case, it has no 

negative impact on BD-rate but it only increases the encoding 

time. In another case, if a mode of a CU should be optimal and 

encoded but wrongly classified by the RF that the mode is going 

to be skipped, but another mode can also be encoded with the 

RD cost as low as the optimal one, then there is negligible 

impact on BD-rate but it also helps to decrease the encoding 

time. This can be happened for homogeneous CUs which have 

few distinct colors and contain repeating pattern within the 

same frame that can be efficiently encoded by all of the INTRA, 

IBC and PLT. 

Hence, instead of hyperparameter tuning using OOB error 

rate, we further propose to tune the hyperparameters T, s and th 

for our mode skipping approach such that it has the large 

encoding time reduction with negligible impact on BD-rate. In 

our approach, RFs are trained using the training set with the 

number of trees T from 7 to 16, and the minimum number of 

samples in leaf node, i.e. s portion of total samples, from 0.05, 

0.1, 0.15, 0.2, 0.25 to 0.3 of the total samples. The voting 

threshold th, as in (4), is ranging from 1 to 4. By encoding the 

validation set, mentioned in Section III.B.1, with different sets 

of the trained hyperparameters T, s and th for each CU size, the 

optimal set of hyperparameters 𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) is chosen with the 

minimum increase in BD-rate BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) obtained 

subject to encoding time difference ∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) smaller 

than a target encoding time difference 𝑇𝑇2𝑁:  
 

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) = arg min

𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ)∈𝑅𝐹2𝑁

(BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ))  

                    s. t.  ∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) < 𝑇𝑇2𝑁

               (11) 

 

where 𝑅𝐹2𝑁 is the set of RFs with all possible combinations of 

hyperparameters. Or alternatively, 𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) can be chosen 

with the maximum encoding time reduction subject to BD-rate 
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smaller than a target BD-rate 𝑇𝑅2𝑁: 
 

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) = arg min

𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ)∈𝑅𝐹2𝑁

(∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ))  

                         s. t.  BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) < 𝑇𝑅2𝑁

                 (12) 

 

Both (11) and (12) can be used for hyperparameter tuning. In 

this paper, we select (11) as our preference in order to minimize 

the increase in BD-rate. Hyperparameter tuning is performed 

for 64×64 CU size that only RFs at 64×64 CU size are enabled 

with different sets of T, s and th, and encoded using the 

validation set to obtain BD-rate𝑟𝑓64(𝑇,𝑠,𝑡ℎ) and ∆Time𝑟𝑓64(𝑇,𝑠,𝑡ℎ). 

Table IV tabulates BD-rate𝑟𝑓64
 and ∆Time𝑟𝑓64

 obtained for 

64×64 CU size with T=8 only. More results for other values of 

T are tabulated in [49]. In Table IV, we can see that with the 

increase in the value of th, the encoding time reduction is 

generally larger. This is because with larger th, as in Fig. 4, 

more votes of 1 from the trees are required in order to check the 

mode. Different values of T and s are tried so that we can find 

a set of hyperparameters which gives us a well fitted RF model 

for speeding up the SCC encoder in terms of BD-rate and 

encoding time reduction.  Based on (11), Table IV and the table 

in [49] are used to determine 𝑟𝑓64
∗ (𝑇, 𝑠, 𝑡ℎ) subject to 

∆Time𝑟𝑓64(𝑇,𝑠,𝑡ℎ) < 𝑇𝑇64.  In principle, the selection of TT64 

depends on a range of ∆Time with the corresponding reasonable 

increase in BD-rate resulting in identifying a number of pairs 

(BD-rate, ∆Time). From Table IV and the table in [49], two 

pairs of (0.00, -13.07) and (-0.01, -12.88) are likely to be the 

only reasonable choices. However, it is not necessary to select 

two ∆Time that are so close.  In 64×64 CU size, we therefore 

only fix at the operational pair of (0.00, -13.07). By taking this 

into consideration, TT64 sets to -13% and 𝑟𝑓64
∗ (8,0.15,4) is 

chosen as the optimal RF model at 64×64 CU size. Table V and 

the table in [49] tabulate the BD-rate𝑟𝑓32(𝑇,𝑠,𝑡ℎ) and 

∆Time𝑟𝑓32(𝑇,𝑠,𝑡ℎ) for 32×32 CU size on top of 𝑟𝑓64
∗ (8,0.15,4) 

mode skipping approach. The reason of hyperparameter tuning 

for 32×32 CU size on top of 𝑟𝑓64
∗ (8,0.15,4) is just to speed up 

the hyperparameter tuning process. Results with T=16 are 

shown in Table V. For 32×32 CU size, we can obtain two 

operational pairs of ∆Time associated with reasonable BD-rate 

as: (-0.04, -27.18) and (0.20, -28.02), and TT32 can thus be -27% 

or -28%. For the case of achieving the smallest BD-rate, 

𝑟𝑓32
∗ (16,0.05,4) is chosen as the optimal RF model at 32×32 CU 

size by setting TT32 to  -27%. For 16×16 CU size, based on 

Table VI and the table in [49], we can choose a range of 𝑇𝑇2𝑁 

from -41%, to -46%, i.e. (0.01, -41.80) and (0.20, -46.70). In 

between, depends on the granularity, we can have numerous 

sets of RFs which can have different sets of BD-rate and ∆Time. 

In our case, two additional sets of RFs (i.e. 4 sets of RFs in total) 

between -41% and -46% with 𝑇𝑇2𝑁 equals to -42% and -43% 

are included, which associates with  the operational pairs, (0.07, 

-42.75) and (0.08, -43.33). Likewise, for 8×8 CU size, based on 

Table VII and the table in [49], we can choose a range of 𝑇𝑇2𝑁 

from -50%, to -56%. And the corresponding operational pairs 

are (0.37, -50.91), (0.95, -52.79), (0.96, -54.48) and (1.39,  

-56.89). Eventually, a mode skipping approach for SCC 

encoder is adopted by using 𝑟𝑓64
∗ (8,0.15,4),  

𝑟𝑓32
∗ (16,0.05,4), 𝑟𝑓16

∗ (12,0.25,4)  and 𝑟𝑓8
∗(16,0.25,1)   in which  

TABLE IV 
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS 

OF HYPERPARAMETERS FOR 64×64 CU COMPARED TO CONVENTIONAL SCC 

2N=64 

T = 8 

th = 1 th = 2 th = 3 th = 4 

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time 

s = 0.05 0.06 -9.67 0.03 -10.47 0.07   -8.51 0.03 -11.38 

s = 0.1 0.01 -6.87 0.03   -9.16 0.05 -11.51 0.03 -12.05 

s = 0.15 0.01 -5.34 0.01 -11.12 0.01 -12.10 0.00 -13.07 

s = 0.2 0.03 -5.43 0.03   -5.21 0.06   -8.21 0.06   -8.61 

s = 0.25 0.00 -5.56 0.04   -8.43 0.01   -8.65 0.06   -5.81 

s = 0.3 0.00 -5.66 0.00   -8.63 0.00   -8.51 0.05   -8.79 
 

TABLE V 
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS 

OF HYPERPARAMETERS FOR 32×32 CU COMPARED TO CONVENTIONAL SCC 

2N=32 

T = 16 

th = 1 th = 2 th = 3 th = 4 

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time 

s = 0.05 0.04 -24.51 -0.04 -25.40 0.05 -26.23 -0.04 -27.18 

s = 0.1 0.13 -22.27   0.13 -24.39 0.12 -25.43   0.10 -25.46 

s = 0.15 0.02 -23.30   0.17 -25.24 0.10 -25.84   0.09 -26.38 

s = 0.2 0.13 -17.71   0.16 -25.30 0.16 -25.16   0.13 -26.09 

s = 0.25 0.09 -26.12   0.09 -25.90 0.06 -25.98   0.01 -26.25 

s = 0.3 0.19 -22.88   0.15 -23.62 0.10 -26.20   0.36 -26.76 
 

TABLE VI 
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS 

OF HYPERPARAMETERS FOR 16×16 CU COMPARED TO CONVENTIONAL SCC 

2N=16 

T = 12 

th = 1 th = 2 th = 3 th = 4 

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time 

s = 0.05 0.03 -33.16 -0.09 -34.40 0.78 -36.24 2.92 -39.43 

s = 0.1 0.13 -31.13  0.11 -34.17 0.09 -35.78 -0.02 -36.87 

s = 0.15 0.08 -31.80  0.09 -34.66 0.09 -35.38 0.16 -37.23 

s = 0.2 0.13 -30.95  0.15 -32.59 0.16 -34.01 0.13 -39.79 

s = 0.25 0.09 -31.15  0.08 -32.76 0.01 -39.00 0.01 -41.80 

s = 0.3 0.20 -31.53  0.15 -32.91 0.26 -33.41 0.29 -34.02 
 

TABLE VII 
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS 

OF HYPERPARAMETERS FOR 8×8 CU COMPARED TO CONVENTIONAL SCC 

2N=8 

T = 16 

th = 1 th = 2 th = 3 th = 4 

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time 

s = 0.05 0.58 -50.83 0.76 -51.05 1.27 -54.78 1.39 -56.89 

s = 0.1 0.52 -50.64 0.62 -51.47 0.77 -51.18 1.12 -54.74 

s = 0.15 0.67 -50.80 0.92 -51.83 0.93 -51.41 1.06 -54.54 

s = 0.2 1.06 -54.41 1.28 -55.72 1.34 -55.74 1.68 -55.89 

s = 0.25 0.37 -50.91 1.17 -54.54 1.32 -54.85 1.49 -55.91 

s = 0.3 0.51 -51.44 1.37 -55.27 1.25 -54.80 1.29 -55.83 
 

the encoder has been well-tuned with the large encoding time 

reduction and limited impact on BD-rate. Hence, our proposed 

mode skipping approach with the hyperparameter tuning using 

(11) is denoted as 𝑅𝐹∗(TT64, TT32, TT16, TT8). In this case, our   

optimal mode skipping approach is 𝑅𝐹∗(-13,-27,-41,-50), 

which has the minimum increase in BD-rate.  Based on the 

operational pairs that we have just selected, 𝑅𝐹∗(-13,-27,-42,-

52), 𝑅𝐹∗(-13,-28,-43,-54) and 𝑅𝐹∗(-13,-28,-44,-56) are the 

three other possible RFs that can achieve more time reduction 

with larger increase in BD-rate, as illustrated more in the 

experimental results. In summary, the selection of TT2N for each 

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) depends on (i) which sequence is used as the 

validation set, (ii) our objective to either preserve the coding 

efficiency more with less encoding time reduction or sacrifice 

the coding efficiency for larger reduction of encoding time, and 

(iii) a range of ∆Time which has the corresponding reasonable 

increase in BD-rate. In this range, we can choose a small 𝑇𝑇2𝑁 
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and a large 𝑇𝑇2𝑁. In between, depends on the granularity, we 

can have numerous sets of RFs which can have different sets of 

BD-rate and ∆Time. 

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed mode skipping 

approaches using RF, we have performed simulations using the 

HEVC SCC reference software SCM-8.3 [46] with the CTC 

[45] mentioned in Section II. The first 100 frames of the 14 

sequences in Table I were encoded. The experiments were 

conducted on the Dell Precision T1700 computer with an Intel 

i7-4770 3.40GHz processor and 16GB memory. In the 

followings, we first evaluate the performance of our proposed 

approaches. Second, our proposed approaches will compare 

with the state-of-the-art approaches using standard sequences in 

CTC [45] as well as an extra test set. Moreover, inference time, 

memory consumption and sequences with different color spaces 

are also evaluated. 

A. Performance Evaluation of Proposed Approaches 

1) Hyperparameter Tuning Methods 

Since our proposed mode skipping approach can be scalable 

by choosing different target time TT2N in (11), different sets of 

BD-rate and encoding time reduction can be achieved. For the 

sake of simplicity, RF*(-13,-27,-41,-50), 𝑅𝐹∗(-13,-27,-42,-52), 

𝑅𝐹∗(-13,-28,-43,-54) and 𝑅𝐹∗(-13,-28,-44,-56) are denoted as 

𝑅𝐹1
∗, 𝑅𝐹2

∗, 𝑅𝐹3
∗ and 𝑅𝐹4

∗, respectively. In order to show the 

importance of hyperparameter tuning using (11), we also 

implemented our  mode skipping approach with the 

hyperparameter tuning using the OOB error rate defined in (10) 

and it is denoted as RFOOB-th. For RFOOB-th, the hyperparameters 

T and s are chosen based on the minimum OOB error rate for 

each RF, and the hyperparameter th is set as 1 to 4. When th=1, 

among all trees, even only one tree has the vote for checking 

the mode, the mode is checked. It is the most rate-distortion 

preserving value. Table VIII shows the average BD-rate and 

ΔTime of 𝑅𝐹𝑛
∗ (n = 1 to 4) and RFOOB-th (th = 1 to 4) against the 

conventional SCC. We can see that, say for example, between 

RFOOB-2 and 𝑅𝐹1
∗ , 𝑅𝐹1

∗ has larger encoding time reduction of 

45.06% and smaller increase in BD-rate of 1.08%, which has 

better performance than RFOOB-2. Similarly, 𝑅𝐹2
∗ has larger 

encoding time reduction of 48.51% while having smaller 

increase in BD-rate of 1.55% which is better than the 

performance of RFOOB-3. For better visualization, we also plot 

the average BD-rate against encoding time reduction in Fig. 7. 

In Fig. 7, we can see that there is a large margin between the 

curves of 𝑅𝐹𝑛
∗ and RFOOB-th. Along the same BD-rate, 𝑅𝐹𝑛

∗ 

obtain larger encoding time reduction. This means that our 

hyperparameter tuning based on the BD-rate and encoding time 

reduction in (11) is crucial for choosing a set of optimal 

hyperparameters. It is consistent with our explanation in the 

previous section that misclassification does not necessarily 

increase BD-rate largely. If there is misclassification in the 

sense that a mode is skipped but wrongly classified by the RF 

that it is being checked, there is no harms on BD-rate but only 

with an increase in encoding time for this CU. In addition, some 

of the CUs, such as homogeneous CUs, can be efficiently  

TABLE VIII 
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH 

WITH DIFFERENT HYPERPARAMETER TUNING METHODS COMPARED TO 

CONVENTIONAL SCC 

Approaches RFOOB-1 RFOOB-2 RFOOB-3 RFOOB-4 𝑹𝑭𝟏
∗  𝑹𝑭𝟐

∗  𝑹𝑭𝟑
∗  𝑹𝑭𝟒

∗  

BD-rate 0.83 1.43 1.89 2.31 1.08 1.55 2.68 4.47 

∆Time -35.87 -41.29 -45.27 -49.25 -45.06 -48.51 -52.51 -58.57 

 

TABLE IX 
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH 

WITH RFS ENABLED FOR INDIVIDUAL CODING MODES COMPARED TO 

CONVENTIONAL SCC 

Ave-

rage 

𝑹𝑭𝟏
∗   

(Only IBC 

Skip/Merge) 
𝑹𝑭𝟏

∗   

(Only 

INTRA) 
𝑹𝑭𝟏

∗  (Only  

IBC Block 

Matching) 
𝑹𝑭𝟏

∗  

(Only  

PLT) 
𝑹𝑭𝟏

∗ 
BD-

rate ∆Time BD-

rate ∆Time 
BD-

rate ∆Time 
BD-

rate ∆Time 
BD-

rate ∆Time 
MIX 0.28 -16.47 0.65 -18.63 0.37   -8.60 0.06   -8.69 1.57 -44.10 
TGM 0.07 -19.93 0.67 -23.85 0.13   -5.91 0.06   -4.84 1.06 -46.46 
ANI 0.04   -6.26 0.27   -8.10 0.72 -25.52 0.55 -20.87 1.74 -46.24 
CC 0.00   -0.95 0.02    0.38 0.09 -27.11 0.00 -12.28 0.11 -40.33 

Overall 0.11 -15.50 0.55 -18.14 0.21 -10.92 0.08   -7.87 1.08 -45.06 
 

TABLE X 
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH 

WITH RFS TRAINED WITH DIFFERENT FEATURE SUBSETS COMPARED TO 

CONVENTIONAL SCC 

Average 
𝑹𝑭𝟏

∗  (Only SC  

Characteristics) 
𝑹𝑭𝟏

∗  (Only SC Characteristics  

and Neighbor CU Modes) 𝑹𝑭𝟏
∗ 

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time 
MIX 1.66 -26.95 1.51 -39.01 1.57 -44.10 
TGM 1.66 -34.61 1.25 -37.95 1.06 -46.46 
ANI 2.27 -28.95 2.03 -49.72 1.74 -46.24 
CC 0.19 -33.23 0.16 -42.35 0.11 -40.33 

Overall 1.49 -32.37 1.20 -39.65 1.08 -45.06 
 

encoded by multiple modes with similar RD cost. With some 

modes skipped by RFs, encoding time can be reduced largely 

with negligible or even zero increase in BD-rate. Thus, our 

proposed 𝑅𝐹1
∗ can obtain 45.06% encoding time reduction with 

only 1.08% increase in BD-rate. And our 𝑅𝐹3
∗ and 𝑅𝐹4

∗ have 

2.68% and 4.47% increase in BD-rate with 52.51% and 58.57% 

average encoding time reduction respectively, which shows that 

our approach is complexity scalable by choosing different 

target time TT2N in (11). 

2) Individual Coding Modes 

We have evaluated the performance of RFs for each coding 

mode in Table IX. It can be seen that RFs for both IBC 

skip/merge and INTRA modes contribute more time reduction 

for MIX and TGM sequences, while RFs for both IBC block 

matching and PLT modes contribute more time reduction for 

ANI and CC sequences. It is expected since IBC block 

matching and PLT modes are designed for SC and these modes 

are expected to be skipped for ANI and CC sequences. On 

average, all RFs contribute certain amount of time reduction 

with negligible impact on BD-rate. 

3) Different Feature Subsets 

Ablation study on the performance of the RFs trained by 

different feature subsets are also shown in Table X. With RFs 

trained only by the features of SC characteristics, 32.37% time 

reduction with increase in 1.49% BD-rate is obtained. With RFs 

trained only by the features of SC characteristics and neighbor 

CU modes, an improved 39.65% time reduction with 1.20% 

increase in BD-rate is obtained. With RFs trained with  
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TABLE XI 
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH 

WITH RFS TRAINED WITH DIFFERENT NUMBER OF HIGH-GRADIENT PIXELS 

FEATURES COMPARED TO CONVENTIONAL SCC 

Average 𝑹𝑭𝟏
∗  (NHG(THHG) by (13)) 𝑹𝑭𝟏

∗  (NHG(THHG) by (7)) 
BD-rate ∆Time BD-rate ∆Time 

MIX 1.75 -42.47 1.57 -44.10 
TGM 1.22 -45.77 1.06 -46.46 
ANI 2.19 -45.00 1.74 -46.24 
CC 0.34 -36.73 0.11 -40.33 

Overall 1.28 -43.72 1.08 -45.06 
 

intermediate cost information features, an even better time 

reduction of 45.06% with only 1.08% increase in BD-rate is 

achieved. 

To investigate the NHG(THHG) feature, the counting of  

NHG(THHG) based on (7) has also been replaced by  
 

𝑝
𝑌
(𝑖, 𝑗) ∈ 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) if 

|𝑝
𝑌
(𝑖, 𝑗) ± 𝑝

𝑌
(𝑖 ± 1, 𝑗)| > 𝑇𝐻𝐻𝐺 ,  or 

|𝑝
𝑌
(𝑖, 𝑗) ± 𝑝

𝑌
(𝑖, 𝑗 ± 1)| > 𝑇𝐻𝐻𝐺 .                                        (13) 

 

𝑁𝐻𝐺(𝑇𝐻𝐻𝐺) = |𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)| 
 

which represents the oblique orientation.  Then the RF based on 

(13) is trained again.  Table XI tabulates the performance of the 

RF trained with (13). 43.72% time reduction with 1.28% 

increase in BD-rate is obtained, which is a bit worse than 𝑅𝐹1
∗. 

But it still can be considered that they have similar coding 

performance. 

B. Comparison with State-of-the-art Approaches 

To have thorough performance evaluation, we compared our 

proposed mode skipping approach using random forests RF* 

with other state-of-the-art approaches [27-32,34,36-37], as 

discussed in Section I. It should be emphasized that the SCM 

versions used by [27-32,34,36-37] are different in the sense that 

there are numerous enhancements, speed-up techniques and 

codes cleanup in the more updated version used in our proposed 

approach. Some of the differences are as follows. In some older 

versions, the BV signaling for IBC was not unified with the one 

in the conventional inter mode. Only left and above BVs were 

used as predictors and there was no merge, skip and AMVP 

modes for IBC. Thus, the BV predictor derivation mechanism 

is also different from that of the current SCM version. Besides, 

there was also no conditional checking whether skip mode is 

the best mode before going into the time-consuming IBC block 

matching and PLT as shown in Fig. 2. Moreover, N×N IBC 

block matching was done after 2N×N block matching while 

N×N IBC block matching is eliminated in the current SCM 

version. In addition, PLT was enabled in 64×64 CU size but it 

is disabled now due to the occasional usage. Nevertheless, we 

have re-implemented the approaches of [27-32,34,36-37] in 

SCM-8.3 for fair comparison. 

Fig. 7 and Table XII show the BD-rate and encoding time 

reduction of various approaches against the conventional SCC. 

As mentioned in Section I, the state-of-the-art approaches for 

comparison mainly employs four kinds of speed-up techniques 

for SCC, as summarized in Table XIII. The first one is the fast 

mode decision in which mode(s) is(are) skipped instead of 

TABLE XII 
BD-RATE (%) AND ΔTIME (%) OF VARIOUS APPROACHES COMPARED TO 

CONVENTIONAL SCC USING CTC SEQUENCES 

Sequences 

𝑹𝑭𝟏
∗  [27] [29] [36] 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

 BasketballScreen 1.86 -41.48 1.11 -40.45 1.44 -22.49 1.26 -21.36 

MissionControlClip2 1.50 -43.46 1.07 -41.33 1.25 -34.96 2.42 -36.28 

MissionControlClip3 1.35 -47.37 1.15 -40.30 1.92 -25.52 1.62 -25.66 

 ChineseEditing 0.75 -45.26 0.70 -49.81 1.06 -18.89 1.05 -18.73 

 Console 0.66 -52.57 3.12 -39.32 2.48 -22.61 1.70 -29.05 

 Desktop 1.11 -57.94 2.33 -46.60 1.57 -21.91 1.73 -26.07 

 FlyingGraphics 0.86 -46.63 0.68   -7.04 1.59 -19.56 0.87 -22.90 

 Map 0.44 -25.74 0.58 -35.06 0.56 -16.40 1.51 -17.37 

 Programming 1.51 -43.28 0.96 -41.62 1.79 -23.33 1.56 -24.01 

 SlideShow 2.77 -46.53 1.12 -44.21 4.34 -55.43 2.16 -53.79 

 WebBrowsing 0.38 -53.70 1.91 -50.22 4.06 -24.33 1.14 -27.26 

 Robot 1.74 -46.24 0.93 -14.08 5.74 -45.97 1.35 -31.61 

 EBURainFruits 0.17 -42.46 0.60 -16.65 1.83 -47.72 0.92 -27.27 

 Kimono1 0.05 -38.21 0.13    0.44 1.49 -74.76 1.22 -26.77 

Average (Overall) 1.08 -45.06 1.17 -33.30 2.22 -32.42 1.47 -27.72 
 

TABLE XIII 
SPEED-UP TECHNIQUES INVOLVED FOR VARIOUS APPROACHES 

Speed-up 

Techlniques 
𝑹𝑭𝒏

∗ /  

RFOOB-th
 [27] [28] [29] [30] [31] [32] [34] [36] [37] 

 Fast Mode 

 Decision    
    

   
 Fast CU  

 Partitioning   
      

  
 Fast INTRA     

    
  

 Fast IBC  
     

    
 

 
Fig. 7. Comparison of our proposed mode skipping approach via random forests 

with state-of-the-art approaches with BD-rate (%) against encoding time 

reduction (%) for the CTC sequences [45]. 
 

estimating the RD costs of all modes, as in (1). The second one 

is the fast CU partitioning. It can be the fast CU splitting method 

that all of the modes in the current CU size are skipped and the 

decision process directly moves to the smaller CU size, or it can 

be the fast CU pruning method that only all modes in the current 

CU size are performed and the CU does not split further so that 

all of the modes in the smaller CU size are skipped. Thus, fast 

CU partitioning is a kind of greedy approach as it skips multiple 

modes directly. The third one is the fast method within INTRA. 

The number of INTRA prediction candidates is limited in order 

to reduce the coding time for checking INTRA. The last one is 

the fast method within IBC in which certain amount of 

searching points is skipped such that the time for checking IBC 

can be reduced. Hence, the last two techniques can obtain the 
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least encoding time reduction. 

Fig. 7 depicts the plots of BD-rate against encoding time 

reduction for different approaches. From Fig. 7, it can be easily 

seen that the approaches at the right bottom have better coding 

performance since they have less BD-rate increment and larger 

encoding time reduction. Our proposed RFOOB-th (th = 1 to 4) 

and 𝑅𝐹𝑛
∗ (n = 1 to 4) are all at the most right bottom in Fig. 7. 

Particularly for the state-of-the-art approaches with lower than 

2% increase in BD-rate, only under 35% encoding time 

reduction can be obtained. However, our mode skipping 

approaches 𝑅𝐹1
∗ and 𝑅𝐹2

∗ can achieve over 45% of encoding 

time reduction.  

Detailed BD-rate and ΔTime for each sequence are shown in 

Table XII.  In this table, due to the space, only the algorithms 

in [27, 29, 36] are shown since they have better performance as 

shown in Fig. 7.  Results for other approaches can be found in 

our website [49].  The algorithms in [28,30] obtain a negligible 

increase in BD-rate but they only obtain limited average 

encoding time reduction. This is because their approaches only 

focuses on homogeneous regions without speed-up 

consideration for other SC or CC regions. The work in [32] has 

the least average time reduction in Fig. 7 as it only has the fast 

hash search within IBC. In Table XII, it can be seen that the 

algorithm in [29] obtains 32.42% average time reduction but 

with 2.22% increase in BD-rate which is still a bit large. Both 

[29] and [31] have large increase in BD-rate. One of the reasons 

is the use of handcrafted thresholds. And the work in [31] has 

particularly high BD-rate due to insufficient number of features. 

The algorithm in [34] gets a small increase in BD-rate but only 

with 23.22% average time reduction. It is because it needs 

learning frames for studying the probabilities between features 

and modes in which there is no time reduction for encoding 

those learning frames. For [36], the BD-rate and encoding time 

reduction are much balance that only 1.47% of BD-rate is 

increased with 27.72% average encoding time reduction. And a 

significant increase in BD-rate are obtained in [37]. For [29,36-

37], they all have a CU type classifier to classify the CU as 

CCCU or SCCU. If the CU is classified as CCCU, both IBC 

and PLT are skipped. This may be the reason that the 

approaches become greedy with the upsurges of BD-rate when 

there are misclassifications. Thus, the algorithm in [36] 

suppresses the increase in BD-rate with the sacrifice of smaller 

encoding time reduction by raising the confidence levels of 

decision tree classifiers and lowering pre-defined mode 

skipping thresholds. Among [27-32,34,36-37], [27] has the best 

coding performance that it only has 1.17% increase in BD-rate 

and 33.30% average encoding time reduction by encoding the 

current CU using the mode and CU size from the collocated 

CU. It mainly expedites the stationary CUs in [27].  

Our RFOOB-1 has similar coding performance as [27] with 

0.83% increase in BD-rate and 35.87% average encoding time 

reduction, as shown in Table VIII.  With our novel 

hyperparameter tuning technique using (11), our proposed 𝑅𝐹1
∗ 

can obtain 45.06% average encoding time reduction with only 

1.08% increase in BD-rate. This can be explained that our mode 

skipping approach is not greedy in the sense that only one single 

mode is being skipped, which is decided by RF for each time. 

TABLE XIV 
BD-RATE (%) AND ΔTIME (%) OF VARIOUS APPROACHES COMPARED TO 

CONVENTIONAL SCC USING EXTRA TEST SET 

Sequences 

𝑹𝑭𝟏
∗  [27] [29] [36] 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

BD-

rate 
ΔTime 

JCT-VC Sequences [50] 

 CgTwistTunnel 1.18 -41.81 2.01   -9.17 2.44 -26.65 0.71 -24.87 

 PptDocXls 0.55 -53.66 0.99 -50.08 1.29 -16.66 1.43 -23.65 

 SocialNetworkMap 0.57 -30.80 0.66   -4.47 0.41 -12.79 0.96 -18.95 

JVET Sequences [51] 

 BitstreamAnalyzer 0.08 -53.93 0.39 -51.09 0.38 -16.94 0.09 -20.61 

 CircuitLayout- 

 Presentation 
0.60 -47.23 1.02 -43.03 0.93 -19.88 2.50 -20.31 

 ClearTypeSpreadsheet 0.14 -58.48 0.54 -48.31 0.71 -20.46 1.65 -22.89 

 EnglishDocument- 

 Editing 
0.68 -51.65 3.25 -44.57 1.16 -20.18 1.68 -19.81 

Self-Captured Sequences [49] 

 MsStore 0.95 -41.60 0.61 -25.35 2.83 -36.30 1.97 -32.41 

 NewsBrowse 0.50 -51.21 0.68 -38.82 2.57 -37.10 0.97 -35.76 

 PaperPdf 0.38 -54.85 1.05 -32.01 2.70 -25.36 0.54 -27.15 

 VisualStudio 0.73 -54.28 1.11 -47.27 2.40 -29.66 1.98 -30.76 

 YouTube 0.77 -44.18 0.63 -34.51 1.59 -35.91 1.08 -36.38 

Average 

JCT-VC 0.77 -42.09 1.22 -21.24 1.38 -18.70 1.03 -22.49 

JVET 0.37 -52.82 1.30 -46.75 0.80 -19.36 1.48 -20.90 

Self-Captured 0.66 -49.22 0.81 -35.59 2.42 -32.87 1.31 -32.49 

Overall 0.59 -48.64 1.08 -35.72 1.62 -24.82 1.30 -26.13 
 

 
Fig. 8. Comparison of our proposed mode skipping approach via random forests 

with state-of-the-art approaches with BD-rate (%) against encoding time 

reduction (%) using extra test set [49-51]. 
 

Misclassifications in our approach brings less harmful 

compared with those using CU type classification in [29,36-37]. 

Another reason is that while going through the RF as in Fig. 3, 

the latest intermediate cost information, mentioned in Section 

IV.A.3, i.e. the RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
, distortion 𝐷𝑚𝑏𝑒𝑠𝑡

, and the coding 

rate 𝑅𝑚𝑏𝑒𝑠𝑡
, are also considered jointly with the SC 

characteristics and neighbor CU modes. This information gives 

more clues to RF whether the mode should be skipped or not. 

Yet, [29,36] do not consider the intermediate cost information 

during the CU type classification. It can be concluded that our 

proposed mode skipping approaches via RFs outperform other 

state-of-the-art approaches.  

C. Performance Evaluation Using Extra Test Set 

We also encoded an extra test set which consists of SC 

sequences from JCT-VC [50], JVET [51] and self-captured 

sequences [49] as in Table XIV. The self-captured sequences 

are the screen capture of reading a PDF file, browsing web 

news, and watching a YouTube video, etc. Fig. 8 shows the 
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TABLE XV 
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH FOR 

RGB AND YUV 4:2:0 SEQUENCES 

Average 𝑹𝑭𝟏
∗  (RGB) 𝑹𝑭𝟏

∗  (YUV 4:2:0) 
BD-rate ∆Time BD-rate ∆Time 

MIX 1.43 -40.56 1.55 -33.78 
TGM 0.89 -42.12 1.22 -32.13 
ANI 1.33 -46.21 1.05 -42.22 
CC 0.06 -44.38 - - 

Overall 0.92 -42.40 1.27 -34.06 
 

TABLE XVI 
AVERAGE INFERENCE TIME (%) OF MODE SKIPPING APPROACH 

𝑹𝑭𝟏
∗  

MIX TGM ANI CC All 
1.76 1.42 3.57 6.86 2.42 

 

TABLE XVII 
MEMORY ANALYSIS OF MODE SKIPPING APPROACH 

Frame Size (Pixels) 2560×1440 1920×1080 1280×720 
Frame Memory for  

one frame (Bytes) 2560×1440×3 1920×1080×3 1280×720×3 
Maximum Additional Memory  

for 64×64 CU (Bytes) 64×64×36 64×64×36 64×64×36 
Memory Increased (%) 1.33 2.37 5.33 

 

average BD-rate against average encoding time reduction of 

various approaches against the conventional SCC. Our 

proposed 𝑅𝐹𝑛
∗ (n = 1 to 4) have the largest encoding time 

reduction comparing with [27,29,36] at different ranges of BD-

rate in which the results are consistent with those in the previous 

sub-section. From the figure, it is observed that 𝑅𝐹1
∗ and 𝑅𝐹2

∗  

can even achieve larger reduction on encoding time and smaller 

increase in BD-rate for these unseen data set. This confirms that 

our proposed 𝑅𝐹𝑛
∗ is generalizable to the unseen sequences.  

D. RGB and YUV 4:2:0 Color Formats 

Instead of training RF again using RGB and YUV 4:2:0 

sequences, we use the same set of RFs trained by YUV 4:4:4 

sequences. To extract 𝐴𝑐𝑡𝐻, 𝐴𝑐𝑡𝑉, 𝑉𝑎𝑟 and 𝑁𝐻𝐺(𝑇𝐻𝐻𝐺) 

features based on (5) to (7), sequences in  RGB are converted 

to YUV 4:4:4 format to obtain the Y component. When NDC and 

NBC are determined, three components of R, G, and B are 

concatenated to get a 24-bit sample value for each pixel. For 

YUV 4:2:0 sequences, the nearest smaller integer positions of 

U and V are picked for concatenation when NDC and NBC are 

estimated. Table XV shows the performance of RGB and YUV 

4:2:0 sequences. The RGB and YUV 4:2:0 sequences are 

exactly following the CTC (Noted that there are no CC 

sequences for YUV 4:2:0 in CTC) [45]. 42.40% and 34.06% 

time reduction with 0.92% and 1.27% increase in BD-rate are 

obtained for RGB and YUV 4:2:0 sequences respectively. The 

time reduction is relatively smaller for YUV 4:2:0 sequences 

because there are many coding techniques disabled such as 

cross component prediction and adaptive color transform. From 

the table, it is concluded that our approach is generalizable to 

other color formats.  

E. Inference Time, Memory Consumption and Model Size 

Table XVI and Table XVII tabulate the inference time and 

the additional memory analyses of our approach, respectively. 

The inference time includes the time for feature extraction and 

decision inference. It is noted that this inference time have been 

counted in all simulations to calculate the encoding time 

reduction in the above sections.  Though it is relatively large of 

6.86% for CC sequences, the average inference time for all 

sequences is only 2.42% of the total encoding time. With such 

large encoding time reduction, it is acceptable. For the 

additional memory, there is only one large memory 

consumption for the concatenation of color components during 

the feature extraction processes of NDC and NBC. The memory 

consumed is the largest when the current CU is 64×64, which 

is 64×64×36 bytes, i.e. 144 Kbytes only. Compared with the 

memory to store one frame, it is negligible. Regarding the RF 

model size, after training RFs using R [53], we implemented the 

RFs into SCM-8.3 [46] using C++ directly. The original SCM-

8.3 has the size of 1.65MB while our 𝑅𝐹1
∗ to 𝑅𝐹4

∗ have the sizes 

of about 1.89MB to 1.91MB. Thus, the RF models increase the 

size by about 0.24MB to 0.26MB only that is in favor of product 

implementation. It is noted that most of the RF codes are mainly 

a series of if-else conditional statements without any special 

optimizations. In addition, there is no parallel execution on RFs 

for the sake of fair comparison. 

V. CONCLUSION 

Screen content coding essentially improves the coding 

efficiency of screen content by introducing two new tools: IBC 

and PLT modes. However, they also bring the high 

computational complexity to the encoder. Therefore, in this 

paper, we propose the mode skipping approach to skip the 

conventional INTRA, IBC and PLT modes via RFs. Instead of 

classifying CU into CCCUs and SCCUs, before checking each 

mode, feature extraction and classification using RF is 

performed to decide whether the current mode should be 

skipped or not. This arrangement allows the latest CU 

information such as the least rate-distortion cost, the associated 

distortion and coding rate before the current mode can be used 

as the input to RF with other features for mode skipping 

decision.  By taking the bitrate and encoding time into 

consideration, a new hyperparameter tuning process is designed 

for RFs at each CU size to further enhance the coding 

efficiency, which is validated by implementing our proposed 

approach in SCM-8.3. Experimental results have shown that the 

proposed approach can achieve 45.06% average time reduction 

with only 1.08% increase in bitrate, which outperforms all of 

the state-of-the-art algorithms in the literature. 
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