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Abstract

Deep learning based image Super-Resolution (SR) has
shown rapid development due to its ability of big data di-
gestion. Generally, deeper and wider networks can extract
richer feature maps and generate SR images with remark-
able quality. However, the more complex network we have,
the more time consumption is required for practical appli-
cations. It is important to have a simplified network for
efficient image SR. In this paper, we propose an Attention
based Back Projection Network (ABPN) for image super-
resolution. Similar to some recent works, we believe that
the back projection mechanism can be further developed for
SR. Enhanced back projection blocks are suggested to itera-
tively update low- and high-resolution feature residues. In-
spired by recent studies on attention models, we propose a
Spatial Attention Block (SAB) to learn the cross-correlation
across features at different layers. Based on the assump-
tion that a good SR image should be close to the original
LR image after down-sampling. We propose a Refined Back
Projection Block (RBPB) for final reconstruction. Extensive
experiments on some public and AIM2019 Image Super-
Resolution Challenge [4] datasets show that the proposed
ABPN can provide state-of-the-art or even better perfor-
mance in both quantitative and qualitative measurements.

1. Introduction
As a fundamental low-level vision problem, image

super-resolution (SR) attracts much attention in the past few

years. The objective of image SR is to super-resolve low-

resolution (LR) images to the desired dimension as the same

high-resolution (HR) images with pleasing visual quality.

For α× image SR, we need to approximate α × α times

pixels for up-sampling. Thanks to the architectural inno-

vations and computation advances, it is possible to utilize

larger datasets and more complex models for image SR.

Various deep learning based approaches with different net-

work architectures have achieved image SR with good qual-

Figure 1. SR results on image HinagikuKenzan with SR factor 16.
We applied 2 times of 4× SR

ity. Most SR works are based on the residual mapping mod-

ified from ResNet [12]. In order to deliver good super-

resolution quality, we need to build a very deep network

to cover receptive fields of the image as large as possible

to learn different levels of feature abstrction. The advent

of 4K/8K UHD (Ultra High Definition) displays demand

for more accurate image SR with less computation at dif-

ferent up-sampling factors. It is essential to have a deep

neural network with the ability to capture long-term depen-

dencies to efficiently learn the reconstruction mapping for

SR. Attention or non-local modeling is one of the choices

to globally capture the feature response across the whole

image. A lot of related works [31, 7, 26, 27, 15, 5] have

been proposed for computing vision successfully. There are

several advantages of using attention operations: 1) It can

directly compute the correlation between patterns across the

image regardless of their distances; 2) It can efficiently re-

duce the number of kernels and depth of the network to

achieve comparable or even better performance and 3) Fi-

nally, it is also easy to be embedded into any structure for

operations. As shown in Figure 1, we tested the state-of-

the-art SR approaches on 16× enlargement by applying two

times of 4× SR using pre-trained models. ESRGAN [28]
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and RCAN [31] tend to generate fake edges which do not

exist in the HR images while the proposed ABPN can still

predict correct patterns.

Inspired by Non-local neural networks [27] and Back

Projection based image SR [20], we propose an Attention

based Back Projection Network (ABPN) for efficient im-

age SR. Our method focuses on studying the global fea-

ture correlation to make full use of non-local mean oper-

ation. Specifically, instead of using plain concatenation or

addition operations, we propose the Spatial Attention Block

(SAB) to compute the auto- and cross-correlation of the

feature maps extracted at different levels. That is, we use

proposed SAB to measure the similarity between two fea-

ture maps to obtain the global correlation maps. By fur-

ther investigating the SR methods, we find that back pro-

jection based network is a better choice for the backbone of

feature extraction because it can iteratively up- and down-

sample the feature maps to update the residues of LR and

HR features. To make a step forward, we propose a Refined

Back Projection Block (RBPB) as the final stage to directly

minimize the residues between the original LR images and

down-sampled predicted SR images.

We summarize our contributions as follows: 1) By

making use of the proposed Spatial Attention Block, we

modified the back projection network to Attention based

Back Projection Network (ABPN) for efficient single im-

age super-resolution. (2) We propose a Refined Back Pro-

jection Block (RBPB) to replace the common post back pro-

jection process in image SR. (3) We tested our proposed SR

method on various datasets and real images. Extensive ex-

periments show that the ABPN can achieve the state-of-the-

art SR or even better performance both quantitatively and

qualitatively.

2. Related Work
Non-local Image Processing. Non-local mean is a con-

ventional algorithm for image processing. The idea is that it

searches not only the local areas but also the non-local areas

for repeated patterns. It allows distant pixels or patches to

contribute to the filtered region. The idea is generalized as a

non-local convolution operation which maps the neighbor-

hood region to the whole region of images or videos. It is

commonly used in image denoising [6], inpainting [2] and

super-resolution [10].

Nowadays, non-local processing is also explicitly or im-

plicitly embedded into deep neural networks to capture the

long-term dependencies. In most deep learning algorithms,

stacking more and more convolution operations with small

kernels (e.g. 3×3) can cover a larger receptive field for
global modeling. This repeated local operation has the lim-

itations of 1) inefficient computation for practical applica-

tions, 2) difficulty in optimizing networks and 3) a feedfor-

ward operation without feedback. Recurrent Neural Net-

works (RNN) [29] are the dominant approaches for sequen-

tial data by forming a close loop to progressively process the

data. However, it still works on a local neighborhood and its

performance is not optimal. Recently, there is a trend of us-

ing self-attention [26] or non-local neural network [27] for

modeling the sequential data in language and images. Note

that in this paper, we use the term “attention” to describe

the non-local modeling process in deep feature extraction.

There are several great works on making use of attention

mechanism in computing vision. [26] first proposed self-

attention for machine translation. The idea is to decom-

pose each word as a weighted combination of all positions

in the sequence. That is, the model looks into onward and

backward words to ensure the consistency of the translation.

Similar self-attention based works were proposed in various

computing fields. For example, [27] proposed non-local

neural network to investigate the possible solution to spatial

attention for video classification. [15] proposed an effi-

cient attention computation mechanism called Criss-Cross

Network for semantic segmentation. [5] used the idea of

bilateral filter to learn robust weighting model for object

recognition. Besides, “attention” has also been proposed

for image super-resolution and shown its great potential.

For example, inspired by the squeeze and excitation net-

work [13], [31] proposed to model the channel correlation

by residual channel attention network. [7] further modi-

fied the idea of channel attention to second-order attention

enhancement. However, these approaches still do not fully

explore the non-local property in the spatial domain. Hence,

there is a great potential for further study.

Super-Resolution Deep Neural Networks. In the past
few years, deep neural networks have shown remarkable

ability on image SR. From the beginning of the pioneer

work [8], CNN has outperformed conventional learning ap-

proaches significantly. The capabilities of resolving com-

plex nonlinear mapping models and digestion on huge

datasets encourage researchers to design deeper networks

for better performance. Most of the state-of-the-art SR ap-

proaches adopt the residual architecture, like SRGAN [18],

EDSR [19], DenseSR [32] and ESRGAN [28]. There are

also some SR approaches that have different architectures

for reconstruction. For example, [25] proposed the Pix-

elCNN for image reconstruction. [22] proposed to use

recursive neural network to iteratively predict the SR im-

age. [11, 20] proposed to embed the back projection into

the super-resolution to update the LR and HR feature resid-

ual. This can be considered as a generalized residual model.

Recently, using generative adversarial networks (GAN)

for perceptual image SR attracts a lot of attention. The idea

is to add one discriminator as an indicator for SR estimation.

The backbones for generator and discriminator are more or

less the same as aforementioned SR algorithms. A better ar-

chitecture can further improve the perceptual quality. Once
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Figure 2. Proposed ABPN structure. It can iteratively up- and down-sample the feature maps to update feature residues.

the training is finished, we only need the generator for test-

ing. It is important to make sure the model complexity of

the generator to be as small as possible for real-time appli-

cations. In this paper, we have not investigated our proposed

SR method on perceptual quality but it can be modified as

the generator for efficient recall.

3. Method
3.1. Problem Formulation
Let us formally define the image SR. Mathematically,

given a LR image X ∈ Rm×n×3 down-sampled from the
corresponding HR image Y ∈ Rαm×αn×3, where (m , n)
is the dimension the image and α is the up-sampling factor.
They are related by th following degradation model,

X = DY + μ (1)

where μ is the additive white Gaussian noise and D is the
down-sampling operator. The goal of image SR is to re-
solve Equation 1 as Maximum A Posterior (MAP) problem
as follows,

Ŷ = argmax
Y

logp(X|Y) + logp(Y) (2)

where Ŷ is the predicted SR image. logp(X|Y) repre-
sents the log-likelihood of LR images given HR images and
logp(Y) is the prior of HR images that is used for model
optimization. Formally, we resolve the image SR problem
as follows,

min
θ

‖Y − Ŷ‖r s.t.Ŷ = argmin
Y

1

2
‖X−DY‖2 + λΩ(Y) (3)

where ‖ ∗ ‖r represents the r -th order estimation of pixel
based distortion. The regularization termΩ(Y) controls the
complexity of the model. Using external or internal images,

we can form LR-HR image pairs to train the proposed At-

tention based Back Projection Network (ABPN) model to

approximate the ideal mapping model. As shown in Fig-

ure 2, the complete structure of ABPN contains three ba-

sic modules: Feature extraction, Enhanced Back Projection

Blocks and Refined Back Projection Block. Feature extrac-

tion includes two convolution layers and followed by a self-

attention block as a global weighting process. Enhanced

Back Projection Blocks are modified from [20] and the dif-

ference are twofold: 1) the concatenation layer is replaced

by the proposed Spatial Attention Block and 2), the LR fea-

ture maps are combined with HR feature map together to

form the final feature maps. Finally, the Refined Back Pro-

jection Block updates the feature residues between the esti-

mated and original LR images to refine the final SR image.

The detailed structure is discussed in the following parts.

3.2. Back Projection Blocks for image SR

The Back Projection block was first proposed in DBPN

[11] and the further modified version is formed in HBPN

[20]. Let us see Figure 3, the idea of back projection

is based on the assumption that a good SR image should

have an estimated LR image that is as close as possible to

the original LR image. We follow the same idea to build

our basic module entitled as Enhanced Down-sampling

Back Projection blocks (EDBP) for down-sampling and En-

hanced Up-sampling Back Projection block (EUBP) for up-

sampling. As shown in Figure 2, We stack multiple back



Figure 3. Back Projection procedure.

projection blocks in up-down order to extract deep feature

representation. For the final reconstruction, the intermedi-

ate feature maps are concatenated together to learn the SR

images. The only structural difference between [20] and

ours is that we also concatenate the LR feature maps to-

gether (yellow lines shown in Figure 2) with HR feature

maps for final reconstruction. Note that since the LR fea-

ture maps are α× smaller than HR, we use one deconvo-

lution layer to up-sample them to the same size as the HR

feature maps.

3.3. Spatial Attention Blocks (SAB)

Spatial Attention Blocks are the major contribution of

this work. The idea is to learn cross-correlation between

features at different levels. In the proposed ABPN network,

we have two types of attention blocks: self-attention blocks

and spatial attention blocks. The self-attention block is ex-

actly the same as the one in [26] that is situated at the end of

the feature extraction (the pink block in Figure 2(a)). And

the spatial attention block is located at each EDBP block

(pink blocks in Figure 2 with words “SAB”) to extract the

attention maps for following up-sampling. Their detailed

differences are described in Figure 4.

Inside self-attention and spatial attention blocks, there

are three convolution layers that decompose the input data

into three components: θ, φ and g . Then two dot prod-

uct operations are done using two of the three components.

There is a short connection between input to the output so

the attention models need to learn the residual mapping rela-

softmaxsoftmax

Figure 4. Comparison between self-attention and spatial attention

blocks.

tionship. The difference is that the self-attention takes only

the input X for calculation while the spatial attention block

takes both X and Y for calculation.
The attention model can be understood as a non-local

convolution process. For input X, we can define the non-
local operation as follows,

Z = f (X,XT )g(X) (4)

where f represents the relationship of each pixel to another
on the input image X. Following the description of self-
attention, we can further rewrite Equation 4 as,

Z = softmax (θ(X)φ(XT ))g(X) (5)

Similarly, for spatial attention block, we can write it as,

Z = softmax (θ(X))φ(XT ))g(Y) (6)

The non-local operation in both self-attention and spatial

attention consider all positions on the feature maps. The

dot product of θ(X)φ(XT ) can be regarded as the covari-
ance of the input data. It measures the degree of tendency

between two feature maps at different channels. A convolu-

tion operation or channel attention model [31] can only sum

up the weighted input in a local region while the attention

model can compute the whole data, It can be also related to

the Principal Component Analysis (PCA). As shown in Fig-

ure 4, input X is decomposed into θ(X) and φ(XT ). Then
we vectorize the feature maps along the channel dimension

so that i-th vector represents the feature map at i-th chan-
nel. Their dot products calculate the autocorrelation of the

input data. Using Softmax operation can normalize each of

the vectors to become a unit vector. Once this is done, each

of the unit vector can be interpreted as an axis of the in-

put data. Multiplying g(X) to the normalized vectors can be
considered as projecting data to a new coordinate system.

The output of Softmax can be called the global weighting

matrix that measures the importance of each feature map.

Note that the goal of PCA is to reduce the dimension of

data so it calculates the statistical correlation of a group of

data and find the eigenvectors to project all the data with

maximum variance. However, the self-attention and spa-

tial attention focus on finding the principal features across

the whole spatial domain so that they calculate the feature

correlation across the channel domain and find the basis for

projection.

Generally, most deep learning based SR approaches con-

catenate feature maps from different layers to form a large

feature map for next operation. In order to reduce the com-

putation, a 1 × 1 convolution is used to globally weight all
feature maps to output one compressed result. The disad-

vantage is that when the model goes deep, the more feature



maps we concatenate and the heavier computation we need

to cost on the 1×1 convolution. It is difficult to train global
weighting to obtain optimal results. On the contrary, using

spatial attention blocks can enhance the correlation of fea-

ture maps from different layers because the feature maps

are not equally important, we only need an attention map to

assign the confidence scores to the feature maps for estima-

tion. Importantly, symbols θ, φ and g represent 1×1 convo-
lution operation without using any activation functions be-

cause 1) the correlation or covariance is a measure of linear

dependence among data. Nonlinear data is more computa-

tionally demanding and 2), the input dataX are the activated

feature maps so there is no need to add another activation

operation to increase the training difficulty.

3.4. Refined Back Projection Block (RBPB)

Finally, we have modified the Enhanced Back Projec-

tion Block to the proposed Refined Back Projection Block

(RBPB) for final reconstruction. The detailed structure is

shown in Figure 2d. The reason is that the EDBP and EUBP

blocks are stacked in order to update LR and HR feature

residues but they never feedback to the original LR images

to simulate the iterative back projection process. To form

the close loop the same as Figure 3, we use RBPB to con-

nect the input LR image to the final SR image. In most of

the SR approaches, researchers assume that the LR image is

downsampled by the Bicubic operator so we also use Bicu-
bic to down-sample the estimated SR image to obtain the

estimated LR. Then we estimate the LR residues between

estimated LR and input LR images by using another feature

extraction block (the purple box at the top of Figure 2). Fi-

nally, we up-sample the LR residues by Bicubic and add to
the estimate SR to obtain the final SR image.

4. Experiments
4.1. Data Preparation and Network Implementa-

tion

We synthesized the training image pairs based on the

settings of AIM2019 SR challenge [4]. The training im-

ages include 800 2K images from DIV2K [24] and 2650

2K images from Flickr [19]. Each image was rotated and

flipped for augmentation to increase the number of images

eight times. The LR images were obtained by using Bicu-
bic function in MATLAB according to down-sampling fac-

tors α. We extracted LR-HR patch pairs from images of

size 32α×32α and 32×32, respectively. The testing images
include Set5 [3], Set14 [30], BSD100 [1], Urban100 [14],

Manga109 [21], DIV2K [24] and DIV8K [4] with 4×, 8×
and 16× SR enlargement.

To efficiently super-resolve images, we designed the pro-

posed ABPN network using 32 kernels for all convolution

and deconvolution layers. For short connections and atten-

tion models, we used 1×1 kernels with stride 1 and pad 1.
For the convolution and deconvolution in EDBP and EUBP,

we used 6×6 kernels with stride 4 and pad 1 for 4× SR

and 10×10 kernels with stride 8 and pad 1 for 8× SR. Note

that most SR approaches use 64 kernels for convolution or

deconvolution, we only use half of convolution kernels to

build the network. With the help of the proposed attention

blocks, in the following experiments, we will demonstrate

that the proposed ABPN can achieve comparable or even

better SR performance with much less convolutional param-

eters.

We conducted our experiments using Pytorch 1.1, MAT-

LAB R2016b on two NVIDIA GTX1080Ti GPUs. Dur-

ing the training, we set the learning rate to 0.0001 for all

layer. The batch size is 8 for 1×106 iterations. For opti-
mization, we used Adam with the momentum to 0.9 and the

weight decay of 0.0001. The executive codes and experi-

mental results can be found in the following link: https:
//github.com/Holmes-Alan/ABPN.

4.2. Model analysis

Attention Back Projection Block. For our proposed

ABPN, the attention back projection block replaces the con-

catenation layer to combine feature maps from different

layers. The self-attention is used in the feature extraction

and the spatial attention is used after the enhanced down-

sampling back projection blocks. To demonstrate the capa-

bility of the attention models, we design the same ABPN

network using concatenation layers as Model-C and the

ABPN network using attention layers asModel-A. Depend-
ing on the up-sampling factors, we conducted multiple ex-

periments for 2×, 4× and 8× enlargement on Set5 and

Set14 to make comparison.

The results are shown in Table 1. We compare Model-
C and Model-A on SR with different up-sampling factors.

Model-A outperforms Model-C about 0.4 dB in PSNR and

0.01 in SSIM. It indicates the effectiveness of using atten-

tion over concatenation. Furthermore, to understand the

physical meaning of attention models, we visualize the fea-

ture maps obtained from EDBP and SAB blocks. The fea-

ture maps on the first row of Figure 5 were used to compute

the basis for projection (same as input X in Figure 4) and

Table 1. Comparison of the network using plain concatenation

block or attention block, including PSNR and SSIM for scale 2×,
4× and 8× SR on Set5 and Set14. Red indicates the best results.

Algorithm Scale
Set5 Set14

PSNR SSIM PSNR SSIM

Model-C 2 37.78 0.955 33.77 0.913

Model-A 2 38.29 0.961 34.18 0.922

Model-C 4 32.48 0.894 28.78 0.774

Model-A 4 32.69 0.900 28.94 0.789

Model-C 8 26.84 0.774 24.65 0.618

Model-A 8 27.25 0.786 25.08 0.638



Figure 5. Visualization of the proposed spatial attention blocks.

The SAB is obtained by computing the correlation between EDBP

features on the first and second rows.

the feature maps on the second row of Figure 5 are pro-

jected to the basis to obtain the SAB outputs (the third row

of Figure 5). EDBP n represents the n-th down-sampling
back projection blocks. NOte the red boxes on the visual-

ization and we can find that the output of SAB blocks are

the weighted results of two EDBP blocks. For example, the

red boxes in EDBP 1 are located at the feature maps that

estimate the complete image so that the basis can be across

the whole frequency band which shows no focus on specific

features. However, the feature maps on EDBP 3 only have

responses to the edges in the neighborhood area. After the

projection, the feature map on the SAB block enhanced the

edge information across the whole image which is the pur-

pose of using attention model to find the non-local property

for reconstruction.

4.3. Refined Back Projection Block

For the final reconstruction, we used the proposed Re-

fined Back Projection Block (RBPB) to further improve

the SR performance. There are some related deep learning

based SR works [16, 33, 28] that first super-resolve the LR

image via the deep networks and then use back projection

as the post processing to the obtained SR image for refine-

ment. It can improve the PSNR by about 0.01∼0.1 dB but

the problem is the back projection is not connected to the

network to form an end-to-end architecture. We directly

attached the post back projection at the end of network to

jointly train the model for better SR. To make a comparison,

we tested ABPN without final back projection (A), ABPN
with post back projection (B) and ABPN with RBPB (C) on
Set5 and Set14 for 2×, 4× and 8× enlargement.

The results are shown in Table 2. We can find that com-

pared to model (A), using back projection as a post process-
ing for (B) can help to boost up the PSNR performance.

And when we add the Refined Back Projection Block in the

network, model (C) can further improve the PSNR about

0.1 dB. Note that the effect of back projection is limited

when we super-resolve LR with larger up-sampling factors.

For example, in 4× image SR, using RBPB can outper-

form the model without back projection by about 0.2 dB but

the improvement decreases to about 0.1 dB in 8× super-

resolution. The reason is that the residual information is

getting smaller when the down-sampling factor is larger.

Using Bicubic as the assumed down-sampling operator may

not be sufficient to estimate the ground truth distribution of

the LR images.

4.4. Comparison with the state-of-the-art SR ap-
proaches

To prove the effectiveness of the proposed ABPN

network, we conducted experiments by comparing most

of (if not all) the state-of-the-art SR algorithms: Bicu-

bic, A+ [23], CRFSR [33], SRCNN [8], LapSRN [17],

EDSR [19], HBPN [20], RCAN [31] and ESRGAN [28].

PSNR and SSIMwere used to evaluate the proposed method

and others. Generally, PSNR and SSIM were calculated

by converting RGB image to YUV and only the Y-channel

image was taken for consideration. During the testing, we

flipped and rotated LR images for augmentation to generate

several augmented inputs and then applied inverse augmen-

tation and average all the outputs to form the final SR im-

ages. For different scaling factors s, we excluded s pixels
at boundaries to avoid boundary effect. For these SR re-

sults, A+ and CRFSR were provided by the corresponding

authors, SRCNN was reimplemented and provided by the

authors of [17], EDSR, HBPN, RCAN and ESRGAN were

reimplemented using the codes that are provided by the

corresponding authors. Note that, our proposed approach

also participated in the AIM2019 Image Super-resolution

Challenge [4]. Table 3 shows the comparison of all SR

approaches at 4×, 8× and 16×. We did not conduct im-
age SR with up-sampling factor smaller than 4 because all

state-of-the-art SR approaches have achieved great perfor-

Table 2. Comparison of the network using with or without back

projection or RBPB, including PSNR and SSIM for scale 2×, 4×
and 8× SR on Set5 and Set14. Red indicates the best results.

Algorithm Scale Back Projection
Set5 Set14

PSNR SSIM PSNR SSIM

A 2 none 38.05 0.960 33.89 0.919

B 2 post BP 38.20 0.961 34.07 0.921

C 2 RBPB 38.29 0.961 34.18 0.922

A 4 none 32.48 0.899 28.74 0.788

B 4 post BP 32.58 0.899 28.83 0.788

C 4 RBPB 32.69 0.900 28.94 0.789

A 8 none 27.16 0.786 24.97 0.638

B 8 post BP 27.20 0.786 25.01 0.638

C 8 RBPB 27.25 0.786 25.08 0.638



Table 3. Quantitative evaluation of state-of-the-art SR approaches, including PSNR and SSIM for scale 4×, 8× and 16×. Red indicates
the best and blue indicates the second best results.

Algorithm Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

4×

28.42 0.810 26.10 0.704 25.96 0.669 23.64 0.659 25.15 0.789

A+ [23] 30.30 0.859 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850

CRFSR [33] 31.10 0.871 27.87 0.765 27.05 0.719 24.89 0.744 28.12 0.872

SRCNN [8] 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858

LapSRN [17] 31.54 0.885 28.19 0.772 27.32 0.728 25.21 0.756 29.09 0.890

EDSR [19] 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915

RCAN [31] 32.63 0.900 28.87 0.789 27.77 0.744 26.82 0.809 31.22 0.917

ESRGAN [28] 32.73 0.901 28.99 0.792 27.85 0.745 27.03 0.815 31.66 0.920

ABPN(Ours) 32.69 0.900 28.94 0.789 27.82 0.743 27.06 0.811 31.79 0.921

Bicubic

8×

24.39 0.657 23.19 0.568 23.67 0.547 21.24 0.516 21.68 0.647

A+ [23] 25.52 0.692 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680

CRFSR [33] 26.07 0.732 23.97 0.600 24.20 0.569 21.36 0.550 22.59 0.688

SRCNN [8] 25.33 0.689 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682

LapSRN [17] 26.15 0.738 24.42 0.622 24.59 0.587 21.88 0.583 23.60 0.742

EDSR [19] 26.97 0.775 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778

RCAN [31] 27.47 0.791 25.40 0.655 25.05 0.608 23.22 0.652 25.58 0.809

HBPN [20] 27.17 0.785 24.96 0.642 24.93 0.602 23.04 0.647 25.24 0.802

ABPN(Ours) 27.25 0.786 25.08 0.638 24.99 0.604 23.04 0.641 25.29 0.802

DIV8K val DIV2K val BSD100 Urban100 Manga109

Bicubic

16×

- - 22.867 0.598 21.73 0.477 18.92 0.434 19.10 0.568

EDSR [19] - - 24.13 0.631 22.62 0.506 19.96 0.481 20.62 0.635

RCAN [31] - - 24.30 0.639 22.69 0.511 20.20 0.496 20.88 0.656

ESRGAN [28] - - 19.09 0.421 18.01 0.281 15.42 0.262 17.41 0.428

ABPN(Ours) 26.71 0.65 24.38 0.641 22.72 0.512 20.39 0.515 21.25 0.673

mance in that scenario and the differences are too small to

be compared. Instead, we show the extreme case with 16×
enlargement. We chose the SR approaches that achieve the

best performance in 4× and 8× for extreme comparison.

The 16× results for EDSR, RCAN and ESRGAN were ob-

tained by applying 2 times of the 4× SR using the provided

pre-trained models. For a fair comparison, we also tried to

use our proposed 4× ABPN SR model twice for enlarge-

ment. We can find that the proposed ABPN can achieve

0.1∼0.2 dB improvement in PSNR and 0.01∼0.2 in SSIM.
It indicates that the proposed ABPN is more robust than oth-

ers that can handle image SR even without further training.

Note that we did not test Set5 and Set14 for two reasons: 1)

the images in these two dataset are too small for evaluation

and 2), the released codes for EDSR, RCAN and ESRGAN

cannot be reimplemented in these two datasets so we tested

on using DIV2K validation dataset, BSD100, Urban100 and

Manga109 datasets. Furthermore, AIM2019 Image Super-

resolution Challenge provided another 8K dataset for 16×
SR and we show the results of using our proposed ABPN on

the validation dataset. In conclusion, from the comparison

on PSNR and SSIM across different up-sampling factors,

we can find that using proposed ABPN can achieve compa-

rable or even better performance compared with other state-

of-the-art SR approaches. It demonstrates that the proposed

ABPN is robust and accurate to handle image SR with dif-

ferent up-sampling factors, even in extreme conditions.

More importantly, we are also interested in the computa-

tion complexity of different models. Hence, we selected

some of the state-of-the-art SR approaches for compari-

son, including SRCNN, VDSR, LapSRN, DBPN, HBPN,

ESRGAN, RCAN. Note that we used the models and net-

work setting that the authors claimed the best in their pa-

pers. We calculated the number of parameters by using the

source code provided by [9], and used it as one indicator

to show the model complexity. We also list the size of the

pre-trained model file as another indicator. Since different

models can be implemented with different computers and

with different platforms. We did not test the running time

Figure 6. Comparison between model complexity and image qual-

ity. Left vertical axis is the number of parameters and right vertical

axes is the size of the model file.



Figure 7. Visual comparison of different SR approaches on Urban100 for 4× enlargement.

to complicate the comparison. In Figure 6, we show the

number of parameters and PSNR for 4× SR for Urban100

dataset.

In Figure 6, orange dots indicate the model size and

green dots indicate the number of parameters. The right bot-

tom corner means good with higher PSNR and less model

complexity. We can see that using proposed ABPN can

achieve better PSNR than ESRGAN and RCAN with much

less number of parameters. Note that the size of the model

is consistent with the number of parameters (for some SR

approaches, the orange and green dots overlap together) be-

cause the SR approaches used for comparison were all con-

ducted using Pytorch and saved in the files with the same

format. With the help of attention models, ABPN can re-

duce at least 2∼3 times of parameters to outperform about

0.1 dB in PSNR.

Finally, we show some typical images from the testing

datasets for visual comparison. Figure 7 gives the visualiza-

tion of 4 × image SR. We can see that the proposed ABPN

can generate SR images with comparable quality similar to

other state-of-the-art SR approaches. For example, the pat-

tern in Figure 7 B is supposed to approximately horizontal.

Affected by the vertical lines on the original image, other

SR approaches tend to reconstruct diagonal patterns while

the proposed ABPN can correctly reconstruct the pattern.

In Figure 7 C, EDSR and HBPN can generate sharp edges

around the balcony but with some distortion. Our proposed

ABPN can generate the pattern with better quality.

5. Discussion

In this paper, we explore the attention mechanism in im-

age super-resolution, and then propose the Attention based

Back Projection Network (ABPN) for image SR. There are

three contributions in this network: modified enhanced back

projection blocks, Spatial Attention Block (SAB) and Re-

fined Back Projection Block (RBPB). The key modification

is the Spatial Attention Block that can be used to replace

the concatenation layer so that the correlation relationship

between the intermediate feature maps can be extracted as

a non-local weighting model. Without increasing the com-

plexity of the CNN network, SAB can substantially improve

the quality of super-resolution. The final Refined Back Pro-

jection Block works as a residual feedback that can form a

close loop between the input LR and output SR images to

further boost up the performance. Results on quantitative

and qualitative evaluation show its advantages over other

approaches. The exciting results of attention models for im-

age SR indicate its great potential for further study.
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