
THIS IS THE SUBMISSION OF MM-009417 1

Abstract—Screen content coding (SCC) is the extension to High

Efficiency Video Coding (HEVC) for compressing screen content

videos. New coding tools, intra block copy (IBC) and palette (PLT)

modes, are introduced to encode screen content (SC) such as texts

and graphics. IBC mode is used for encoding repeating patterns

by performing block matching within the same frame, while PLT

mode is designed for SC with few distinct colors by coding the

major colors and their corresponding locations using an index

map. However, the use of IBC and PLT modes increases the

encoder complexity remarkably though coding efficiency can be

improved. Therefore, we propose to have a mode skipping

approach to reduce the encoder complexity of SCC by making use

of SC characteristics, neighbor coding unit (CU) correlations, and

intermediate cost information via random forest (RF). Detailed

feature analyses and sample preparation are also described. A

novel hyperparameter tuning approach with the consideration of

coding bitrate and encoding time is proposed for RFs at each CU

size to further boost the encoding process. Experimental results

show that our proposed approach can obtain 45.06% average

encoding time reduction with only 1.08% increase in Bjøntegaard

delta bitrate (BD-rate). Average encoding time can even be

reduced to 58.57% by regulating the hyperparameters.

Index Terms—HEVC, machine learning, random forest, screen

content coding, video coding

I. INTRODUCTION

ITH the recent rapid development of technologies in

networking and thin-client devices, computer screen

sharing applications have become more popular. They include

remote desktop, video conferencing with documents or slides

sharing, etc. In addition, there are many television programs

(e.g. finance or business news) and many curriculum videos in

the Internet that contain mixtures of camera-captured content

(CC) and screen content (SC). There will be even more cloud

services using screen sharing technology in the near future [1].

These applications result in a substantial demand for the

efficient compression of SC. In January 2014, there was Call

for Proposal (CfP) [2] of screen content coding (SCC) [3-4] as

the extension to High Efficiency Video Coding (HEVC) [5-6]

by the Joint Collaborative Team on Video Coding (JCT-VC).

SC is the video content containing computer-generated

content such as texts, computer graphics and graphical user

Manuscript received Jun. 2018. The work was supported by the Hong Kong

Research Grants Council under Research Grant PolyU 152112/17E.
S.-H. Tsang, Y.-L. Chan, and W. Kuang, are with the Department of

Electronic and Information Engineering, The Hong Kong Polytechnic

(a) (b) (c)
Fig. 1. Illustrations of (a) INTRA, (b) PLT, and (c) IBC modes.

interface while CC is the video content captured by camera.

Videos sometimes contain a mixture of SC and CC. CC can be

encoded by HEVC efficiently. However, SC has discontinuous-

tone characteristics [7-8] which is different from CC, such as

complex structure with sharp edges, limited number of colors

and sometimes high contrast between colors like texts.

The conventional HEVC intra (INTRA) mode [9-10] shown

in Fig. 1(a) uses the neighbor boundary pixels to predict a

coding unit (CU) with 33 directional predictions plus planar and

DC predictions [9]. To reduce the complexity, rough mode

decision (RMD) [10] is performed to select a subset of intra

prediction candidates first. Then the optimal one is chosen by

rate distortion optimization (RDO) where the full rate-distortion

(RD) cost for every candidate in the subset is estimated.

However, it cannot efficiently encode the CUs with screen

content such as the example shown in Fig. 1(a) since neighbor

boundary pixels cannot predict the pixels with abrupt change

within the CU. Hence, two new coding tools are introduced in

SCC to solve this problem. They are palette (PLT) mode [11]

and intra block copy (IBC) mode [12].

For PLT [11] as demonstrated in Fig. 1(b), a CU is separated

into color data and structural data. The color data consists of

few major colors which are predicted from color table or from

neighbor CUs. When the colors are not in the major color tables,

they are regarded as escape colors and are explicitly coded. The

structural data is then represented by an index map and the

corresponding indices are entropy coded. Thus, PLT helps to

encode SC which contains few colors like texts and icons.

Further improvements were also suggested in [13-16] to further

increase the coding efficiency of PLT. IBC mode, as in Fig.

1(c), is a block matching technique to find the repeating patterns

within the same frame which frequently occurs in SCs [12]. For

instance, repeating numbers and characters can be found within

a document and spreadsheet. If IBC is used by one particular

University, Hung Hom, Kowloon, Hong Kong

(e-mail: sik-ho.tsang@polyu.edu.hk, enylchan@polyu.edu.hk,
wei.kuang@connect.polyu.hk).

Mode Skipping for HEVC Screen Content

Coding via Random Forest

Sik-Ho Tsang, Member, IEEE, Yui-Lam Chan, Member, IEEE,

and Wei Kuang, Student Member, IEEE

W

This is the Pre-Published Version.

The following publication S. -H. Tsang, Y. -L. Chan and W. Kuang, "Mode Skipping for HEVC Screen Content Coding via Random Forest," in IEEE
Transactions on Multimedia, vol. 21, no. 10, pp. 2433-2446, Oct. 2019 is available at https://doi.org/10.1109/TMM.2019.2907472.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

THIS IS THE SUBMISSION OF MM-009417 2

CU, each prediction unit (PU) within the CU is encoded with a

block vector (BV), as well as the residual signal of that CU

which is similar to an inter mode in inter-frame motion

estimation. Besides, merge mode and skip mode are also

performed in IBC. Further enhancements can be found in [17-

21] to improve the coding efficiency of IBC. Moreover, the

algorithms in [22] and [23] proposed Pseudo 2D String

Matching (P2SM) and Universal String Matching (USM),

respectively, to have a more flexible string matching compared

with the conventional IBC to further boost the coding efficiency

of SCC.

Although PLT and IBC can essentially increase the coding

efficiency of SCC, the encoder complexity is impractically

high. Therefore, numerous fast approaches [24-40] were

proposed to reduce the complexity of SCC. Budagavi et al. [24-

25] proposed to limit the search area for IBC, skip IBC based

on CU size, and use different searching strategies in IBC based

on the horizontal and vertical CU activity. The proposed

approaches have already been adopted in the current SCC

reference software. Full-frame hash search was suggested in

[26] by only performing block matching between those block

candidates which have the same hash value as the current CU.

The hash value is estimated based on the number of color

transitions along the row and column. Zhang et al. [27]

proposed to exploit the CU mode from the collocated CUs of

the previous frame. This method is mainly targeted for

stationary CUs. Fast CU partitioning based on the CU entropy

and the coding bits was designed in [28]. Lei et al. [29]

proposed to utilize the content property analysis, bits per pixel

information as well as neighbor and collocated CUs’ depth

information to classify CUs into screen content CU (SCCU) or

camera-captured content CU (CCCU), and then simplify

INTRA mode, mode elimination and fast CU partitioning with

numerous pre-defined thresholds. By checking whenever

neighbor boundary pixels are exactly the same, we proposed a

simple intra prediction (SIP) [30] to skip the RMD [10] and

RDO for reducing the complexity of INTRA. IBC and PLT are

also skipped when the residual error obtained by INTRA is

zero. In [31], we suggested to skip IBC and PLT when every

row or column of pixels are equal or it is smooth within the CU

by checking if the CU has zero CU activity or low gradient

smooth area. Our previous work in [32] suggested using the

hash checking during block matching to reduce the complexity

within IBC. The algorithm in [33] made use of sharp and

directional edges for mode and CU depth skipping. But the

results are worse than [30]. For machine learning approaches,

we proposed [34] to use Bayesian decision rules based on

corner point detection for fast mode decision plus online

learning approaches with scene change detection. In [35], a

neural network based fast algorithm was proposed to make fast

CU partitioning by utilizing features that describe CU statistics

and sub-CU homogeneity. However, high RD performance loss

is induced by this approach. In [36], a decision tree based

classifier was firstly designed to classify CUs into CCCUs and

SCCUs, intuitive logics are then applied by only checking

INTRA for CCCUs and evaluating IBC and PLT for SCCUs.

Besides, to speed up the encoding process of CCCUs, two

classifiers were designed to predict the Intra mode direction

from 35 prediction modes and early terminate the partitions of

CCCUs, respectively. There are still pre-defined thresholds for

these classifiers. Yang et al. [37] proposed to have two decision

tree classifiers for fast CU partitioning and CU type

classification. If a CU is classified as a partition CU, it directly

goes to the next CU size. Otherwise, it is further classified as a

CCCU or SCCU. If it is a SCCU, both IBC and PLT modes are

checked. If it is a CCCU, only INTRA mode is tested. Recently,

we also proposed two rule-based approaches [38-39], in which

the results are not good enough, and one decision tree approach

[40] in which handcrafted decisions using neighboring CU

modes are still needed.

In this paper, we propose a mode skipping approach for

INTRA, IBC and PLT, via random forest (RF), based on the SC

characteristics, neighbor CU modes, and intermediate cost

information. As machine learning approach is used, our design

has no pre-defined thresholds for features. Instead of classifying

CU into CCCUs and SCCUs [29,36-37], before checking each

mode, we rather perform feature extraction and classification

using RF to decide whether the current mode should be skipped

or not. Therefore, the latest CU information such as the least

RD cost as well as the associated distortion and coding rate

before the current mode can be obtained, and are input into RF

together with other features for mode skipping decision. So,

intuitive logics in [29,36-37] are removed. Moreover, among

various machine learning algorithms, we choose to apply RF

for our proposed approach. This is because multiple trees are

used within a RF for voting such that only the decision with

majority votes is performed. This property makes RF become

not greedy which can preserve the video quality and coding

bitrate while speeding up the encoding process to some extent.

There are many successful applications of RF for image/video

coding and enhancement. For example, Liu et al., and Huang et

al. [41-42] used RF for super resolution by enhancing the

bicubic interpolated image. Fang et al. [43] proposed to have

single image depth estimation by learning the structure

properties based on RF. Du et al. [44] used RF for fast CU

partitioning in HEVC, but did not use RF in mode decision

since there is only INTRA mode in HEVC. The introduction of

IBC and PLT modes make the necessity of a completely new

fast mode decision method in SCC as they take up significant

amount time for mode selection. To the best of our knowledge,

we are the first to use RF for fast mode decision in SCC.

The rest of the paper is organized as follows. We start by

introducing the SCC intra coding in Section II. We then proceed

to describe our proposed fast mode decision using RF and the

corresponding training and validation processes including

feature analyses, sample preparation and the hyperparameter

tuning process in Section III. Finally, experimental results of

our proposed approach are shown in Section IV followed by

conclusions drawn in Section V.

II. SCC INTRA CODING

In SCC intra coding, each video frame is divided into coding

tree units (CTUs) of 64×64 size. A recursive quad-tree coding

structure is applied to each CTU. For each CTU, it has the size

THIS IS THE SUBMISSION OF MM-009417 3

of 2N×2N and can be split into four smaller CUs of N×N,

namely sub-CUs. This splitting process is repeated recursively

until the smallest CU (SCU) size of 8×8 is reached. In SCC, 2N

can be chosen as 64, 32, 16 or 8. To find the best combination

of CU sizes within a CTU, the encoder performs the RDO

process that chooses the optimal CU size by comparing the RD

cost obtained by the current CU and the sum of RD costs

obtained by its four sub-CUs. In other words, for each CU size,

the mode that obtains the least RD cost among INTRA, IBC and

PLT, is selected as the optimal mode, m*, as follows:

𝐽𝑚 = 𝐷𝑚 + 𝜆 ∙ 𝑅𝑚

𝑚∗ = arg min
𝑚∈𝑀

(𝐽𝑚) (1)

𝑀 = {𝐼𝑁𝑇𝑅𝐴, 𝐼𝐵𝐶, 𝑃𝐿𝑇}

where 𝐷𝑚, 𝑅𝑚 and 𝐽𝑚, respectively, are the distortion, coding

rate and RD cost obtained by the mode m, and λ is the

Lagrangian multiplier controlled by the quantization parameter

(QP). The CU is then split if the sum of the RD costs of the four

sub-CUs, 𝐽𝑁,𝑖, is smaller than the cost of the current CU, 𝐽2𝑁, or

otherwise the CU is not split, as in:

{
∑ 𝐽𝑁,𝑖

3
𝑖=0 < 𝐽2𝑁 , Split

∑ 𝐽𝑁,𝑖
3
𝑖=0 ≥ 𝐽2𝑁 , Not Split

 (2)

where i is the index of sub-CU. As a result, the complexity of

encoding a CTU is largely increased in SCC compared with

HEVC because there are additional IBC and PLT modes for

each CU candidate.

To reduce the coding complexity, the current mode decision

process is varied depending on the CU size shown in Fig. 2. If

the CU size is 32×32 or smaller, IBC is firstly checked by using

a set of BVs including the two last coded BVs as well as the

neighbor BVs. If there is distortion, the conventional INTRA is

checked. After that, the candidates are checked using the

skip/merge mode BV predictors. If skip mode is chosen as the

best mode, the encoding process of a CU is finished. Otherwise,

if the CU size is 16×16 or smaller, IBC is checked by exhaustive

block matching with different PU sizes and strategies

depending on the CU size [25,31-32]. At last, if the CU size is

32×32 or smaller, PLT is checked.

To analyze the additional complexity brought by IBC and

PLT, we encode the first 100 frames of testing sequences with

QPs of 22, 27, 32, and 37 under all intra (AI) configuration,

which are the settings recommended by common test conditions

(CTC) for SCC [45]. The testing sequences are YUV 4:4:4

sequences which include camera-captured content (CC),

animation (ANI), text and graphics with motion (TGM), and

mixed (MIX) content. Reference software HEVC Test Model

Version 16.12 Screen Content Model Version 8.3 (HM-

16.12+SCM-8.3, hereafter called SCM-8.3 for the sake of

simplicity) [46] is used. Table I tabulates the Bjøntegaard delta

bitrate (BD-rate) [47] and the encoding time difference (∆Time)

of the conventional SCC increased by IBC and PLT compared

to SCC with both IBC and PLT disabled. ∆Time is defined as

the percentage difference of the encoding time using a new

approach, Time𝑁𝑒𝑤 , and the encoding time using the

conventional SCC encoder, Time𝑂𝑟𝑖𝑔:

Fig. 2. SCC intra coding process.

TABLE I

BD-RATE (%) AND ΔTIME (%) OF SCC COMPARED TO SCC WITH BOTH IBC

AND PLT DISABLED

Sequences Type BD-rate ∆Time

 BasketballScreen MIX -52.47 87.50

 MissionControlClip2 MIX -48.78 99.70

 MissionControlClip3 MIX -66.92 87.90

 ChineseEditing TGM -60.68 104.04

 Console TGM -69.34 52.41

 Desktop TGM -83.47 66.60

 FlyingGraphics TGM -63.79 89.28

 Map TGM -25.87 143.37

 Programming TGM -52.96 73.50

 SlideShow TGM -23.38 52.94

 WebBrowsing TGM -80.32 66.16

 Robot ANI -2.67 112.42

 EBURainFruits CC -0.08 91.35

 Kimono1 CC 0.03 74.30

Average -45.05 85.82

∆Time = 100 × (Time𝑁𝑒𝑤 − Time𝑂𝑟𝑖𝑔) Time𝑂𝑟𝑖𝑔⁄ (3)

It can be observed that the BD-rate is decreased by 45.05%

on average and up to 83.47% which indicates that IBC and PLT

are efficient coding tools for SC. However, the encoding time

is also increased largely by 85.82% on average and up to

143.37% when both IBC and PLT are enabled. Thus, in this

paper, a mode skipping approach using RF is proposed to speed

up the encoding process of SCC.

III. PROPOSED MODE SKIPPING VIA RANDOM FOREST

As aforementioned, the complexity of SCC is largely

increased by IBC and PLT though they are efficient coding

tools for SC. We therefore propose the mode skipping approach

for INTRA, IBC and PLT modes via random forest (RF) so that

the number of RD cost computation in (1) can be reduced while

still maintaining the coding efficiency. There is only one RF

added as a decision block before each mode to be checked. Fig.

3 shows the complete framework of our proposed mode

skipping process via RFs. In HEVC, there are four CU sizes

from 64×64 to 8×8. Thus, four RFs are required to decide

whether IBC skip/merge mode should be skipped for all CU

sizes. Similarly, four RFs for INTRA are needed. From Fig.3,

since not all CU sizes are used in IBC matching and PLT, two

RFs are used in IBC block matching for 16×16 and 8×8 CU

THIS IS THE SUBMISSION OF MM-009417 4

Fig. 3. Our mode skipping approaches via random forests.

Fig. 4. Proposed mode skipping via random forest.

sizes, while three RFs are used in PLT for 32×32, 16×16 and

8×8 CU sizes. It is noted that there is no RFs prior to the

checking of IBC using a set of BVs. This is because within this

process, the best BV is determined by the low complexity cost

which is the sum of distortion estimated by sum of absolute

difference (SAD) computation plus the scaled BV cost by

checking the pre-calculated look-up tables. It is relatively

computational friendly compared with others. Only the best BV

involves the RD computation in (1). Moreover, its RD cost,

distortion and rate obtained can be good features for the next

RF to check whether the next mode is skipped. By taking these

into consideration, we suggest not using RF for deciding

whether skip or check this process.

During the coding of the i-th CU, for each RF, as in Fig. 4,

features fi are extracted and fed into the trained RF with T

number of trees. A binary vote, or predicted label, �̂�𝑡,𝑖 where

�̂�𝑡,𝑖 ∈ {0,1} is the predicted output from t-th tree where t is the

tree index. The predicted outputs of 0 and 1 indicate the mode

is voted to be skipped and checked, respectively. If the total sum

of �̂�𝑡,𝑖 is smaller than a threshold th, the mode is skipped.

Otherwise, it is checked:

∑ �̂�𝑡,𝑖
𝑇
𝑡=1 {

< 𝑡ℎ , Skip the mode
≥ 𝑡ℎ , Check the mode

 (4)

In the conventional binary classification problem, th is equal

to T/2 so that the class with majority votes is labelled or

classified. We suggest making th to be variable such that

classification rate can be controllable. For the instance with th

equal to 1, even if only one tree votes for checking the mode,

the mode is checked. This voting makes RF become not greedy

which is particularly useful for preserving the video quality

during the mode skipping process while achieving complexity

reduction to some extent since the mode is skipped only if all

trees vote for skipping the mode. We will elaborate more about

the tuning of th in the hyperparameter tuning in Section III.B.3.

There is a special case for 8×8 CU size. When all the modes are

decided to be skipped, the mode with the largest number of

votes of 1 is checked. If there are more than one modes having

the same largest number of votes, those modes are checked.

In the followings, we will describe the features extracted for

each CU with analyses. Then, the sample preparation process,

which is dedicated to video coding, is presented. Last but not

least, the new hyperparameter tuning process with the

consideration of bitrate and encoding time will be presented.

A. Feature Selection

Extracting good features are the key step to predict the

necessary modes being checked and improve the prediction

accuracy. Extracting inappropriate features leads to negative

influence on the prediction accuracy and increase the

computational complexity. Therefore, the feature selection

must be related to the characteristics of SC. To have feature

analyses, only the first frames of each second from the YUV

4:4:4 sequences in Table I are extracted and encoded with the

same setting mentioned in Section II. We will discuss how to

deal with RGB and YUV 4:2:0 sequences in Section IV.A.6.

1) Screen Content Characteristics

As compared with CC, SC has different characteristics that

has complex structure with sharp edges, has only limited

number of colors and sometimes has high contrast between

colors. Some SC also contain mainly horizontal or vertical

edges. The horizontal activity 𝐴𝑐𝑡𝐻 and vertical activity 𝐴𝑐𝑡𝑉

are extracted as features as follows:

𝐴𝑐𝑡𝐻 = ∑ |𝑝𝑌(𝑖, 𝑗) − 𝑝𝑌(𝑖 − 1, 𝑗)|𝑝𝑌∈𝑃

𝐴𝑐𝑡𝑉 = ∑ |𝑝𝑌(𝑖, 𝑗) − 𝑝𝑌(𝑖, 𝑗 − 1)|𝑝𝑌∈𝑃
 (5)

where P is the set of pixels within the CU and 𝑝𝑌(𝑖, 𝑗) is the

luminance value at the relative location (𝑖, 𝑗) within the CU.

𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 are used because SC usually contains sharp

edges. These are also the features used in [25] to decide whether

the 2D search is employed for IBC, and this fast searching

strategy has already been adopted in SCM-8.3 [46]. Boxplots

[48] are shown in Fig. 5 for all features related to screen content

characteristics used in this paper for 32×32 CU size. More

boxplots for other CU sizes can be found in our website [49].

As in Fig. 5(a), the band within the box is the median, i.e. 50th

percentile (Q2), while the bottom and top of the box are the

lower quartile (25th percentile, Q1) and upper quartile (75th

percentile, Q3), respectively. And the range from Q1 to Q3 is

called interquartile range (IQR). The lower and upper whiskers

THIS IS THE SUBMISSION OF MM-009417 5

are the Q1-1.5×IQR and the Q3+1.5×IQR, respectively. The

remaining points are the outliers. Fig. 5(b) and (c) show the

boxplots of 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 for each coding mode, respectively.

It can be seen that, for the CUs coded as INTRA, they have

much lower 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 values compared with the CUs

coded as IBC and PLT. This indicates that 𝐴𝑐𝑡𝐻 and 𝐴𝑐𝑡𝑉 are

good features to distinguish INTRA and IBC/PLT.

In addition, the variance of a CU is also selected as a feature

in the following:

𝑉𝑎𝑟 =
1

(2𝑁)2
∑ (𝑝

𝑌
(𝑖, 𝑗) − �̅�)

2
𝑝

𝑌
∈𝑃 (6)

where �̅� is the mean intensity of all pixels in the CU. Variance

can help to measure the diversity of pixels within the CU. With

larger CU variance, the conventional INTRA is less effective to

encode the CU and the chance of using IBC and PLT is larger,

which can be shown in Fig. 5(d).

Moreover, the number of high-gradient pixels is estimated as

a feature. A pixel is defined as a high-gradient pixel if the

luminance difference between itself and one of the neighboring

pixels is larger than a pre-defined threshold THHG as below:

𝑝
𝑌
(𝑖, 𝑗) ∈ 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) if

|𝑝
𝑌
(𝑖, 𝑗) − 𝑝

𝑌
(𝑖 ± 1, 𝑗)| > 𝑇𝐻𝐻𝐺 , or

|𝑝
𝑌
(𝑖, 𝑗) − 𝑝

𝑌
(𝑖, 𝑗 ± 1)| > 𝑇𝐻𝐻𝐺 . (7)

𝑁𝐻𝐺(𝑇𝐻𝐻𝐺) = |𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)|

where 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) is the set of high-gradient pixels within the

CU with different values of THHG. They are set to 4, 8, 16, and

32 in this paper. The number of elements in 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺),

|𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)|, are counted as NHG(THHG) which represents the

number of high-gradient pixels. NHG(THHG) with different

values of THHG are shown in Fig. 5(e) to (h). From these figures,

it can be observed that the range by the box of INTRA has less

overlap with the box of PLT as THHG increases. And there are

still CUs coded by IBC when the value of NHG is low. This is

because there are SCs with low contrast such as icons, and also

there are SCs with high contrast such as texts.

 Besides, by concatenating the components of the luminance

and chrominance values, i.e. 𝑝
𝑌
, 𝑝

𝑈 and 𝑝
𝑉
, the number of distinct

colors, NDC, is counted since SCs often contain limited number

of colors. Higher values of NDC within the CU decreases the

chance of choosing PLT as seen in Fig. 5(i) because it probably

increases the coding rate of PLT, as demonstrated by Fig. 6(a)

which shows coding rate of PLT against NDC. In this figure, it

is clearly found that RPLT is small when NDC is low, and vice

versa. Also, it can be seen in Fig. 5(i) that IBC is only effective

for CUs with small NDC such as texts.

Finally, the number of background colors, NBC, is also

considered as a feature by concatenating 𝑝
𝑌
, 𝑝

𝑈 and 𝑝
𝑉
. The

background color is defined to be the most frequently occurred

color within the CU. Higher values of NBC within the CU is

more likely to be the SC as the SC is computer captured which

has no sensor noise. This can be reflected in Fig. 5(j).

2) Neighbor CU Modes

It is logical that when neighbor CUs contain SC, the current

CU is likely to be SC. For instance, a word document which

contains large amount of texts. Therefore, the modes of left,

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

 (g)

 (h)

 (i)

 (j)

Fig. 5. (a) Illustration of a boxplot and boxplots of screen content characteristics

for 32×32 CU size: (b) 𝐴𝑐𝑡𝐻, (c) 𝐴𝑐𝑡𝑉, (d) Var, (e) NHG(4), (f) NHG(8), (g)

NHG(16), (h) NHG(32), (i) NDC, and (j) NBC.

THIS IS THE SUBMISSION OF MM-009417 6

TABLE II
AVERAGE NUMBER OF NEIGHBOR CU MODES FOR EACH CODING MODE AT

16×16 CU SIZE

Neighbor CU Modes
Current CU Coding Mode

INTRA IBC PLT

NeighborINTRA 2.74 0.37 0.70

NeighborIBC 0.39 3.14 1.46

NeighborPLT 0.75 0.38 1.53

NeighborNA 1.13 1.10 1.32

above, above right, left bottom and above left CUs are extracted

to count the numbers of neighbor CU modes that are INTRA,

IBC and PLT, i.e. NeighborINTRA, NeighborIBC and NeighborPLT,

respectively, as features. Moreover, the neighbor CU location

is outside the frame for CUs at the frame boundaries, thus the

number of neighbor CU mode that is unavailable, NeighborNA

is also counted which is useful for CU mode decision at the

boundary. The average values of NeighborINTRA, NeighborIBC,

NeighborPLT and NeighborNA of each coding mode for 16×16

CU size are tabulated in Table II. It is noted that those CUs with

other sizes have similar results as Table II which can be found

in our website [49]. When the current CU is coded as INTRA,

the value of NeighborINTRA is 2.74. It means that more than 2

neighbor CUs on average are coded as INTRA when the current

CU is also coded as INTRA. This phenomenon also appears in

IBC and PLT. For NeighborNA, the smallest value of 1.10 is

obtained for the current CU coded as IBC. It can be explained

that an increase in coding cost of BV happens when the current

CU at the left or top boundary in which numerous BV predictors

are unavailable. Besides, the search window for IBC becomes

restricted which limits the chance of finding repeating patterns.

If repeating patterns cannot be found, they are either coded as

INTRA and PLT depending on the SC characteristics

mentioned in the previous sub-section.

3) Intermediate Cost Information

The best mode mbest just before the mode being checked or

skipped, as well as the corresponding RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
, distortion

𝐷𝑚𝑏𝑒𝑠𝑡
, and the coding rate 𝑅𝑚𝑏𝑒𝑠𝑡 as in (1), are also selected as

features. This is because if the RD cost, distortion or coding rate

of the best mode is very small, it is able to give an insight to the

encoder that the previously checked modes may be sufficiently

effective that the current mode can be skipped. In contrast to

CC, the chance of getting the exact or very close match within

the same frame of SC is higher resulting in very low 𝐽𝑚𝑏𝑒𝑠𝑡
,

𝐷𝑚𝑏𝑒𝑠𝑡
, and 𝑅𝑚𝑏𝑒𝑠𝑡

. Therefore, we collect the latest intermediate

cost information, i.e. the RD cost, distortion and coding rate of

the best mode just before the target mode to decide whether it

should be skipped or not. For example, if a CU is already well

coded by IBC with a very low RD cost, it is likely to skip the

following PLT with negligible impact to the coding efficiency.

We further analyze the least RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
 just before the

checking of PLT against the number of distinct colors NDC for

32×32 CU size in Fig. 6 (b). 32×32 CU size is chosen for

analysis because the number of samples is fewer for the sake of

clearer visualization. In Fig. 6(b), with high 𝐽𝑚𝑏𝑒𝑠𝑡 before the

checking of PLT and low NDC, CUs are most likely coded as

PLT. This is because high 𝐽𝑚𝑏𝑒𝑠𝑡
 means that the modes checked

before PLT cannot encode those CUs efficiently. But with low

Fig. 6. (a) The coding rate of PLT against NDC, and (b) the least RD cost just

before PLT against number of distinct colors, with the modes encoded as

INTRA (green triangle), IBC (red circle) and PLT (blue square) for 32×32 CU

size.

NDC, those CUs can be encoded by PLT efficiently. We can also

see that with low 𝐽𝑚𝑏𝑒𝑠𝑡 before the checking of PLT, as NDC

increases, more CUs are coded as INTRA. It is noted that there

are relatively few CUs coded as IBC because repeating patterns

tend to be small size and block matching is only performed for

16×16 and 8×8 CU sizes. Thereby, 𝐽𝑚𝑏𝑒𝑠𝑡
 is a useful feature,

with the collaboration of other features such as NDC, for

deciding whether the mode should be skipped or not.

4) Feature Vector and Sample Formation

After extracting the features, a feature vector f is formed,

which is input to a RF for mode skipping decision, as follows:

𝒇 = (𝐴𝑐𝑡𝐻 , 𝐴𝑐𝑡𝑉 , 𝑉𝑎𝑟, 𝑁𝐻𝐺(4), 𝑁𝐻𝐺(8), 𝑁𝐻𝐺(16),

𝑁𝐻𝐺(32), 𝑁𝐷𝐶 , 𝑁𝐵𝐶 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐼𝑁𝑇𝑅𝐴 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐼𝐵𝐶 ,
 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝐿𝑇 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑁𝐴, 𝐽𝑚𝑏𝑒𝑠𝑡

, 𝐷𝑚𝑏𝑒𝑠𝑡
, 𝑅𝑚𝑏𝑒𝑠𝑡

, 𝑚𝑏𝑒𝑠𝑡)
(8)

Each sample si has its associated feature vector 𝒇𝑖 and label

yi as below:

𝑠𝑖 = (𝒇𝒊, 𝑦𝑖) (9)

where 𝑦𝑖 ∈ {0,1} which is the true label of the i-th sample. The

value of 1 means the mode of this sample is encoded into the

bitstream while the value of 0 means the mode of this sample is

not encoded into the bitstream.

B. Training and Validation

In this sub-section, firstly, we define the training, validation

and testing sets for our proposed mode skipping approach.

Secondly, the way to collect and define the samples is

discussed. Then, the hyperparameter tuning which is based on

the BD-rate and encoding time reduction is described.

1) Training, Validation and Testing Sets

To train the RFs with the features mentioned in the previous

sub-section, training and validation sets are totally independent

of the test set in Table I. The training set are BigDuck,

CadWaveform, ChineseDocumentEditing, EBULupo-

Candlelight, KristenAndSaraScreen, MissionControlClip1,

ParkScene, PcbLayout, RealTimeData, Seeking, VenueVu,

V i k i n g , a n d W o rd Ed i t in g . T h e v a l id a t io n s e t i s

VideoConferencingDocSharing. These sequences are either

from JCT-VC [50] or from Joint Video Exploration Team

(JVET) for Versatile Video Coding (VVC) [51]. Only the first

frames of each second from the sequences are extracted and

formed as frame-skipped sequences for both training and

THIS IS THE SUBMISSION OF MM-009417 7

TABLE III

NUMBER OF SAMPLES FOR EACH MODE AT VARIOUS CU SIZES

CU Sizes INTRA IBC PLT

64×64 43052 21524 N/A

32×32 346352 205056 135328

16×16 1013232 1090568 329132

8×8 4086116 4686888 675536

validation sets. After hyperparameter tuning using the training

and validation sets, testing process will be performed to

evaluate our proposed approach in Section IV.

2) Sample Preparation

The sample preparation for video coding is different from

other conventional object classification problems. In details, the

training set is required to be encoded by SCM-8.3 [46] using

QPs of 22, 27, 32 and 37 with AI configuration which is

recommended by CTC [45]. The CUs that are encoded into the

bitstream are treated as positive and negative samples according

to which mode being skipped. For example, if a RF is to skip

INTRA mode, then the CUs which are encoded as INTRA into

the bitstream are considered as the positive samples while the

CUs which are encoded as IBC or PLT into the bitstream are

the negative samples. Also, as the optimal CU size is chosen

through the quad-tree encoding process based on (2), there is a

sub-optimal mode for each CU size based on (1). Only those

with the least RD costs based on (1) and (2) are truly encoded

into the bitstream. Therefore, those sub-optimal modes for

different CU sizes are treated as negative samples for all modes

being skipped. For instance, if the mode is optimal at 32×32 CU

size, all the sub-optimal modes obtained at 64×64, 16×16, 8×8

CUs are also treated as the negative samples at those particular

CU sizes since at the end they are not encoded into the

bitstream. Thus, the CUs consist of mixed SC and CC and may

be encoded at smaller CU sizes are also included as the negative

samples for training.

As the number of negative samples is always larger than that

of positive samples and RFs needs for balanced data, the

negative samples are randomly sub-sampled to make the

number of negative samples equal to that of positive samples to

avoid the data imbalance problem. Table III tabulates the

number of samples used for training for each mode at various

CU sizes.

3) Hyperparameter Tuning

Our proposed RFs are trained using the random forest

package [52] in a free statistical computing language and

software called R [53]. Suppose there are T number of trees for

a RF and d number of features for each RF, √𝑑 number of

features (with rounded down) at each node of a tree are selected

randomly out of d features with replacement. Each node is split

using the best feature based on the Gini impurity or information

gain among that subset of features. The split is terminated if

either one of the leaf nodes, i.e. the left and right leaf nodes, has

the number of samples smaller than s of the total samples to

limit the depth of each tree [54-56]. After that, a threshold th in

(4) is used in the voting to make skipping decision. The

selection of these model parameters, including T, s, and th, is

optimized by hyperparameter tuning in our training process.

One of the conventional ways for hyperparameter tuning of

a RF is to measure the out of bag (OOB) error rate and the one

with the lowest OOB error rate is chosen as optimal. For each

tree, 63.2%, roughly two-third, of the total training samples S,

by bootstrap sampling, are input for training. After training, the

leftover 36.8% samples, SOOB,t, are used for calculating the

misclassification rate of t-th tree, i.e. the out of bag (OOB) error

rate 𝐸𝑅𝑂𝑂𝐵,𝑡 where t is the tree index. And the OOB error rate

of a RF 𝐸𝑅𝑂𝑂𝐵,𝑅𝐹 can be obtained by getting the average OOB

error rates from all trees as follows:

𝐸𝑅𝑂𝑂𝐵,𝑡 = ∑ |�̂�𝑡,𝑖 − 𝑦𝑖|𝑖∈𝑆𝑂𝑂𝐵,𝑡
/|𝑆𝑂𝑂𝐵,𝑡|

𝐸𝑅𝑂𝑂𝐵,𝑅𝐹 =
1

𝑇
∑ 𝐸𝑅 𝑂𝑂𝐵,𝑡

𝑇
𝑡=1

 (10)

where 𝑦𝑖 and �̂�𝑡,𝑖 are the true and predicted labels respectively

as in (4), and |𝑆𝑂𝑂𝐵,𝑡| is the number of samples in the set 𝑆𝑂𝑂𝐵,𝑡.

That is the merit of random feature subspace and random data

subset which makes RF not greedy [54-56]. However, the RF

trained with the least OOB error rate may not be best fitted for

video coding optimization because the OOB error rate only

measures the misclassification rate in which it does not well

consider the BD-rate and encoding time in SCC. This is because

misclassification does not necessarily increase BD-rate. If a

mode of a CU should be skipped but wrongly classified by the

RF that the mode is going to be checked. In this case, it has no

negative impact on BD-rate but it only increases the encoding

time. In another case, if a mode of a CU should be optimal and

encoded but wrongly classified by the RF that the mode is going

to be skipped, but another mode can also be encoded with the

RD cost as low as the optimal one, then there is negligible

impact on BD-rate but it also helps to decrease the encoding

time. This can be happened for homogeneous CUs which have

few distinct colors and contain repeating pattern within the

same frame that can be efficiently encoded by all of the INTRA,

IBC and PLT.

Hence, instead of hyperparameter tuning using OOB error

rate, we further propose to tune the hyperparameters T, s and th

for our mode skipping approach such that it has the large

encoding time reduction with negligible impact on BD-rate. In

our approach, RFs are trained using the training set with the

number of trees T from 7 to 16, and the minimum number of

samples in leaf node, i.e. s portion of total samples, from 0.05,

0.1, 0.15, 0.2, 0.25 to 0.3 of the total samples. The voting

threshold th, as in (4), is ranging from 1 to 4. By encoding the

validation set, mentioned in Section III.B.1, with different sets

of the trained hyperparameters T, s and th for each CU size, the

optimal set of hyperparameters 𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) is chosen with the

minimum increase in BD-rate BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) obtained

subject to encoding time difference ∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) smaller

than a target encoding time difference 𝑇𝑇2𝑁:

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) = arg min

𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ)∈𝑅𝐹2𝑁

(BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ))

 s. t. ∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) < 𝑇𝑇2𝑁

 (11)

where 𝑅𝐹2𝑁 is the set of RFs with all possible combinations of

hyperparameters. Or alternatively, 𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) can be chosen

with the maximum encoding time reduction subject to BD-rate

THIS IS THE SUBMISSION OF MM-009417 8

smaller than a target BD-rate 𝑇𝑅2𝑁:

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) = arg min

𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ)∈𝑅𝐹2𝑁

(∆Time𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ))

 s. t. BD-rate𝑟𝑓2𝑁(𝑇,𝑠,𝑡ℎ) < 𝑇𝑅2𝑁

 (12)

Both (11) and (12) can be used for hyperparameter tuning. In

this paper, we select (11) as our preference in order to minimize

the increase in BD-rate. Hyperparameter tuning is performed

for 64×64 CU size that only RFs at 64×64 CU size are enabled

with different sets of T, s and th, and encoded using the

validation set to obtain BD-rate𝑟𝑓64(𝑇,𝑠,𝑡ℎ) and ∆Time𝑟𝑓64(𝑇,𝑠,𝑡ℎ).

Table IV tabulates BD-rate𝑟𝑓64
 and ∆Time𝑟𝑓64

 obtained for

64×64 CU size with T=8 only. More results for other values of

T are tabulated in [49]. In Table IV, we can see that with the

increase in the value of th, the encoding time reduction is

generally larger. This is because with larger th, as in Fig. 4,

more votes of 1 from the trees are required in order to check the

mode. Different values of T and s are tried so that we can find

a set of hyperparameters which gives us a well fitted RF model

for speeding up the SCC encoder in terms of BD-rate and

encoding time reduction. Based on (11), Table IV and the table

in [49] are used to determine 𝑟𝑓64
∗ (𝑇, 𝑠, 𝑡ℎ) subject to

∆Time𝑟𝑓64(𝑇,𝑠,𝑡ℎ) < 𝑇𝑇64. In principle, the selection of TT64

depends on a range of ∆Time with the corresponding reasonable

increase in BD-rate resulting in identifying a number of pairs

(BD-rate, ∆Time). From Table IV and the table in [49], two

pairs of (0.00, -13.07) and (-0.01, -12.88) are likely to be the

only reasonable choices. However, it is not necessary to select

two ∆Time that are so close. In 64×64 CU size, we therefore

only fix at the operational pair of (0.00, -13.07). By taking this

into consideration, TT64 sets to -13% and 𝑟𝑓64
∗ (8,0.15,4) is

chosen as the optimal RF model at 64×64 CU size. Table V and

the table in [49] tabulate the BD-rate𝑟𝑓32(𝑇,𝑠,𝑡ℎ) and

∆Time𝑟𝑓32(𝑇,𝑠,𝑡ℎ) for 32×32 CU size on top of 𝑟𝑓64
∗ (8,0.15,4)

mode skipping approach. The reason of hyperparameter tuning

for 32×32 CU size on top of 𝑟𝑓64
∗ (8,0.15,4) is just to speed up

the hyperparameter tuning process. Results with T=16 are

shown in Table V. For 32×32 CU size, we can obtain two

operational pairs of ∆Time associated with reasonable BD-rate

as: (-0.04, -27.18) and (0.20, -28.02), and TT32 can thus be -27%

or -28%. For the case of achieving the smallest BD-rate,

𝑟𝑓32
∗ (16,0.05,4) is chosen as the optimal RF model at 32×32 CU

size by setting TT32 to -27%. For 16×16 CU size, based on

Table VI and the table in [49], we can choose a range of 𝑇𝑇2𝑁

from -41%, to -46%, i.e. (0.01, -41.80) and (0.20, -46.70). In

between, depends on the granularity, we can have numerous

sets of RFs which can have different sets of BD-rate and ∆Time.

In our case, two additional sets of RFs (i.e. 4 sets of RFs in total)

between -41% and -46% with 𝑇𝑇2𝑁 equals to -42% and -43%

are included, which associates with the operational pairs, (0.07,

-42.75) and (0.08, -43.33). Likewise, for 8×8 CU size, based on

Table VII and the table in [49], we can choose a range of 𝑇𝑇2𝑁

from -50%, to -56%. And the corresponding operational pairs

are (0.37, -50.91), (0.95, -52.79), (0.96, -54.48) and (1.39,

-56.89). Eventually, a mode skipping approach for SCC

encoder is adopted by using 𝑟𝑓64
∗ (8,0.15,4),

𝑟𝑓32
∗ (16,0.05,4), 𝑟𝑓16

∗ (12,0.25,4) and 𝑟𝑓8
∗(16,0.25,1) in which

TABLE IV
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS

OF HYPERPARAMETERS FOR 64×64 CU COMPARED TO CONVENTIONAL SCC

2N=64

T = 8

th = 1 th = 2 th = 3 th = 4

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time

s = 0.05 0.06 -9.67 0.03 -10.47 0.07 -8.51 0.03 -11.38

s = 0.1 0.01 -6.87 0.03 -9.16 0.05 -11.51 0.03 -12.05

s = 0.15 0.01 -5.34 0.01 -11.12 0.01 -12.10 0.00 -13.07

s = 0.2 0.03 -5.43 0.03 -5.21 0.06 -8.21 0.06 -8.61

s = 0.25 0.00 -5.56 0.04 -8.43 0.01 -8.65 0.06 -5.81

s = 0.3 0.00 -5.66 0.00 -8.63 0.00 -8.51 0.05 -8.79

TABLE V
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS

OF HYPERPARAMETERS FOR 32×32 CU COMPARED TO CONVENTIONAL SCC

2N=32

T = 16

th = 1 th = 2 th = 3 th = 4

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time

s = 0.05 0.04 -24.51 -0.04 -25.40 0.05 -26.23 -0.04 -27.18

s = 0.1 0.13 -22.27 0.13 -24.39 0.12 -25.43 0.10 -25.46

s = 0.15 0.02 -23.30 0.17 -25.24 0.10 -25.84 0.09 -26.38

s = 0.2 0.13 -17.71 0.16 -25.30 0.16 -25.16 0.13 -26.09

s = 0.25 0.09 -26.12 0.09 -25.90 0.06 -25.98 0.01 -26.25

s = 0.3 0.19 -22.88 0.15 -23.62 0.10 -26.20 0.36 -26.76

TABLE VI
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS

OF HYPERPARAMETERS FOR 16×16 CU COMPARED TO CONVENTIONAL SCC

2N=16

T = 12

th = 1 th = 2 th = 3 th = 4

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time

s = 0.05 0.03 -33.16 -0.09 -34.40 0.78 -36.24 2.92 -39.43

s = 0.1 0.13 -31.13 0.11 -34.17 0.09 -35.78 -0.02 -36.87

s = 0.15 0.08 -31.80 0.09 -34.66 0.09 -35.38 0.16 -37.23

s = 0.2 0.13 -30.95 0.15 -32.59 0.16 -34.01 0.13 -39.79

s = 0.25 0.09 -31.15 0.08 -32.76 0.01 -39.00 0.01 -41.80

s = 0.3 0.20 -31.53 0.15 -32.91 0.26 -33.41 0.29 -34.02

TABLE VII
BD-RATE (%) AND ∆TIME (%) OF PROPOSED APPROACH WITH VARIOUS SETS

OF HYPERPARAMETERS FOR 8×8 CU COMPARED TO CONVENTIONAL SCC

2N=8

T = 16

th = 1 th = 2 th = 3 th = 4

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time

s = 0.05 0.58 -50.83 0.76 -51.05 1.27 -54.78 1.39 -56.89

s = 0.1 0.52 -50.64 0.62 -51.47 0.77 -51.18 1.12 -54.74

s = 0.15 0.67 -50.80 0.92 -51.83 0.93 -51.41 1.06 -54.54

s = 0.2 1.06 -54.41 1.28 -55.72 1.34 -55.74 1.68 -55.89

s = 0.25 0.37 -50.91 1.17 -54.54 1.32 -54.85 1.49 -55.91

s = 0.3 0.51 -51.44 1.37 -55.27 1.25 -54.80 1.29 -55.83

the encoder has been well-tuned with the large encoding time

reduction and limited impact on BD-rate. Hence, our proposed

mode skipping approach with the hyperparameter tuning using

(11) is denoted as 𝑅𝐹∗(TT64, TT32, TT16, TT8). In this case, our

optimal mode skipping approach is 𝑅𝐹∗(-13,-27,-41,-50),

which has the minimum increase in BD-rate. Based on the

operational pairs that we have just selected, 𝑅𝐹∗(-13,-27,-42,-

52), 𝑅𝐹∗(-13,-28,-43,-54) and 𝑅𝐹∗(-13,-28,-44,-56) are the

three other possible RFs that can achieve more time reduction

with larger increase in BD-rate, as illustrated more in the

experimental results. In summary, the selection of TT2N for each

𝑟𝑓2𝑁
∗ (𝑇, 𝑠, 𝑡ℎ) depends on (i) which sequence is used as the

validation set, (ii) our objective to either preserve the coding

efficiency more with less encoding time reduction or sacrifice

the coding efficiency for larger reduction of encoding time, and

(iii) a range of ∆Time which has the corresponding reasonable

increase in BD-rate. In this range, we can choose a small 𝑇𝑇2𝑁

THIS IS THE SUBMISSION OF MM-009417 9

and a large 𝑇𝑇2𝑁. In between, depends on the granularity, we

can have numerous sets of RFs which can have different sets of

BD-rate and ∆Time.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed mode skipping

approaches using RF, we have performed simulations using the

HEVC SCC reference software SCM-8.3 [46] with the CTC

[45] mentioned in Section II. The first 100 frames of the 14

sequences in Table I were encoded. The experiments were

conducted on the Dell Precision T1700 computer with an Intel

i7-4770 3.40GHz processor and 16GB memory. In the

followings, we first evaluate the performance of our proposed

approaches. Second, our proposed approaches will compare

with the state-of-the-art approaches using standard sequences in

CTC [45] as well as an extra test set. Moreover, inference time,

memory consumption and sequences with different color spaces

are also evaluated.

A. Performance Evaluation of Proposed Approaches

1) Hyperparameter Tuning Methods

Since our proposed mode skipping approach can be scalable

by choosing different target time TT2N in (11), different sets of

BD-rate and encoding time reduction can be achieved. For the

sake of simplicity, RF*(-13,-27,-41,-50), 𝑅𝐹∗(-13,-27,-42,-52),

𝑅𝐹∗(-13,-28,-43,-54) and 𝑅𝐹∗(-13,-28,-44,-56) are denoted as

𝑅𝐹1
∗, 𝑅𝐹2

∗, 𝑅𝐹3
∗ and 𝑅𝐹4

∗, respectively. In order to show the

importance of hyperparameter tuning using (11), we also

implemented our mode skipping approach with the

hyperparameter tuning using the OOB error rate defined in (10)

and it is denoted as RFOOB-th. For RFOOB-th, the hyperparameters

T and s are chosen based on the minimum OOB error rate for

each RF, and the hyperparameter th is set as 1 to 4. When th=1,

among all trees, even only one tree has the vote for checking

the mode, the mode is checked. It is the most rate-distortion

preserving value. Table VIII shows the average BD-rate and

ΔTime of 𝑅𝐹𝑛
∗ (n = 1 to 4) and RFOOB-th (th = 1 to 4) against the

conventional SCC. We can see that, say for example, between

RFOOB-2 and 𝑅𝐹1
∗ , 𝑅𝐹1

∗ has larger encoding time reduction of

45.06% and smaller increase in BD-rate of 1.08%, which has

better performance than RFOOB-2. Similarly, 𝑅𝐹2
∗ has larger

encoding time reduction of 48.51% while having smaller

increase in BD-rate of 1.55% which is better than the

performance of RFOOB-3. For better visualization, we also plot

the average BD-rate against encoding time reduction in Fig. 7.

In Fig. 7, we can see that there is a large margin between the

curves of 𝑅𝐹𝑛
∗ and RFOOB-th. Along the same BD-rate, 𝑅𝐹𝑛

∗

obtain larger encoding time reduction. This means that our

hyperparameter tuning based on the BD-rate and encoding time

reduction in (11) is crucial for choosing a set of optimal

hyperparameters. It is consistent with our explanation in the

previous section that misclassification does not necessarily

increase BD-rate largely. If there is misclassification in the

sense that a mode is skipped but wrongly classified by the RF

that it is being checked, there is no harms on BD-rate but only

with an increase in encoding time for this CU. In addition, some

of the CUs, such as homogeneous CUs, can be efficiently

TABLE VIII
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH

WITH DIFFERENT HYPERPARAMETER TUNING METHODS COMPARED TO

CONVENTIONAL SCC

Approaches RFOOB-1 RFOOB-2 RFOOB-3 RFOOB-4 𝑹𝑭𝟏
∗ 𝑹𝑭𝟐

∗ 𝑹𝑭𝟑
∗ 𝑹𝑭𝟒

∗

BD-rate 0.83 1.43 1.89 2.31 1.08 1.55 2.68 4.47

∆Time -35.87 -41.29 -45.27 -49.25 -45.06 -48.51 -52.51 -58.57

TABLE IX
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH

WITH RFS ENABLED FOR INDIVIDUAL CODING MODES COMPARED TO

CONVENTIONAL SCC

Ave-

rage

𝑹𝑭𝟏
∗

(Only IBC

Skip/Merge)
𝑹𝑭𝟏

∗

(Only

INTRA)
𝑹𝑭𝟏

∗ (Only

IBC Block

Matching)
𝑹𝑭𝟏

∗

(Only

PLT)
𝑹𝑭𝟏

∗
BD-

rate ∆Time BD-

rate ∆Time
BD-

rate ∆Time
BD-

rate ∆Time
BD-

rate ∆Time
MIX 0.28 -16.47 0.65 -18.63 0.37 -8.60 0.06 -8.69 1.57 -44.10
TGM 0.07 -19.93 0.67 -23.85 0.13 -5.91 0.06 -4.84 1.06 -46.46
ANI 0.04 -6.26 0.27 -8.10 0.72 -25.52 0.55 -20.87 1.74 -46.24
CC 0.00 -0.95 0.02 0.38 0.09 -27.11 0.00 -12.28 0.11 -40.33

Overall 0.11 -15.50 0.55 -18.14 0.21 -10.92 0.08 -7.87 1.08 -45.06

TABLE X
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH

WITH RFS TRAINED WITH DIFFERENT FEATURE SUBSETS COMPARED TO

CONVENTIONAL SCC

Average
𝑹𝑭𝟏

∗ (Only SC

Characteristics)
𝑹𝑭𝟏

∗ (Only SC Characteristics

and Neighbor CU Modes) 𝑹𝑭𝟏
∗

BD-rate ∆Time BD-rate ∆Time BD-rate ∆Time
MIX 1.66 -26.95 1.51 -39.01 1.57 -44.10
TGM 1.66 -34.61 1.25 -37.95 1.06 -46.46
ANI 2.27 -28.95 2.03 -49.72 1.74 -46.24
CC 0.19 -33.23 0.16 -42.35 0.11 -40.33

Overall 1.49 -32.37 1.20 -39.65 1.08 -45.06

encoded by multiple modes with similar RD cost. With some

modes skipped by RFs, encoding time can be reduced largely

with negligible or even zero increase in BD-rate. Thus, our

proposed 𝑅𝐹1
∗ can obtain 45.06% encoding time reduction with

only 1.08% increase in BD-rate. And our 𝑅𝐹3
∗ and 𝑅𝐹4

∗ have

2.68% and 4.47% increase in BD-rate with 52.51% and 58.57%

average encoding time reduction respectively, which shows that

our approach is complexity scalable by choosing different

target time TT2N in (11).

2) Individual Coding Modes

We have evaluated the performance of RFs for each coding

mode in Table IX. It can be seen that RFs for both IBC

skip/merge and INTRA modes contribute more time reduction

for MIX and TGM sequences, while RFs for both IBC block

matching and PLT modes contribute more time reduction for

ANI and CC sequences. It is expected since IBC block

matching and PLT modes are designed for SC and these modes

are expected to be skipped for ANI and CC sequences. On

average, all RFs contribute certain amount of time reduction

with negligible impact on BD-rate.

3) Different Feature Subsets

Ablation study on the performance of the RFs trained by

different feature subsets are also shown in Table X. With RFs

trained only by the features of SC characteristics, 32.37% time

reduction with increase in 1.49% BD-rate is obtained. With RFs

trained only by the features of SC characteristics and neighbor

CU modes, an improved 39.65% time reduction with 1.20%

increase in BD-rate is obtained. With RFs trained with

THIS IS THE SUBMISSION OF MM-009417 10

TABLE XI
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH

WITH RFS TRAINED WITH DIFFERENT NUMBER OF HIGH-GRADIENT PIXELS

FEATURES COMPARED TO CONVENTIONAL SCC

Average 𝑹𝑭𝟏
∗ (NHG(THHG) by (13)) 𝑹𝑭𝟏

∗ (NHG(THHG) by (7))
BD-rate ∆Time BD-rate ∆Time

MIX 1.75 -42.47 1.57 -44.10
TGM 1.22 -45.77 1.06 -46.46
ANI 2.19 -45.00 1.74 -46.24
CC 0.34 -36.73 0.11 -40.33

Overall 1.28 -43.72 1.08 -45.06

intermediate cost information features, an even better time

reduction of 45.06% with only 1.08% increase in BD-rate is

achieved.

To investigate the NHG(THHG) feature, the counting of

NHG(THHG) based on (7) has also been replaced by

𝑝
𝑌
(𝑖, 𝑗) ∈ 𝑃𝐻𝐺(𝑇𝐻𝐻𝐺) if

|𝑝
𝑌
(𝑖, 𝑗) ± 𝑝

𝑌
(𝑖 ± 1, 𝑗)| > 𝑇𝐻𝐻𝐺 , or

|𝑝
𝑌
(𝑖, 𝑗) ± 𝑝

𝑌
(𝑖, 𝑗 ± 1)| > 𝑇𝐻𝐻𝐺 . (13)

𝑁𝐻𝐺(𝑇𝐻𝐻𝐺) = |𝑃𝐻𝐺(𝑇𝐻𝐻𝐺)|

which represents the oblique orientation. Then the RF based on

(13) is trained again. Table XI tabulates the performance of the

RF trained with (13). 43.72% time reduction with 1.28%

increase in BD-rate is obtained, which is a bit worse than 𝑅𝐹1
∗.

But it still can be considered that they have similar coding

performance.

B. Comparison with State-of-the-art Approaches

To have thorough performance evaluation, we compared our

proposed mode skipping approach using random forests RF*

with other state-of-the-art approaches [27-32,34,36-37], as

discussed in Section I. It should be emphasized that the SCM

versions used by [27-32,34,36-37] are different in the sense that

there are numerous enhancements, speed-up techniques and

codes cleanup in the more updated version used in our proposed

approach. Some of the differences are as follows. In some older

versions, the BV signaling for IBC was not unified with the one

in the conventional inter mode. Only left and above BVs were

used as predictors and there was no merge, skip and AMVP

modes for IBC. Thus, the BV predictor derivation mechanism

is also different from that of the current SCM version. Besides,

there was also no conditional checking whether skip mode is

the best mode before going into the time-consuming IBC block

matching and PLT as shown in Fig. 2. Moreover, N×N IBC

block matching was done after 2N×N block matching while

N×N IBC block matching is eliminated in the current SCM

version. In addition, PLT was enabled in 64×64 CU size but it

is disabled now due to the occasional usage. Nevertheless, we

have re-implemented the approaches of [27-32,34,36-37] in

SCM-8.3 for fair comparison.

Fig. 7 and Table XII show the BD-rate and encoding time

reduction of various approaches against the conventional SCC.

As mentioned in Section I, the state-of-the-art approaches for

comparison mainly employs four kinds of speed-up techniques

for SCC, as summarized in Table XIII. The first one is the fast

mode decision in which mode(s) is(are) skipped instead of

TABLE XII
BD-RATE (%) AND ΔTIME (%) OF VARIOUS APPROACHES COMPARED TO

CONVENTIONAL SCC USING CTC SEQUENCES

Sequences

𝑹𝑭𝟏
∗ [27] [29] [36]

BD-

rate
ΔTime

BD-

rate
ΔTime

BD-

rate
ΔTime

BD-

rate
ΔTime

 BasketballScreen 1.86 -41.48 1.11 -40.45 1.44 -22.49 1.26 -21.36

MissionControlClip2 1.50 -43.46 1.07 -41.33 1.25 -34.96 2.42 -36.28

MissionControlClip3 1.35 -47.37 1.15 -40.30 1.92 -25.52 1.62 -25.66

 ChineseEditing 0.75 -45.26 0.70 -49.81 1.06 -18.89 1.05 -18.73

 Console 0.66 -52.57 3.12 -39.32 2.48 -22.61 1.70 -29.05

 Desktop 1.11 -57.94 2.33 -46.60 1.57 -21.91 1.73 -26.07

 FlyingGraphics 0.86 -46.63 0.68 -7.04 1.59 -19.56 0.87 -22.90

 Map 0.44 -25.74 0.58 -35.06 0.56 -16.40 1.51 -17.37

 Programming 1.51 -43.28 0.96 -41.62 1.79 -23.33 1.56 -24.01

 SlideShow 2.77 -46.53 1.12 -44.21 4.34 -55.43 2.16 -53.79

 WebBrowsing 0.38 -53.70 1.91 -50.22 4.06 -24.33 1.14 -27.26

 Robot 1.74 -46.24 0.93 -14.08 5.74 -45.97 1.35 -31.61

 EBURainFruits 0.17 -42.46 0.60 -16.65 1.83 -47.72 0.92 -27.27

 Kimono1 0.05 -38.21 0.13 0.44 1.49 -74.76 1.22 -26.77

Average (Overall) 1.08 -45.06 1.17 -33.30 2.22 -32.42 1.47 -27.72

TABLE XIII
SPEED-UP TECHNIQUES INVOLVED FOR VARIOUS APPROACHES

Speed-up

Techlniques
𝑹𝑭𝒏

∗ /

RFOOB-th
 [27] [28] [29] [30] [31] [32] [34] [36] [37]

 Fast Mode

 Decision

 Fast CU

 Partitioning

 Fast INTRA

 Fast IBC

Fig. 7. Comparison of our proposed mode skipping approach via random forests

with state-of-the-art approaches with BD-rate (%) against encoding time

reduction (%) for the CTC sequences [45].

estimating the RD costs of all modes, as in (1). The second one

is the fast CU partitioning. It can be the fast CU splitting method

that all of the modes in the current CU size are skipped and the

decision process directly moves to the smaller CU size, or it can

be the fast CU pruning method that only all modes in the current

CU size are performed and the CU does not split further so that

all of the modes in the smaller CU size are skipped. Thus, fast

CU partitioning is a kind of greedy approach as it skips multiple

modes directly. The third one is the fast method within INTRA.

The number of INTRA prediction candidates is limited in order

to reduce the coding time for checking INTRA. The last one is

the fast method within IBC in which certain amount of

searching points is skipped such that the time for checking IBC

can be reduced. Hence, the last two techniques can obtain the

THIS IS THE SUBMISSION OF MM-009417 11

least encoding time reduction.

Fig. 7 depicts the plots of BD-rate against encoding time

reduction for different approaches. From Fig. 7, it can be easily

seen that the approaches at the right bottom have better coding

performance since they have less BD-rate increment and larger

encoding time reduction. Our proposed RFOOB-th (th = 1 to 4)

and 𝑅𝐹𝑛
∗ (n = 1 to 4) are all at the most right bottom in Fig. 7.

Particularly for the state-of-the-art approaches with lower than

2% increase in BD-rate, only under 35% encoding time

reduction can be obtained. However, our mode skipping

approaches 𝑅𝐹1
∗ and 𝑅𝐹2

∗ can achieve over 45% of encoding

time reduction.

Detailed BD-rate and ΔTime for each sequence are shown in

Table XII. In this table, due to the space, only the algorithms

in [27, 29, 36] are shown since they have better performance as

shown in Fig. 7. Results for other approaches can be found in

our website [49]. The algorithms in [28,30] obtain a negligible

increase in BD-rate but they only obtain limited average

encoding time reduction. This is because their approaches only

focuses on homogeneous regions without speed-up

consideration for other SC or CC regions. The work in [32] has

the least average time reduction in Fig. 7 as it only has the fast

hash search within IBC. In Table XII, it can be seen that the

algorithm in [29] obtains 32.42% average time reduction but

with 2.22% increase in BD-rate which is still a bit large. Both

[29] and [31] have large increase in BD-rate. One of the reasons

is the use of handcrafted thresholds. And the work in [31] has

particularly high BD-rate due to insufficient number of features.

The algorithm in [34] gets a small increase in BD-rate but only

with 23.22% average time reduction. It is because it needs

learning frames for studying the probabilities between features

and modes in which there is no time reduction for encoding

those learning frames. For [36], the BD-rate and encoding time

reduction are much balance that only 1.47% of BD-rate is

increased with 27.72% average encoding time reduction. And a

significant increase in BD-rate are obtained in [37]. For [29,36-

37], they all have a CU type classifier to classify the CU as

CCCU or SCCU. If the CU is classified as CCCU, both IBC

and PLT are skipped. This may be the reason that the

approaches become greedy with the upsurges of BD-rate when

there are misclassifications. Thus, the algorithm in [36]

suppresses the increase in BD-rate with the sacrifice of smaller

encoding time reduction by raising the confidence levels of

decision tree classifiers and lowering pre-defined mode

skipping thresholds. Among [27-32,34,36-37], [27] has the best

coding performance that it only has 1.17% increase in BD-rate

and 33.30% average encoding time reduction by encoding the

current CU using the mode and CU size from the collocated

CU. It mainly expedites the stationary CUs in [27].

Our RFOOB-1 has similar coding performance as [27] with

0.83% increase in BD-rate and 35.87% average encoding time

reduction, as shown in Table VIII. With our novel

hyperparameter tuning technique using (11), our proposed 𝑅𝐹1
∗

can obtain 45.06% average encoding time reduction with only

1.08% increase in BD-rate. This can be explained that our mode

skipping approach is not greedy in the sense that only one single

mode is being skipped, which is decided by RF for each time.

TABLE XIV
BD-RATE (%) AND ΔTIME (%) OF VARIOUS APPROACHES COMPARED TO

CONVENTIONAL SCC USING EXTRA TEST SET

Sequences

𝑹𝑭𝟏
∗ [27] [29] [36]

BD-

rate
ΔTime

BD-

rate
ΔTime

BD-

rate
ΔTime

BD-

rate
ΔTime

JCT-VC Sequences [50]

 CgTwistTunnel 1.18 -41.81 2.01 -9.17 2.44 -26.65 0.71 -24.87

 PptDocXls 0.55 -53.66 0.99 -50.08 1.29 -16.66 1.43 -23.65

 SocialNetworkMap 0.57 -30.80 0.66 -4.47 0.41 -12.79 0.96 -18.95

JVET Sequences [51]

 BitstreamAnalyzer 0.08 -53.93 0.39 -51.09 0.38 -16.94 0.09 -20.61

 CircuitLayout-

 Presentation
0.60 -47.23 1.02 -43.03 0.93 -19.88 2.50 -20.31

 ClearTypeSpreadsheet 0.14 -58.48 0.54 -48.31 0.71 -20.46 1.65 -22.89

 EnglishDocument-

 Editing
0.68 -51.65 3.25 -44.57 1.16 -20.18 1.68 -19.81

Self-Captured Sequences [49]

 MsStore 0.95 -41.60 0.61 -25.35 2.83 -36.30 1.97 -32.41

 NewsBrowse 0.50 -51.21 0.68 -38.82 2.57 -37.10 0.97 -35.76

 PaperPdf 0.38 -54.85 1.05 -32.01 2.70 -25.36 0.54 -27.15

 VisualStudio 0.73 -54.28 1.11 -47.27 2.40 -29.66 1.98 -30.76

 YouTube 0.77 -44.18 0.63 -34.51 1.59 -35.91 1.08 -36.38

Average

JCT-VC 0.77 -42.09 1.22 -21.24 1.38 -18.70 1.03 -22.49

JVET 0.37 -52.82 1.30 -46.75 0.80 -19.36 1.48 -20.90

Self-Captured 0.66 -49.22 0.81 -35.59 2.42 -32.87 1.31 -32.49

Overall 0.59 -48.64 1.08 -35.72 1.62 -24.82 1.30 -26.13

Fig. 8. Comparison of our proposed mode skipping approach via random forests

with state-of-the-art approaches with BD-rate (%) against encoding time

reduction (%) using extra test set [49-51].

Misclassifications in our approach brings less harmful

compared with those using CU type classification in [29,36-37].

Another reason is that while going through the RF as in Fig. 3,

the latest intermediate cost information, mentioned in Section

IV.A.3, i.e. the RD cost 𝐽𝑚𝑏𝑒𝑠𝑡
, distortion 𝐷𝑚𝑏𝑒𝑠𝑡

, and the coding

rate 𝑅𝑚𝑏𝑒𝑠𝑡
, are also considered jointly with the SC

characteristics and neighbor CU modes. This information gives

more clues to RF whether the mode should be skipped or not.

Yet, [29,36] do not consider the intermediate cost information

during the CU type classification. It can be concluded that our

proposed mode skipping approaches via RFs outperform other

state-of-the-art approaches.

C. Performance Evaluation Using Extra Test Set

We also encoded an extra test set which consists of SC

sequences from JCT-VC [50], JVET [51] and self-captured

sequences [49] as in Table XIV. The self-captured sequences

are the screen capture of reading a PDF file, browsing web

news, and watching a YouTube video, etc. Fig. 8 shows the

THIS IS THE SUBMISSION OF MM-009417 12

TABLE XV
AVERAGE BD-RATE (%) AND ΔTIME (%) OF MODE SKIPPING APPROACH FOR

RGB AND YUV 4:2:0 SEQUENCES

Average 𝑹𝑭𝟏
∗ (RGB) 𝑹𝑭𝟏

∗ (YUV 4:2:0)
BD-rate ∆Time BD-rate ∆Time

MIX 1.43 -40.56 1.55 -33.78
TGM 0.89 -42.12 1.22 -32.13
ANI 1.33 -46.21 1.05 -42.22
CC 0.06 -44.38 - -

Overall 0.92 -42.40 1.27 -34.06

TABLE XVI
AVERAGE INFERENCE TIME (%) OF MODE SKIPPING APPROACH

𝑹𝑭𝟏
∗

MIX TGM ANI CC All
1.76 1.42 3.57 6.86 2.42

TABLE XVII
MEMORY ANALYSIS OF MODE SKIPPING APPROACH

Frame Size (Pixels) 2560×1440 1920×1080 1280×720
Frame Memory for

one frame (Bytes) 2560×1440×3 1920×1080×3 1280×720×3
Maximum Additional Memory

for 64×64 CU (Bytes) 64×64×36 64×64×36 64×64×36
Memory Increased (%) 1.33 2.37 5.33

average BD-rate against average encoding time reduction of

various approaches against the conventional SCC. Our

proposed 𝑅𝐹𝑛
∗ (n = 1 to 4) have the largest encoding time

reduction comparing with [27,29,36] at different ranges of BD-

rate in which the results are consistent with those in the previous

sub-section. From the figure, it is observed that 𝑅𝐹1
∗ and 𝑅𝐹2

∗

can even achieve larger reduction on encoding time and smaller

increase in BD-rate for these unseen data set. This confirms that

our proposed 𝑅𝐹𝑛
∗ is generalizable to the unseen sequences.

D. RGB and YUV 4:2:0 Color Formats

Instead of training RF again using RGB and YUV 4:2:0

sequences, we use the same set of RFs trained by YUV 4:4:4

sequences. To extract 𝐴𝑐𝑡𝐻, 𝐴𝑐𝑡𝑉, 𝑉𝑎𝑟 and 𝑁𝐻𝐺(𝑇𝐻𝐻𝐺)

features based on (5) to (7), sequences in RGB are converted

to YUV 4:4:4 format to obtain the Y component. When NDC and

NBC are determined, three components of R, G, and B are

concatenated to get a 24-bit sample value for each pixel. For

YUV 4:2:0 sequences, the nearest smaller integer positions of

U and V are picked for concatenation when NDC and NBC are

estimated. Table XV shows the performance of RGB and YUV

4:2:0 sequences. The RGB and YUV 4:2:0 sequences are

exactly following the CTC (Noted that there are no CC

sequences for YUV 4:2:0 in CTC) [45]. 42.40% and 34.06%

time reduction with 0.92% and 1.27% increase in BD-rate are

obtained for RGB and YUV 4:2:0 sequences respectively. The

time reduction is relatively smaller for YUV 4:2:0 sequences

because there are many coding techniques disabled such as

cross component prediction and adaptive color transform. From

the table, it is concluded that our approach is generalizable to

other color formats.

E. Inference Time, Memory Consumption and Model Size

Table XVI and Table XVII tabulate the inference time and

the additional memory analyses of our approach, respectively.

The inference time includes the time for feature extraction and

decision inference. It is noted that this inference time have been

counted in all simulations to calculate the encoding time

reduction in the above sections. Though it is relatively large of

6.86% for CC sequences, the average inference time for all

sequences is only 2.42% of the total encoding time. With such

large encoding time reduction, it is acceptable. For the

additional memory, there is only one large memory

consumption for the concatenation of color components during

the feature extraction processes of NDC and NBC. The memory

consumed is the largest when the current CU is 64×64, which

is 64×64×36 bytes, i.e. 144 Kbytes only. Compared with the

memory to store one frame, it is negligible. Regarding the RF

model size, after training RFs using R [53], we implemented the

RFs into SCM-8.3 [46] using C++ directly. The original SCM-

8.3 has the size of 1.65MB while our 𝑅𝐹1
∗ to 𝑅𝐹4

∗ have the sizes

of about 1.89MB to 1.91MB. Thus, the RF models increase the

size by about 0.24MB to 0.26MB only that is in favor of product

implementation. It is noted that most of the RF codes are mainly

a series of if-else conditional statements without any special

optimizations. In addition, there is no parallel execution on RFs

for the sake of fair comparison.

V. CONCLUSION

Screen content coding essentially improves the coding

efficiency of screen content by introducing two new tools: IBC

and PLT modes. However, they also bring the high

computational complexity to the encoder. Therefore, in this

paper, we propose the mode skipping approach to skip the

conventional INTRA, IBC and PLT modes via RFs. Instead of

classifying CU into CCCUs and SCCUs, before checking each

mode, feature extraction and classification using RF is

performed to decide whether the current mode should be

skipped or not. This arrangement allows the latest CU

information such as the least rate-distortion cost, the associated

distortion and coding rate before the current mode can be used

as the input to RF with other features for mode skipping

decision. By taking the bitrate and encoding time into

consideration, a new hyperparameter tuning process is designed

for RFs at each CU size to further enhance the coding

efficiency, which is validated by implementing our proposed

approach in SCM-8.3. Experimental results have shown that the

proposed approach can achieve 45.06% average time reduction

with only 1.08% increase in bitrate, which outperforms all of

the state-of-the-art algorithms in the literature.

ACKNOWLEDGMENT

We would like to thank the authors from [27,36-37] for the

provision of source codes, and would also like to thank Dr. Jun-

Jie Huang for the valuable discussion and comments.

REFERENCES

[1] Y. Lu, S. Li, and H. Shen, “Virtualized Screen: A Third Element for

Cloud-Mobile Convergence,” IEEE Multimedia, vol. 18, no. 2, pp. 4–11,

Feb. 2011.
[2] “Joint Call for Proposals for Coding of Screen Content,” ISO/IEC

JTC1/SC29/WG11, N14175, San Jose, U.S.A., Jan. 2014.

[3] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the Emerging HEVC
Screen Content Coding Extension,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, pp. 50-62, Jan. 2015.

THIS IS THE SUBMISSION OF MM-009417 13

[4] W. H. Peng, F. G. Walls, R. A. Cohen, J. Xu, J. Ostermann, A. Maclnnis,
and T. Lin, “Overview of Screen Content Video Coding: Technologies,

Standards, and Beyond,” IEEE J. Emerging Sel. Topics Circuits Syst., vol.

6, no. 4, pp. 393-408, Dec. 2016.
[5] G. J. Sullvian, J. Ohm, W. J. Han, and T. Wiegand. “Overview of the High

Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
[6] G. J. Sullivan, J. M. Boyce, Y. Chen, J. R. Ohm, C. A. Segall, and A.

Vetro, “Standardized Extensions of High Efficiency Video Coding

(HEVC),” IEEE J. Sel. Topics. Signal Process, vol. 7, no. 6, pp. 1001-
1016, Dec. 2013.

[7] T. Lin, Peijun Zhang, Shuhui Wang, Kailun Zhou, and Xianyi Chen,

“Mixed Chroma Sampling-Rate High Efficiency Video Coding for Full-
Chroma Screen Content,” IEEE Trans. Circuits Syst. Video Technol.,

vol.23, no.1, pp. 173-185, Jan. 2013.

[8] S. Wang, K. Gu, S. Ma, and W. Gao, “Joint Chroma Downsampling and
Upsampling for Screen Content Image,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 9, pp. 1595-1609, Sep. 2015.

[9] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra Coding of
the HEVC Standard,” IEEE Trans. Circuits Syst. Video Technol., vol.22,

no.12, pp. 1792-1801, Dec. 2012.

[10] Y. Piao, J. H. Min, and J. Chen, “Encoder Improvement of Unified Intra
Prediction,” JCT-VC, JCTVC-C207, pp. 1-5, Guangzhou, China, Oct.

2010.

[11] W. Pu, M. Karczewicz, R. Joshi, V. Seregin, F. Zou, J. Sole, Y. C. Sun,
T. D. Chuang, P. Lai, S. Liu, S. T. Hsiang, J. Ye, and Y. W. Huang,

“Palette Mode Coding in HEVC Screen Content Coding Extension,”
IEEE J. Emerging Sel. Topics Circuits Syst., vol. 6, no. 4, pp. 420-432,

Dec. 2016.

[12] X. Xu, S. Liu, T. D. Chuang, Y. W. Huang, S. M. Lei, K. Rapaka, C. Pang,
V. Seregin, Y. K. Wang, and M. Karczewicz, “Intra Block Copy in HEVC

Screen Content Coding Extensions,” IEEE J. Emerging Sel. Topics

Circuits Syst., vol. 6, no. 4, pp. 409-419, Dec. 2016.
[13] Y. J. Chang, C. C. Lin, C. L. Lin, and P. H. Tsai, “Bi-Color Coding for

Screen Visual Content,” in Proc. of Asia-Pacific Signal and Info. Process.

Assoc. Annu. Summit and Conf. (APSIPA ASC), pp. 1-5, Siem Reap,
Cambodia, Dec. 2014.

[14] Y. C. Sun, T. D. Chuang, J. Kim, Y. W. Chen, S. Liu, Y. W. Huang, and

S. Lei, “Improved Palette Index Map Coding on HEVC SCC,” in Proc. of
IEEE Int. Conf. on Image Process. (ICIP), pp. 4210-4214, Phoenix,

Arizona, U.S.A., Sep. 2016.

[15] W. Zhu, K. Zhang, J. An, H. Huang, Y. C. Sun, Y. W. Huang, S. Lei,
“Inter-Palette Coding in Screen Content Coding,” IEEE Trans.

Broadcasting, vol. 63, no. 4, pp. 673-679, Dec. 2017.

[16] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Exploiting Inter-Layer
Correlations in Scalable HEVC for the Support of Screen Content

Videos,” in Proc. of Int. Conf. on Digital Signal Process. (DSP), pp. 888-

892, Hong Kong, China, Aug. 2014.
[17] C. C. Chen, and W. H. Peng, “Intra Line Copy for HEVC Screen Content

Intra-Picture Prediction,” IEEE Trans. Circuits Syst. Video Technol., vol.

27, no. 7, pp. 1568-1579, Jul. 2017.
[18] J. Lainema, “Intra Block Copy Masking,” in Proc. of, IEEE Int. Conf. on

Consum. Electron., pp. 333-336, Las Vegas, Nevada, U.S.A., Jan. 2015.

[19] Z. Zhang, and V. Sze, “Rotate Intra Block Copy for Still Image Coding,”
in Proc. of IEEE Int. Conf. on Image Process. (ICIP), pp. 4102-4106,

Quebec City, Canada, Sep. 2015.

[20] K. Zhang, J. An, X. Zhang, H. Huang, and S. Lei, “Symmetric Intra Block

Copy in Video Coding,” in Proc. of IEEE Int. Symp. on Circuits Syst.

(ISCAS), pp. 521-524, Lisbon, Portugal, May 2015.

[21] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Decoder Side Merge Mode and
AMVP in HEVC Screen Content Coding,” in Proc. of Int. Conf. on Image

Process. (ICIP), pp. 260-264, Beijing, China, Sep. 2017.

[22] L. Zhao, T. Lin, K. Zhou, S. Wang, and X. Chen, “Pseudo 2D String
Matching Technique for High Efficiency Screen Content Coding,” IEEE

Trans. Multimedia, vol. 18, no. 3, pp. 339-350, Mar. 2016.

[23] L. Zhao, K. Zhou, J. Guo, S. Wang, and T. Lin, “A Universal String
Matching Approach to Screen Content Coding,” IEEE Trans. Multimedia,

vol. 20, no. 4, pp. 796-809, Apr. 2018.

[24] M. Budagavi, and D.-K. Kwon, “Intra Motion Compensation and Entropy
Coding Improvements for HEVC Screen Content Coding,” in Proc. of

Picture Coding Symp. (PCS), pp. 365-368, San Jose, California, U.S.A.,

Dec. 2013.
[25] M. Budagavi, and D.-K. Kwon, “Fast Intra Block Copy (IntraBC) Search

for HEVC Screen Content Coding,” in Proc. of IEEE Int. Symp. on

Circuits Syst. (ISCAS), pp. 9-12, Melbourne, Australia, Jun. 2014.

[26] W. Zhu, W. Ding, J. Xu, Y. Shi, and B. Yin, “Hash Based Block Matching
for Screen Content Coding,” IEEE Trans. Multimedia, vol. 17, no. 7, pp.

935-944, Jul. 2015.

[27] H. Zhang, Q. Zhou, N. Shi, F. Yang, X. Feng, and Z. Ma, “Fast Intra Mode
Decision and Block Matching for HEVC Screen Content Compression,”

in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Process.

(ICASSP), pp. 1377-1381, Shanghai, China, Mar. 2016.
[28] M. Zhang, Y. Guo, and H. Bai, “Fast Intra Partition Algorithm for HEVC

Screen Content Coding,” in Proc. of IEEE Visual Comm. Image Process.

Conf. (VCIP), pp. 390-393, Valletta, Malta, Dec. 2014.
[29] J. Lei, D. Li, Z. Pan, Z. Sun, S. Kwong, and C. Hou, “Fast Intra Prediction

Based on Content Property Analysis for Low Complexity HEVC-Based

Screen Content Coding,” IEEE Trans. Broadcasting, vol. 63, no. 1, pp.
48-58, Mar. 2017.

[30] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast and Efficient Intra Coding

Technique for Smooth Regions in Screen Content Coding Based on
Boundary Prediction Samples,” in Proc. of IEEE Int. Conf. on Acoustics,

Speech and Signal Process. (ICASSP), pp. 1409-1413, Brisbane,

Australia, Apr. 2015.
[31] S.-H. Tsang, W. Kuang, Y.-L. Chan, and W.-C. Siu, “Fast HEVC Screen

Content Coding By Skipping Unnecessary Checking of Intra Block Copy

Mode Based on CU Activity and Gradient,” in Proc. of Asia-Pacific
Signal and Info. Process. Assoc. Annu. Summit and Conf. (APSIPA ASC),

pp. 1-5, Jeju, Korea, Dec. 2016.

[32] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Hash Based Fast Local Search
for Intra Block Copy (IntraBC) Mode in HEVC Screen Content Coding,”

in Proc. of Asia-Pacific Signal and Info. Process. Assoc. Annu. Summit
and Conf. (APSIPA ASC), pp. 396-400, Hong Kong, China, Dec. 2015.

[33] Y. Kawakami, Gaoxing Chen, and T. Ikenaga, “Content Based Mode and

Depth Skipping With Sharp and Directional Edges for Intra Prediction in
Screen Content Coding,” in Proc. of IEEE Int. Colloq. on Signal Process.

& Its Applicat. (CSPA), pp. 46-49, Malacca City, Malaysia, Mar. 2016.

[34] W. Kuang, S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast Mode Decision
Algorithm for HEVC Screen Content Intra Coding,” in Proc. of Int. Conf.

on Image Process. (ICIP), pp. 2473-2477, Beijing, China, Sep. 2017.

[35] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU Partition Decision Using
Machine Learning for Screen Content Compression,” in Proc. of IEEE

Int. Conf. on Image Process. (ICIP), pp. 4972-4976, Quebec City,

Canada, Sep. 2015.

[36] F. Duanmu, Z. Ma, and Y. Wang, “Fast Mode and Partition Decision

Using Machine Learning for Intra-Frame Coding in HEVC Screen

Content Coding Extension,” IEEE J. Emerging Sel. Topics Circuits Syst.,
vol. 6, no. 4, pp. 517-531, Dec. 2016.

[37] H. Yang, L. Shen, and P. An, “An Efficient Intra Coding Algorithm Based

on Statistical Learning for Screen Content Coding,” in Proc. of Int. Conf.
on Image Process. (ICIP), pp. 2468-2472, Beijing, China, Sep. 2017.

[38] S.-H. Tsang, Y.-L. Chan, W. Kuang, and W.-C. Siu, “Reduced-

Complexity Intra Block Copy (IntraBC) Mode with Early CU Splitting
and Pruning for HEVC Screen Content Coding,” IEEE Trans.

Multimedia, vol. 21, no. 2, pp. 269-283, Feb. 2019.

[39] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Fast Intraprediction
for High-Efficiency Video Coding Screen Content Coding by Content

Analysis and Dynamic Thresholding,” J. Electron. Imaging, vol. 27, no.

5, pp. 053029-1-053029-18, Oct. 2018.
[40] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Machine Learning

Based Fast Intra Mode Decision for HEVC Screen Content Coding Via

Decision Trees”, IEEE Trans. Circuits Syst. Video Technol., Early Access

Article, pp. 1-15, Mar. 2019.

[41] Z.-S. Liu, W.-C. Siu, and J.-J. Huang, “Image Super-Resolution Via

Weighted Random Forest,” in Proc. of Int. Conf. on Ind. Technol. (ICIT),
pp. 1019-1023, Toronto, Canada, Mar. 2017.

[42] J.-J. Huang, W.-C. Siu, and T.-R. Liu, “Fast Image Interpolation via

Random Forests,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3232-
3245, Oct. 2015.

[43] S. Fang, R. Jin, and Y. Cao, “Fast Depth Estimation From Single Image

Using Structured Forest,” in Proc. of IEEE Int. Conf. on Image Process.
(ICIP), pp. 4022-4026, Phoenix, Arizona, U.S.A., Sep. 2016.

[44] B. Du, W.-C. Siu, and X. Yang, “Fast CU Partition Strategy for HEVC

Intra-Frame Coding Using Learning Approach Via Random Forests
in Proc. of Asia-Pacific Signal and Info. Process. Assoc. Annu. Summit

and Conf. (APSIPA ASC), pp. 1085-1090, Hong Kong, China, Dec. 2015.

[45] “Common Test Conditions for Screen Content Coding,” JCT-VC,
JCTVC-X1015, Geneva, Switzerland, pp. 1-8, May-Jun. 2016.

[46] HEVC Test Model Version 16.12 Screen Content Model (SCM) Version

8.3, HM-16.12+SCM-8.3, [Online], available at:

THIS IS THE SUBMISSION OF MM-009417 14

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.12+
SCM-8.3/, accessed Jun. 2018.

[47] G. Bjøntegaard, “Calculation of Average PSNR Differences Between RD

Curves,” VCEG, VCEG-M33, Austin, Texas, U.S.A., pp. 1-4, Apr. 2001.
[48] M. Krzywinski, and N. Altman, “Visualizing samples with box plots,” J.

Nature Methods, vol. 11, no. 2, pp. 119-120. Feb. 2014.

[49] Mode Skipping for HEVC Screen Content Coding via Random Forest.
[Online]. Available at: http://www.eie.polyu.edu.hk/~ylchan/research/

rfscc/, accessed Jun. 2018.

[50] JCT-VC Screen Content Sequences. [Online]. Available at:
ftp://ftp.tnt.uni-hannover.de/testsequences/, accessed Jun. 2018.

[51] J. Guo, L. Zhao, T. Lin, and H. Yu, “Response to B1002 Call for Test

Materials: Five Test Sequences for Screen Content Video Coding,” JVET,
JVET-C0044, pp. 1-9, Geneva, Switzerland, May 2016.

[52] A. Liaw, and M. Wiener, “Classification and Regression by

randomForest,” R News, vol. 2, no. 3, pp. 18-22, Dec. 2002.
[53] R: The R Project for Statistical Computing. [Online]. Available at:

https://www.r-project.org/, accessed Jun. 2018.

[54] G. Louppe, “Understanding Random Forests: From Theory to Practice,”
Ph.D. Dissertation, University of Liege, pp. 1-211, Jul. 2014.

[55] Tin Kam Ho, “The Random Subspace Method for Constructing Decision

Forests,” in IEEE Trans. Pattern Anal. and Mach. Intell., vol. 20, no. 8,
pp. 832-844, Aug 1998.

[56] L. Breiman, “Random Forests”, J. Mach. Learn., vol. 45, no. 1, pp. 5-32,

Oct. 2001.

Sik-Ho Tsang (M’10) received the Ph.D. degree from
The Hong Kong Polytechnic University (PolyU),

Hong Kong, in 2013.

He was a Postdoctoral Fellow from 2013 to 2016,
and involved numerous industrial projects for video

coding and transcoding. He is currently a Research

Fellow in PolyU. He has authored numerous
international journals, conferences and patents. His

current research fields involve image/video coding

such as HEVC, VVC, multiview video plus depth
coding, screen content coding, and immersive video coding including light field

coding and 360-degree video coding. His research interests also include

machine learning and deep learning.

Dr. Tsang serves as a reviewer of international journals including the IEEE

Transactions on Image Processing, IEEE Transactions on Circuits and Systems

for Video Technology, and Elsevier Journal of Signal Processing: Image
Communication.

Yui-Lam Chan (S’94-A’97-M’00) received the
B.Eng. (Hons.) and Ph.D. degrees from The Hong

Kong Polytechnic University, Hong Kong, in 1993

and 1997, respectively.
He joined The Hong Kong Polytechnic University

in 1997, where he is currently an Associate Professor

with the Department of Electronic and Information
Engineering. He is actively involved in professional

activities. He has authored over 120 research papers

in various international journals and conferences. His
research interests include multimedia technologies,

signal processing, image and video compression, video streaming, video

transcoding, video conferencing, digital TV/HDTV, 3DTV/3DV, multiview

video coding, machine learning for video coding, and future video coding

standards including screen content coding, light-field video coding, and 360-

degree omnidirectional video coding.
Dr. Chan serves as an Associate Editor of IEEE TRANSACTIONS ON

IMAGE PROCESSING. He was the Secretary of the 2010 IEEE International

Conference on Image Processing. He was also the Special Sessions Co-Chair
and the Publicity Co-Chair of the 2015 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference, and the Technical

Program Co-Chair of the 2014 International Conference on Digital Signal
Processing.

Wei Kuang (S’17) received the B. S. degree in
School of Electronic and Optical Engineering from

Nanjing University of Science and Technology,

Nanjing, China, in 2015. Now, he is currently
pursuing the Ph.D. Degree in the Department of

Electronic and Information Engineering at The

Hong Kong Polytechnic University. His research
interests include machine learning and deep learning

in video coding and video transcoding. He serves as

a reviewer of international journals including the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY and KSII TRANSACTIONS ON INTERNET AND

INFORMATION SYSTEMS.

