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Abstract—Detecting vibrations with high probability and low 
false alarm probability is crucial for prompting distributed 
acoustic sensors (DASs) to real applications. It is known that 
detection performance mainly depends on signal-to-noise ratio 
(SNR) and many efforts have been made to improve it. However, 
the relationship between SNR and detection performance has not 
been quantitatively analyzed so far. Threshold-based vibration 
detection is a simple and commonly used technique, but how to set 
the decision threshold in DAS is still an open question. In this 
work, for the first time, we propose a model to quantify the 
relationship between SNR and detection performance and provide 
a method for setting the decision threshold. Firstly, we build a 
model to differentiate vibrations from the background noise based 
on their short-time average energy. This model reveals that setting 
decision threshold requires perfect knowledge of noise power, 
which is a difficult task in DAS since noise power varies frequently 
with time and position. To solve this problem, secondly, we 
propose a noise-irrelevant threshold setting method based on 
autocorrelation-energy. Finally, experimental validation is 
performed on a DAS system along 47.4km sensing fiber with 5m 
spatial resolution. Results of autocorrelation-energy-based 
method show 100% and 98.1% detection probability for two 
vibrations with 𝟏𝟏.𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟕𝟕 false alarm probability in a one-hour 
measurement period. 

Index Terms—Distributed acoustic sensor (DAS), vibration 
detection, signal-to-noise ratio (SNR), threshold-based technique, 
detection probability, false alarm probability, false alarm rate. 

I. INTRODUCTION

ISTRIBUTED optical fiber sensor (DOFS) is a non-intrusive 
sensing technology that has been attracting researchers 

from various areas in recent years. It uses thin glass optical fiber 
as both sensing element and transmission medium, and they are 
compatible to the ubiquitously deployed fiber system across the 
world for carrying Internet and telecom traffic. Distributed 

acoustic sensor (DAS) is a kind of DOFS that has the capability 
of detecting faint vibrations along tens of kilometers of sensing 
fiber with a high spatial resolution. It has been extensively 
investigated in many applications such as seismic detection [1], 
intrusion detection [2], and pipeline surveillance [3]. For all the 
applications, vibration detection is a fundamental task in DAS. 
When the vibration has a high signal-to-noise ratio (SNR), it 
can be easily distinguished since it obviously sticks out of the 
noise floor. However, there are several factors that may result 
in low SNR and make vibration detection practically 
challenging. First, the vibration signal may be quite weak due 
to the long distance between the vibration source and sensing 
fiber. Second, signal fading phenomena including interference-
induced fading and polarization-induced fading in DAS make 
vibration detection more difficult [4]; Third, received signals 
are contaminated by unavoidable noise from DAS system and 
environment. DAS system noise can come from phase noise 
and frequency drift of the laser, finite extinction ratio (ER) of 
optical pulses, thermal noise from electrical components, 
amplified spontaneous emission (ASE) noise from the optical 
amplifier, and quantization noise from data acquisition. 
Environmental noise is mainly due to the ambient changes 
around sensing fiber and it may be serious for the fiber sections 
locating at habitually noisy environments such as residential 
areas. Due to the uncertainty of vibration signal and noise 
power, SNR of the vibration signal fluctuates randomly with 
different locations and moments. 

To improve the SNR of vibration signals in DAS, different 
hardware and signal processing methods have been proposed. 
The original DAS was realized with direct detection [5], whose 
configuration is simple but SNR is quite low for long-distance 
sensing. Coherent detection scheme proposed in [6] greatly 
improves SNR due to the coherent amplification effect. Raman 
and Brillouin amplification are also introduced to further 
improve SNR and extend the sensing range [7,8]. To alleviate 
polarization-induced and interference-induced fading, 
polarization diversity scheme [9] and multi-frequency 
acquisition scheme [10] have been proposed. Besides hardware 
modification schemes, different kinds of signal processing 
methods have also been extensively studied to improve SNR. 
Time-domain noise reduction methods such as moving average 
[6] and transform domain denoising methods such as wavelet
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shrinkage in [11] are popular algorithms to reduce noise in DAS. 
To fully utilize DAS information, two-dimensional signal 
processing methods like edge detection [12] and bilateral 
filtering [13] are also proposed. Even though all the above 
methods can be used for SNR improvement in DAS, none of 
the aforementioned methods has indicated the relationship 
between SNR and vibration detection performance. Intuitively, 
a high SNR will bring a high vibration detection probability. 
However, it is still unknown to what extent SNR improvement 
will bring a 100% guaranteed detection. Thus, a quantitative 
analysis of the relationship between SNR and detection 
performance is essential for DAS system design and evaluation.  

The function of vibration detection in DAS is to decide 
whether the vibration is present or absent during a specific time 
period for every position along sensing fiber. The confusion 
matrix of four possible types of response is summarized in 
Table I. When a “Yes” response is given to a vibration present 
scenario, it is a correct response and called a “Detect”; but when 
a “Yes” response is given to a vibration absent scenario, it is a 
mistake and called a “False alarm” (“FA”). Similarly, when a 
“no” response is given to a vibration present case, it is a mistake 
and called a “Miss”; but when a “no” response is given to a 
vibration absent case, it is correct and called a “Correct 
rejection”.  Since the proportion of “Detect” and “FA” provide 
all information in the data, detector performance can be 
evaluated by 𝑃𝑃𝑑𝑑  (the probability of “Detect”) and 𝑃𝑃𝑓𝑓𝑓𝑓 , (the 
probability of “FA”). A vibration detector with high false alarm 
probability or low detection probability will hinder the practical 
usage of a DAS system. For example, a DAS system with even 
100% detection probability but 30% false alarm probability can 
hardly be used. Therefore, the optimization of a vibration 
detector consists in minimizing false alarm probability and 
maximizing detection probability. 

 

TABLE I: CONFUSION MATRIX OF 
FOUR POSSIBLE TYPES OF RESPONSE IN VIBRATION DETECTION 

                Response    
     Actual  Yes No 

vibration present Detect 
𝑃𝑃𝑑𝑑 

Miss 
1 − 𝑃𝑃𝑑𝑑 

vibration absent False alarm (FA) 
𝑃𝑃𝑓𝑓𝑓𝑓 

Correct rejection 
1 − 𝑃𝑃𝑓𝑓𝑓𝑓 

 
     Different techniques can be adopted for vibration detection in 
DAS. A straightforward and commonly used technique is 
comparing an extracted feature with a decision threshold [14-
18]. A vibration signal is supposed to be present if it is higher 
than the decision threshold; Otherwise, if it is lower than the 
decision threshold, a vibration signal is regarded as absent. 
There is an obvious trade-off between setting a higher decision 
threshold to reduce false alarm probability and a lower decision 
threshold to increase detection probability. The feature can be 
extracted from different descriptive attributes, such as level 
crossing rate (LCR) [14], kurtosis [15], peak-to-peak value [16], 
and short-time average energy [17,18]. A classical signal 
detection method was proposed by Urkowitz in 1967 by 
measuring short-time average energy [19]. The basic idea is that 
with the presence of a signal, the energy would be significantly 

larger compared with the scenario of no signal present. This 
method is simple and easy to use because it requires no prior 
information about the signal to be detected. For a pipeline 
integrity threat detection DAS system, the short-time average 
energy is compared with the empirical threshold values to 
decide the presence of vibrations [18]. The empirical threshold 
values are set between 1 to 40 times average background noise 
energy for different positions. But theoretically, there are no 
explicit rules to set the exact value of the threshold, which is 
essential for the practical DAS applications. 

In this work, to the best of our knowledge, it is the first time 
that a quantitative relationship between SNR and detection 
performance is derived and guidance on decision threshold 
setting is provided. 

1) We build a model to discriminate the vibration signal from 
background noise based on their short-time average energy. 
Threshold setting rule based on a target false alarm rate (FAR) 
in DAS is proposed and relationships among detection 
performance, SNR, and processing window size are 
quantitatively studied.  
2) For the average-energy-based method, setting decision 
threshold requires prior knowledge of noise power which is 
hard to be estimated in DAS.  To solve this problem, we 
propose a noise-irrelevant threshold setting method based on 
autocorrelation-energy. Three factors affecting detection 
performance are quantitatively analyzed.  
3) Both the average-energy-based method and 
autocorrelation-energy-based method are demonstrated on a 
DAS system of 47.4km long sensing fiber with 5m spatial 
resolution. Unlike the threshold is highly dependent on the 
accuracy of noise estimation with average-energy-based 
method, with autocorrelation-energy based method, vibration 
detection with a single threshold is feasible without noise 
estimation. A DAS system with 100% and 98.1% detection 
probabilities for two vibrations and 1.12 × 10−7 false alarm 
probability within a one-hour measurement period is 
presented. 

    The rest of the paper is organized as follows: data structure 
and data processing of DAS are introduced in Section II. 
Vibration detection based on average energy is presented in 
Section III. Vibration detection based on autocorrelation-
energy is proposed in Section IV. Experimental results and 
discussions are given in Section V. Finally, the conclusion is 
drawn in Section VI. 

II. DATA STRUCTURE AND DATA PROCESSING OF DAS 

A. Data structure of DAS 
The working principle of DAS is based on phase-sensitive 

OTDR utilizing the interference effect of Rayleigh 
backscattering (RBS) of different scattering centers within the 
pulse width. Fig. 1 shows the principle of a DAS system. 
Coherent optical pulses are sent into the fiber under test (FUT) 
through a circulator, a large number of scattering points within 
the pulse will interfere with each other and form a randomly 
interfered RBS signal. The RBS traces are detected by a 
photodetector (PD) and recorded as a function of time. 
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Collected raw data are organized in a two-dimensional structure 
as shown in Fig. 1. Axis along the fiber (also called fast-time 
axis) is used to discriminate position according to the speed of 
light while another axis along measurand in time (also called 
slow-time axis) is used to describe vibration in time series. The 
data can be expressed by matrix X[M,N],  

𝑋𝑋[𝑀𝑀,𝑁𝑁] = �
𝑥𝑥11 ⋯ 𝑥𝑥𝑀𝑀1
⋮ ⋱ ⋮
𝑥𝑥1𝑁𝑁 ⋯ 𝑥𝑥𝑀𝑀𝑁𝑁

�              (1) 

where 𝑥𝑥𝑚𝑚𝑛𝑛  represents RBS amplitude at position 𝑙𝑙𝑚𝑚 and time 𝑡𝑡𝑛𝑛. 
𝑀𝑀 is the number of sampling points along the FUT, which is 
determined by the sampling rate of data acquisition system and 
length of FUT. 𝑁𝑁 is the number of recorded RBS traces, which 
is determined by pulse repetition rate and measurement period. 
In Fig. 1, position 𝑙𝑙𝑚𝑚  = 𝑚𝑚 ∗ ∆𝑙𝑙 , where ∆𝑙𝑙 = 𝑣𝑣𝑔𝑔/(2 ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is spatial sampling resolution, and time delay 
𝑡𝑡𝑛𝑛 = 𝑛𝑛 ∗ ∆𝑡𝑡 , where ∆𝑡𝑡 = 1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐻𝐻𝐻𝐻)⁄  is 
the pulse period. Since the RBS traces are affected by DAS 
system noise and environmental noise, the data matrix can be 
expressed as 𝑋𝑋[𝑀𝑀,𝑁𝑁] = 𝑆𝑆[M, N] + 𝑊𝑊[M, N] , where  𝑆𝑆[M, N] 
and 𝑊𝑊[𝑀𝑀,𝑁𝑁]  are vibration signal matrix and noise matrix, 
respectively. With regard to the white noise after PD, RBS 
amplitudes along slow-time axis follow the Gaussian 
distribution [20] 

B. Data processing of DAS 
After acquiring RBS traces, an intelligent data processing 

system that can automatically process data and provide useful 
knowledge for decision making is desirable. The workflow of 
data processing for DAS is shown in Fig. 2. Firstly, raw data 
are acquired after A/D converter and signal pre-processing such 
as digital filtering are performed. Due to the possible low SNR 
of the vibration signals, a specific signal enhancement 
algorithm may be used to improve SNR. Then the data are 
handed over to a feature extraction algorithm. Feature extractor 
I can locate certain components in signals to assist vibration 
detection. The vibration detector will decide whether the data is 
‘noise alone’ or ‘signal masked by noise’. If vibration detector 
declares that vibration signal exists, then detected vibrations go 
through pattern recognition stage. Features extracted by feature 
extractor II are statistically compared to either trained or fixed 
features to map them to a known set of event classes. In most 
cases, prior training is essential to initialize the classifier. 
Pattern recognition based on machine learning and deep 
learning is a recent trend in DAS [21,22]. However, a DAS 
system continuously acquires numerous data in practical 
applications, it is difficult to implement real-time signal 
classification for every position along the FUT due to the 
limitations of data transmission and storage. A quick pre-
selection of possible vibration positions must be carried out 
before pattern recognition, and the pre-selected vibration 
signals will be sent for further pattern recognition procedure. 
Mathematically, vibration detection and pattern recognition are 
called binary and multiclass hypothesis testing and their 
objective is to minimize decision errors. In this work, our focus 
is on vibration detection. 
 

III. VIBRATION DETECTION BASED ON AVERAGE ENERGY 
METHOD  

A. Theoretical model 
    Mathematically, collected data at a specific position have two 
possible hypotheses:  

 ℋ0 ∶    𝑥𝑥(𝑛𝑛) = 𝑤𝑤(𝑛𝑛)               (2𝑎𝑎) 
 ℋ1 ∶     𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑤𝑤(𝑛𝑛) (2𝑏𝑏) 

Hypothesis  ℋ0 is for the absence of vibration and Hypothesis 
 ℋ1  is for the presence of vibration. 𝑠𝑠(𝑛𝑛) , 𝑤𝑤(𝑛𝑛)  and 𝑥𝑥(𝑛𝑛) 
represent clean signal, noise and measured, respectively. Both 
the signal and noise are assumed to be an i.i.d. (independent and 
identically distributed) Gaussian random process with zero 
mean and 𝜎𝜎𝑠𝑠2  and 𝜎𝜎𝑤𝑤2  variance, respectively. Signal-to-noise 
ratio (SNR) is defined as the ratio of signal power to noise 
power. For the zero-mean signal, the SNR is: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝜎𝜎𝑠𝑠2

𝜎𝜎𝑤𝑤2
 (3) 

The short-time average energy of a measured signal, 𝑥𝑥(𝑛𝑛), with 
𝑁𝑁𝑠𝑠 samples can be expressed as: 

𝜇𝜇 =
1
𝑁𝑁𝑠𝑠

� 𝑥𝑥(𝑛𝑛)2
𝑁𝑁𝑠𝑠−1

𝑛𝑛=0

(4) 

The computed average energy will be compared with a pre-
determined threshold 𝜆𝜆  to decide the signal’s presence. It is 
obvious that different threshold values will give different signal 
presence information. To quantify the detection performance, 
statistical distribution of 𝜇𝜇 under Hypotheses  ℋ0  and  ℋ1  are 
analyzed. Since the sum of squares of 𝑁𝑁𝑠𝑠 independent standard 
Gaussian random variables is a Chi-square random variable 
with 𝑁𝑁𝑠𝑠  degrees of freedom (proof is given in Appendix, 
Lemma1), the test statistics 𝜇𝜇  is a random variable whose 
probability density function (PDF) is Chi-square distributed. 
Let us denote a Chi-square distributed random variable 𝑋𝑋 with 
𝑁𝑁𝑠𝑠  degrees of freedom as 𝑋𝑋~𝜒𝜒𝑁𝑁𝑠𝑠

2 . It is clear that under 
Hypothesis  ℋ0 , 𝑁𝑁𝑠𝑠𝑢𝑢/𝜎𝜎𝑤𝑤2~𝜒𝜒𝑁𝑁𝑠𝑠

2  , and under  ℋ1  𝑁𝑁𝑠𝑠𝑢𝑢/(𝜎𝜎𝑤𝑤2 +
𝜎𝜎𝑠𝑠2)~𝜒𝜒𝑁𝑁𝑠𝑠

2 . Therefore, the PDF of test statistics 𝑢𝑢 is: 

𝑓𝑓𝑢𝑢(𝜇𝜇,𝑁𝑁𝑠𝑠)~

⎩
⎪
⎨

⎪
⎧𝜎𝜎𝑤𝑤 

2

𝑁𝑁𝑠𝑠
𝑓𝑓𝜒𝜒 �

𝜇𝜇𝜇𝜇𝑤𝑤 
2

𝑁𝑁𝑠𝑠
,𝑁𝑁𝑠𝑠�                             𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ℋ0  

𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2

𝑁𝑁𝑠𝑠
𝑓𝑓𝜒𝜒 �

𝜇𝜇(𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)
𝑁𝑁𝑠𝑠

,𝑁𝑁𝑠𝑠�    𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ℋ1

(5) 

Under  ℋ0,  𝐸𝐸(𝑢𝑢) = 𝜎𝜎𝑤𝑤 
2  and 𝑣𝑣𝑣𝑣𝑟𝑟(𝑢𝑢) = 2

𝑁𝑁𝑠𝑠
𝜎𝜎𝑤𝑤 
4 ; under  ℋ1  

𝐸𝐸(𝑢𝑢) = 𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑢𝑢) = 2

𝑁𝑁𝑠𝑠
(𝜎𝜎𝑤𝑤 

2 + 𝜎𝜎𝑠𝑠2)2 (Proof is given in 
Appendix Lemma2). According to the central limit theorem 
[24], when independent random variables are added, their 
distributions tend toward Gaussian even if the original variables 
themselves are not Gaussian distributed. Therefore, test 
statistics 𝑢𝑢 asymptotically obeys the Gaussian distribution as: 

𝑓𝑓𝑢𝑢(𝜇𝜇,𝑁𝑁𝑠𝑠)~

⎩
⎨

⎧𝑁𝑁 �𝜎𝜎𝑤𝑤 
2 ,

2
𝑁𝑁𝑠𝑠
𝜎𝜎𝑤𝑤 
4 �                               𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ℋ0    

𝑁𝑁 �𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2,

2
𝑁𝑁𝑠𝑠

(𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)4�       𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ℋ1

(6) 

where 𝑁𝑁(α,𝛽𝛽)  represents Gaussian distribution with mean𝛼𝛼 
and variance 𝛽𝛽. 

As mentioned in Introduction, two probabilities are of 
interest for vibration detection, i.e., 
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1) the detection probability, 𝑃𝑃𝑑𝑑, which defines the probability 
of vibration detector having detected the presence of vibration 
under ℋ1. 

2) the false alarm probability, 𝑃𝑃𝑓𝑓𝑓𝑓 , which defines, the 
probability of the vibration detector claiming the presence of 
vibration under ℋ0. 
For a given threshold 𝜆𝜆, false alarm probability is given by: 

   𝑃𝑃𝑓𝑓𝑓𝑓(𝜆𝜆) = 𝑃𝑃[𝑢𝑢 > 𝜆𝜆| ℋ0] = 𝑄𝑄(
𝜆𝜆 − 𝜎𝜎𝑤𝑤 

2

𝜎𝜎𝑤𝑤 
2 �𝑁𝑁𝑠𝑠 2⁄⁄

)                 (7) 

where  𝑄𝑄(𝑥𝑥)  is the tail distribution function of standard 
Gaussian distribution as, 𝑄𝑄(𝑥𝑥) = ∫ 1

√2𝜋𝜋
𝑒𝑒− 𝑡𝑡2 2⁄∞

𝑥𝑥 𝑑𝑑𝑑𝑑 . 𝑄𝑄−1(𝑥𝑥) 
represents the inverse function of 𝑄𝑄(𝑥𝑥). To decide whether a 
vibration signal is present, we need to set a threshold for the 
average energy level. In most cases, it is not easy to set this 
threshold value based on the detection probability since we 
have little or no prior knowledge about the vibration signal. An 
alternative is to set the threshold based on false alarm 
probability under ℋ0 by inverting (7): 

𝜆𝜆𝑓𝑓𝑓𝑓 = 𝜎𝜎𝑤𝑤 
2 �1 +

𝑄𝑄−1�𝑃𝑃𝑓𝑓𝑓𝑓�

�𝑁𝑁𝑠𝑠 2⁄
�                    (8) 

When the threshold is set to 𝜆𝜆𝑓𝑓𝑓𝑓, the detection probability 𝑃𝑃𝑑𝑑 is 
given by: 
             𝑃𝑃𝑑𝑑�𝜆𝜆𝑓𝑓𝑓𝑓� = 𝑃𝑃�𝑢𝑢 > 𝜆𝜆𝑓𝑓𝑓𝑓� ℋ1� 

= 𝑄𝑄 �
𝜆𝜆𝑓𝑓𝑓𝑓 − (𝜎𝜎𝑤𝑤 

2 + 𝜎𝜎𝑠𝑠2)

(𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2) �𝑁𝑁𝑠𝑠 2⁄⁄

�                           (9) 

B. Average-energy-based method for vibration detection in 
DAS 

As depicted in Section II, the collected RBS traces can be 
decomposed into a matrix. For a specific position 𝑙𝑙𝑚𝑚 along the 
FUT, 𝑁𝑁𝑠𝑠 adjacent points (i.e. processing window size) along the 
slow-time axis are accumulated as one processing unit (PU) to 
calculate average energy, 

𝜇𝜇(𝑙𝑙𝑚𝑚 , 0:𝑁𝑁𝑠𝑠 − 1) =
1
𝑁𝑁𝑠𝑠

� (𝑥𝑥𝑚𝑚𝑛𝑛 )2
𝑁𝑁𝑠𝑠−1

𝑛𝑛=0

(10) 

If average energy is computed with 𝑝𝑝 (in %) overlap, then the 
total number of PU along the FUT within 𝑡𝑡𝑁𝑁  measurement 
period is 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 � 𝑁𝑁

𝑁𝑁𝑠𝑠∗(1−𝑝𝑝)
� ∗ 𝑀𝑀. Fig. 3 gives an illustration of 

PU blocks with half overlap (𝑝𝑝 = 50%). 
     According to the theoretical analysis in Part A, we could 
decide whether the vibration is present or absent by comparing 
the computed average energy in a PU with the pre-determined 
threshold 𝜆𝜆𝑓𝑓𝑓𝑓 . 𝜆𝜆𝑓𝑓𝑓𝑓  is partially determined by the false alarm 
probability 𝑃𝑃𝑓𝑓𝑓𝑓 . In real applications, FAR defined as the 
maximum number of false alarms tolerated by the user per unit 
time is more important than false alarm probability. The 
relationship between 𝑃𝑃𝑓𝑓𝑓𝑓 and FAR is as follows: 

𝑃𝑃𝑓𝑓𝑓𝑓 =
Target FAR(for a given measurement period)

number of PUs during that time
 

=
Target FAR(for 𝑡𝑡𝑁𝑁)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 � 𝑁𝑁
𝑁𝑁𝑠𝑠 ∗ (1 − 𝑝𝑝)� ∗ 𝑀𝑀

                         (11) 

For example, in the case that a DAS system has a 50km FUT 
and 10m spatial resolution (corresponding 𝑀𝑀 = 5 × 103 ), 

2kHz pulse repetition rate (corresponding 𝑁𝑁 = 1(𝑑𝑑𝑑𝑑𝑑𝑑) ∗
24(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∗ 60(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ∗ 60(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∗ 2000(𝐻𝐻𝐻𝐻) =
1.728 × 108), with only one false alarm per day, if we make a 
vibration detection every second with 50% overlap 
(corresponding 𝑁𝑁𝑠𝑠 = 2000 ), then we have 8.64 × 108  PUs 
during one-day measurement period. According to (11), 𝑃𝑃𝑓𝑓𝑓𝑓 =
1.157 × 10−9. To keep FAR smaller than 1 FA/day, 𝑃𝑃𝑓𝑓𝑓𝑓 should 
be smaller than 1.157 × 10−9. If noise power is known or can 
be estimated, 𝜆𝜆𝑓𝑓𝑓𝑓 can be pre-determined according to (8). 

C. Detection probability with the relationship of SNR, 
processing window size, and false alarm probability 
    For a fix false alarm probability, detection probability is 
expected to be as high as possible. Replacing the definition of 
SNR in (3) and 𝜆𝜆𝑓𝑓𝑓𝑓 in (8), we can get the following relationship: 

𝑃𝑃𝑑𝑑�𝜆𝜆𝑓𝑓𝑓𝑓� = 𝑄𝑄�
𝑄𝑄−1�𝑃𝑃𝑓𝑓𝑓𝑓� − 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ �𝑁𝑁𝑠𝑠 2⁄

1 + 𝑆𝑆𝑆𝑆𝑆𝑆
�  (12) 

It indicates that with pre-determined 𝑃𝑃𝑓𝑓𝑓𝑓, detection probability 
can be increased by improving SNR. To give an intuitive 
relationship between 𝑃𝑃𝑑𝑑  and  𝑃𝑃𝑓𝑓𝑓𝑓 , a synthetic signal is 
demonstrated as shown in Fig. 4. Clean signal (black) in Fig. 
4(a) shows a 40Hz sine wave lasts one second period with 2kHz 
sampling frequency. Gaussian white noise with a variance of 
one and zero mean as shown in Fig. 4(b) is added to the clean 
signal to get the noisy signal (red). SNR of the noisy signal is -
9dB. Then 105 times Monte Carlo simulations are conducted to 
calculate the average energy of noise and noisy signal according 
to (4). Average energy distributions are shown in Fig. 4(c). The 
overlap area shows the detection error probability, where the 
right-side area (under  ℋ0) of threshold 𝜆𝜆𝑝𝑝 denotes false alarm 
probability (𝑃𝑃𝑓𝑓𝑓𝑓) while the left-side area (under  ℋ1)  denotes 
missed detection probability (1 − 𝑃𝑃𝑑𝑑) . Table II gives the 
threshold values under different false alarm probabilities when 
𝑁𝑁𝑠𝑠 = 2000, according to (8). For example, if 𝑃𝑃𝑓𝑓𝑓𝑓 = 10−3  is 
required, we need to set the threshold to 𝜆𝜆𝑝𝑝 = 1.0977 ∗ 𝜎𝜎𝑤𝑤2  , 
according to Table II. However, it will lead to a detection 
probability, 𝑃𝑃𝑑𝑑 = 78.58%  when 𝑆𝑆𝑆𝑆𝑆𝑆 = −9𝑑𝑑𝑑𝑑  according to 
(12). As can be seen in Fig. 4(c), lower false alarm probability 
can be achieved by increasing 𝜆𝜆𝑝𝑝 . However, higher 𝜆𝜆𝑝𝑝  will 
decrease detection probability.  

TABLE II  
𝜆𝜆𝑝𝑝 FOR DIFFERENT FALSE ALARM PROBABILITIES WITH 𝑁𝑁𝑠𝑠 = 2000 
𝑃𝑃𝑓𝑓𝑓𝑓 10−3 10−6 10−9 10−12 
𝜆𝜆𝑝𝑝 1.0977*𝜎𝜎𝑤𝑤2  1.1503*𝜎𝜎𝑤𝑤2  1.1897*𝜎𝜎𝑤𝑤2  1.2224*𝜎𝜎𝑤𝑤2  

 

Fig. 5 shows the detection probability as a function of SNR 
for different 𝑁𝑁𝑠𝑠 and false alarm probabilities. We can see that 
under the same SNR and 𝑁𝑁𝑠𝑠 , lower 𝑃𝑃𝑓𝑓𝑓𝑓  will lead to a lower 
detection probability before 𝑃𝑃𝑑𝑑 reaches 100%. For example, in 
the case of 𝑆𝑆𝑆𝑆𝑆𝑆 = −5𝑑𝑑𝑑𝑑 , 𝑁𝑁𝑠𝑠 = 400 , when 𝑃𝑃𝑓𝑓𝑓𝑓  is set to be 
10−3, 𝑃𝑃𝑑𝑑 =85.31%. However, when 𝑃𝑃𝑓𝑓𝑓𝑓 is set as low as 10−12, 
detection probability greatly reduced to 𝑃𝑃𝑑𝑑 =2.58%. We can 
also observe that under the same 𝑃𝑃𝑓𝑓𝑓𝑓 and 𝑁𝑁𝑠𝑠, 𝑃𝑃𝑑𝑑 increases as a 
function of SNR until 𝑃𝑃𝑑𝑑  reaches 100%. The detection 
performance is also analyzed with respect to the processing 
window size 𝑁𝑁𝑠𝑠 . It seems increasing 𝑁𝑁𝑠𝑠  is a much simpler 
method to increases 𝑃𝑃𝑑𝑑  compared with SNR improvement. 
However, SNR and  𝑁𝑁𝑠𝑠 are highly correlated, in the case that 
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the vibration lasts for a very short period but we set a large 𝑁𝑁𝑠𝑠, 
the calculated SNR during processing window 𝑁𝑁𝑠𝑠 could be very 
low. Thus, the choice of 𝑁𝑁𝑠𝑠  depends on the vibration to be 
detected. As an example, in perimeter intrusion detection, 
vibrations caused by people’s walking last for a relatively long 
time, larger 𝑁𝑁𝑠𝑠 can be selected. However, in some applications 
such as structural health monitoring, vibrations like crack may 
just last for a very short time, so a smaller 𝑁𝑁𝑠𝑠 should be used. 

 
D. Detection performance with the relationship of noise 

Ideally, average-energy-based method shows satisfactory 
performance as demonstrated in Fig. 5. 100% detection 
probability can be expected even in low SNR regimes. 
However, in practice, the true noise power is unknown and has 
to be estimated. The detection performance is highly 
susceptible to the accuracy of noise power estimation. 
Moreover, noise power always changes with time and position, 
which is referred to as ‘noise uncertainty’. Dynamic noise 
power is denoted as  𝜎𝜎𝑤𝑤2�  and suppose it varies between 
[1
𝜂𝜂
𝜎𝜎𝑤𝑤2 , 𝜂𝜂𝜎𝜎𝑤𝑤2] , where 𝜎𝜎𝑤𝑤2  is nominal noise power and 𝜂𝜂 ≥ 1  is 

noise uncertainty. Let us analyze two extreme cases: 
1) If 𝜆𝜆𝑝𝑝 is calculated according to the lower bound 1

𝜂𝜂
𝜎𝜎𝑤𝑤2 . For 

all the sensing events whose noise floor is significantly greater 
than 1

𝜂𝜂
𝜎𝜎𝑤𝑤2  , the calculated average energy is higher than 𝜆𝜆𝑝𝑝. In 

this case, the detector will declare the vibration present 
regardless of the true state of the vibration. This would result in 
a higher false alarm (FA) than expected.  

2) If 𝜆𝜆𝑝𝑝 is calculated according to the upper bound 𝜂𝜂𝜎𝜎𝑤𝑤2 . For 
all the sensing events whose noise power is significantly lower 
than 𝜂𝜂𝜎𝜎𝑤𝑤2 , the calculated average energy is lower than 𝜆𝜆𝑝𝑝. In this 
case, the detector will declare vibration absent, which will 
decrease the detection probability. 
    With the presence of noise uncertainty, the false alarm 
probability can be expressed as follows: 

𝑃𝑃𝑓𝑓𝑓𝑓(𝜆𝜆) = max � 𝑄𝑄 �
𝜆𝜆 − 𝜎𝜎𝑤𝑤2�

𝜎𝜎𝑤𝑤2� �𝑁𝑁𝑠𝑠 2⁄�
�� =  𝑄𝑄 �

𝜆𝜆 − 𝜂𝜂𝜎𝜎𝑤𝑤2

𝜂𝜂𝜎𝜎𝑤𝑤2 �𝑁𝑁𝑠𝑠 2⁄⁄
�  (13) 

Therefore, the decision threshold is 𝜂𝜂 times the original one: 

𝜆𝜆𝑓𝑓𝑓𝑓′ = 𝜂𝜂𝜎𝜎𝑤𝑤 
2 �1 +

𝑄𝑄−1�𝑃𝑃𝑓𝑓𝑓𝑓�

�𝑁𝑁𝑠𝑠 2⁄
� = 𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓   (14) 

The corresponding detection probability can be expressed as: 

            𝑃𝑃𝑑𝑑�𝜆𝜆𝑓𝑓𝑓𝑓′ � = min �𝑄𝑄 �
𝜆𝜆𝑓𝑓𝑓𝑓′ − �𝜎𝜎𝑤𝑤2� + 𝜎𝜎𝑠𝑠2�

(𝜎𝜎𝑤𝑤2� + 𝜎𝜎𝑠𝑠2) �𝑁𝑁𝑠𝑠 2⁄�
� � 

= 𝑄𝑄�
𝜆𝜆𝑓𝑓𝑓𝑓′ − �1

𝜂𝜂 𝜎𝜎𝑤𝑤
2 + 𝜎𝜎𝑠𝑠2�

(1
𝜂𝜂 𝜎𝜎𝑤𝑤

2 + 𝜎𝜎𝑠𝑠2) �𝑁𝑁𝑠𝑠 2⁄�
�  (15) 

The required decision threshold and SNR to achieve 100% 
detection probability and 10−9  false alarm probability for 
different noise uncertainty factor when 𝑁𝑁𝑠𝑠 = 2000 is shown in 
Fig. 6. We can see that much higher decision threshold and SNR 
are required to achieve the target 𝑃𝑃𝑓𝑓𝑓𝑓 and 𝑃𝑃𝑑𝑑 compared with the 
case that noise power is static, i.e., 𝜂𝜂 = 1.  
 

 

IV AUTOCORRELATION-ENERGY BASED METHOD 
To solve the problem of noise uncertainty in average-energy- 

based method, we propose a noise-irrelevant threshold setting 
method based on the autocorrelation energy. 

A. Characteristics of autocorrelation 
As discussed above, a noisy signal can be expressed as 

𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑤𝑤(𝑛𝑛)    0 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑠𝑠 − 1 . If the noise is 
uncorrelated with the signal, the autocorrelation coefficient 
(ACC) of a noisy signal is the sum of ACC of the clean signal 
and noise: 
𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛) = 𝐸𝐸[𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑖𝑖 − 𝑛𝑛)] 

= 𝐸𝐸[{𝑠𝑠(𝑖𝑖) + 𝑤𝑤(𝑖𝑖)}{𝑠𝑠(𝑖𝑖 − 𝑛𝑛) + 𝑤𝑤(𝑖𝑖 − 𝑛𝑛)}] 
= 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) + 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) + 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) + 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) 

  = 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) + 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛)                                             (16)            
Typically, noise 𝑤𝑤(𝑛𝑛)  is statistically independent of signal 
𝑠𝑠(𝑛𝑛). The cross-correlation terms 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) and 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) are both 
zero since 𝐸𝐸[𝑤𝑤(𝑛𝑛)] = 0, so as the ACC of white noise: 

           𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) = 𝐸𝐸[𝑤𝑤(𝑖𝑖)𝑤𝑤(𝑖𝑖 − 𝑛𝑛)] 
= 𝐸𝐸[𝑤𝑤(𝑖𝑖)]𝐸𝐸[𝑤𝑤(𝑖𝑖 − 𝑛𝑛)] 

                     = 0     𝑛𝑛 ≠ 0                                            (17)        
Since the samples of white noise are statistically independent 
with zero mean, ACC of white noise is 0 when 𝑛𝑛 ≠ 0. When 
𝑛𝑛 = 0, 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) = 𝜎𝜎𝑤𝑤 

2 . Thus, ACC of a zero-mean white noise 
can be expressed as: 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) ≈ 𝜎𝜎𝑤𝑤 

2 𝛿𝛿(𝑛𝑛),    0 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑠𝑠 − 1. As 
the value of 𝑁𝑁𝑠𝑠  increases, the approximation becomes more 
accurate. When 𝑛𝑛 > 0, 𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛) ≈ 0. Therefore, ACC of a noisy 
signal 𝑥𝑥(𝑛𝑛) can be simplified to: 

𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛) ≈ 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) + 𝜎𝜎𝑤𝑤 
2 𝛿𝛿(𝑛𝑛) (18) 

For 𝑛𝑛 > 0 , we have 𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛) ≈ 𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛) , which means ACC is 
robust to noise. 
 
B. Theoretical model  

The steps of the proposed autocorrelation-energy based 
method are given as follows: 
1) Short-time average energy is computed, 𝜇𝜇 = 1

𝑁𝑁𝑠𝑠
∑ 𝑥𝑥(𝑛𝑛)2𝑁𝑁𝑠𝑠−1
𝑛𝑛=0 . 

2) Sum of first 𝐾𝐾  absolute ACC is calculated, 𝜌𝜌 =
∑ |𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛)|𝐾𝐾−1
𝑛𝑛=0 .  

3) A decision on the presence of vibration is made by 
comparing the ratio 𝜌𝜌 𝜇𝜇⁄  with a threshold. 
   First, let us express 𝜌𝜌 under ℋ0 and ℋ1 as follows: 

𝜌𝜌 = �|𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛)|
𝐾𝐾−1

𝑛𝑛=0

 

                     

=

⎩
⎪
⎨

⎪
⎧𝜎𝜎𝑤𝑤 

2 + �|𝑐𝑐𝑤𝑤𝑤𝑤(𝑛𝑛)|
𝐾𝐾−1

𝑛𝑛=1

                 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ℋ0 

𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2 + �|𝑐𝑐𝑠𝑠𝑠𝑠(𝑛𝑛)|
𝐾𝐾−1

𝑛𝑛=1

         𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   ℋ1

                 (19) 

When 𝑁𝑁𝑠𝑠  is large enough, 𝜌𝜌  is approximate with Gaussian 
distribution. Under  ℋ0 , the expected value of 𝜌𝜌 is [24]: 

𝐸𝐸[𝜌𝜌] = 𝐸𝐸[|𝑐𝑐𝑤𝑤𝑤𝑤(0)|] + 𝐸𝐸[|𝑐𝑐𝑤𝑤𝑤𝑤(𝑘𝑘 > 0)|] 
= �1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄ � 𝜎𝜎𝑤𝑤 

2 (20) 
Therefore, 𝜌𝜌 𝜇𝜇⁄  under ℋ0 can be expressed as: 
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𝜌𝜌
𝜇𝜇
≈
𝐸𝐸[𝜌𝜌]
𝐸𝐸[𝜇𝜇] =

�1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄ �𝜎𝜎𝑤𝑤 
2

𝜎𝜎𝑤𝑤 
2  

= �1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄ �  (21) 
The false alarm probability is:  
𝑃𝑃𝑓𝑓𝑓𝑓(𝜆𝜆) = 𝑃𝑃 �𝜌𝜌𝜇𝜇 > 𝜆𝜆� ℋ0� 

≈ P� 𝜇𝜇 − 𝜎𝜎𝑤𝑤 
2

�2 𝑁𝑁𝑠𝑠⁄ 𝜎𝜎𝑤𝑤 
2

<

1
𝜆𝜆𝑝𝑝
�1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄ �𝜎𝜎𝑤𝑤 

2 − 𝜎𝜎𝑤𝑤 
2

�2 𝑁𝑁𝑠𝑠⁄ 𝜎𝜎𝑤𝑤 
2

� ℋ0� 

= 1 − 𝑄𝑄�
1
𝜆𝜆 �1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄ � − 1

�2 𝑁𝑁𝑠𝑠⁄
�                             (22) 

For a given 𝑃𝑃𝑓𝑓𝑓𝑓, the threshold is: 

𝜆𝜆𝑝𝑝 =
1 + (𝐾𝐾 − 1)�2 𝜋𝜋𝜋𝜋𝑠𝑠⁄

1 −�2 𝑁𝑁𝑠𝑠⁄ 𝑄𝑄−1�𝑃𝑃𝑓𝑓𝑓𝑓�
  (23) 

We can see that the threshold determination equation in the 
autocorrelation-energy-based method is not related to the noise 
anymore. 
Under ℋ1, the expected value of 𝜌𝜌 is: 

𝐸𝐸[𝜌𝜌] = 𝐸𝐸[|𝑐𝑐𝑥𝑥𝑥𝑥(0)|] + 𝐸𝐸[|𝑐𝑐𝑥𝑥𝑥𝑥(𝑛𝑛 > 0)|] 
 = 𝜎𝜎𝑤𝑤 

2 + 𝜎𝜎𝑠𝑠2 + ∑ |𝛼𝛼𝑛𝑛|𝐾𝐾−1
𝑛𝑛=1 𝜎𝜎𝑠𝑠2       (24)

where |𝛼𝛼𝑛𝑛| = 𝐸𝐸[𝑠𝑠(𝑖𝑖)𝑠𝑠(𝑖𝑖 − 𝑛𝑛)] 𝜎𝜎𝑠𝑠2⁄  (0 ≤ |𝛼𝛼𝑛𝑛| ≤ 1) is the 
normalized correlation among signal samples. We denote  Υ =
∑ |𝛼𝛼𝑛𝑛|𝐾𝐾−1
𝑛𝑛=1 , which represents the correlation strength among 

consecutive 𝐾𝐾  samples. The 𝜌𝜌 𝜇𝜇⁄  ratio under ℋ1  can be 
expressed as: 

 
𝜌𝜌
𝜇𝜇
≈
𝐸𝐸[𝜌𝜌]
𝐸𝐸[𝜇𝜇] =

𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2 + 𝛶𝛶𝜎𝜎𝑠𝑠2

𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2

= 1 +
Υ ∗ 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆 + 1

 (25) 

The detection probability is: 
𝑃𝑃𝑑𝑑�𝜆𝜆𝑝𝑝� = 𝑃𝑃 �𝜌𝜌𝜇𝜇 > 𝜆𝜆𝑝𝑝� ℋ1� 

≈ 𝑃𝑃� 𝜇𝜇 − (𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)

�2 𝑁𝑁𝑠𝑠⁄ (𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)

<

1
𝜆𝜆𝑝𝑝
�1 + 𝛶𝛶 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆 + 1� (𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2) − (𝜎𝜎𝑤𝑤 

2 + 𝜎𝜎𝑠𝑠2)

�2 𝑁𝑁𝑠𝑠⁄ (𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)

� ℋ1� 

= 1 − 𝑄𝑄�

1
𝜆𝜆𝑝𝑝
�1 + 𝛶𝛶 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆 + 1� − 1

�2 𝑁𝑁𝑠𝑠⁄
�                                               (26) 

 

C. Detection probability with the relationship of 𝐾𝐾, 𝛶𝛶, and SNR 
• ACC summation number 𝐾𝐾: according to (23), the decision 

threshold is related to the number of 𝐾𝐾 . To explore the 
impact of 𝐾𝐾, we use the same sine wave in Fig. 4(a) and fix 
𝑆𝑆𝑆𝑆𝑆𝑆 = −9𝑑𝑑𝑑𝑑  and 𝑃𝑃𝑓𝑓𝑓𝑓 = 10−5 . 105  times Monte Carlo 
simulations are performed to calculate detection probability 
for different 𝐾𝐾. The result is shown in Fig. 7. We can see 
that with K > 8  the detection probability is not very 
sensitive to 𝐾𝐾. Therefore, we fix 𝐾𝐾 = 10 in the following 
work. Table III gives threshold values for different false 
alarm probabilities with 𝑁𝑁𝑠𝑠 = 2000 and 𝐾𝐾 = 10.  
 

TABLE III 
𝜆𝜆𝑝𝑝 FOR DIFFERENT FALSE ALARM PROBABILITIES WITH 𝑁𝑁𝑠𝑠 = 2000, 𝐾𝐾 = 10 

𝑃𝑃𝑓𝑓𝑓𝑓 10−3 10−6 10−9 10−12 
𝜆𝜆𝑝𝑝 1.2863 1.3659 1.4322 1.4926 

 

• Signal correlation strength 𝛶𝛶 and SNR: according to (26), 
the detection probability is 𝛶𝛶  related,  where Υ =
∑ |𝛼𝛼𝑛𝑛|𝐾𝐾−1
𝑛𝑛=1 .𝛼𝛼𝑛𝑛  is the normalized correlation among signal 

samples with 𝑛𝑛 delay, and it reflects the randomness of a 
signal. For a random signal such as white noise, 𝛼𝛼𝑛𝑛 is near 
zero for 𝑛𝑛 > 0; for non-random signal, one or more 𝛼𝛼𝑘𝑘 will 
be significantly non-zero when 𝑛𝑛 > 0. With  𝐾𝐾 = 10 and 
0 ≤ |𝛼𝛼𝑛𝑛| ≤ 1, 𝛶𝛶 is restricted to [0,9]. If 𝑃𝑃𝑓𝑓𝑓𝑓 is fixed at 10−9 
and 𝑁𝑁𝑠𝑠  is fixed at 2000, detection probabilities with 
different 𝛶𝛶 under various SNR are calculated and shown in 
Fig. 8. The dashed line is the performance of average-
energy-based method assuming that the noise power is 
perfectly estimated, i.e., 𝜂𝜂 = 1 . The results indicate that 
when 𝛶𝛶 ≥ 3 , autocorrelation-energy-based method offers 
better performance than average-energy-based method. 
However, when 𝛶𝛶 < 3 , detection probability will be 
degraded. Therefore, to detect weakly correlated vibration 
signal, higher SNR is needed. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
A. Experimental setup of DAS 

The experimental setup of the DAS system based on 
heterodyne detection is shown in Fig. 9. A narrow-linewidth 
laser (NLL, NKT Photonics X15) with 100Hz frequency width 
at 1550.12nm is used as the optical source. The output of NLL 
is split into two branches with a 95:5 coupler. In the upper 
branch, the continuous wave (CW) is firstly modulated by an 
acoustic optical modulator (AOM) with an 80MHz frequency 
shift. The AOM is cascaded with a semiconductor optical 
amplifier (SOA, INPHENIX: IPSAD1501) to increase the 
extinction ratio (ER). In order to synchronize the AOM and the 
SOA, the pulse delay is properly adjusted through the arbitrary 
waveform generator (AWG). Two erbium-doped fiber 
amplifiers (EDFA1 and EDFA2) are used to boost the optical 
pulse power. The amplified spontaneous emission (ASE) noise 
is filtered out by an optical bandpass filter with 0.8nm width. 
Then the optical pulses are launched into the FUT. The RBSs 
are further amplified by EDFA3 and followed by another 0.8nm 
bandpass optical filter. Then it is combined with the optical 
local oscillator in the lower branch and launched into a balanced 
photo-detector (BPD). The data are collected by an 8-bit data 
acquisition system with a sampling rate of 625MS/s. After in-
phase/quadrature (I/Q) demodulation, both amplitude and 
phase information can be obtained. In the following work, 
vibration detection is based on the demodulated amplitude. It 
should be mentioned that the demodulated amplitude in the 
coherent detection DAS conveys the same information as the 
direct detection DAS, therefore, the proposed method is also 
suitable for the direct detection DAS system.To reduce data size, 
the data are downsampled by a factor of 20 along the fast-time 
axis after I/Q demodulation. 

In our experiment, the FUT is G652 single-mode fiber (SMF) 
and the total length is around 47.4km. The pulse repetition rate 
is set to 2kHz and the pulse width is 50ns. A piezoelectric 
transducer (PZT) cylinder with 5m fiber wrapped is put at the 
position around 46.6km to generate the first vibration. The PZT 
is driven by a 100Hz square wave. At the position around 
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47.1km, a motor works on a semi-suspended plastic sheet to 
generate the second vibration as shown in Fig. 9(b). A 5m-long 
fiber section is pulled tightly and fixed with glue on the 
backside of the plastic sheet as shown in Fig. 9(c). When the 
mechanical waves caused by the motor propagate to the plastic 
sheet, it will induce deformations of the fiber on it. The 
experiment is carried out in an open environment, so the FUT 
is subjected to both DAS system noise and environmental noise.  

Several differential RBS traces along the FUT is shown in 
Fig. 9(d). At position 46km, signal amplitude distribution of 
2000 scans is shown in Fig. 9(e), which is Gaussian distributed. 
To detect the vibrations along the FUT, the RBS traces are 
processed every second with a 0.5-second overlap along slow-
time axis for every position on the FUT. In total, we have 
1.07 × 108 PUs within a one-hour measurement period. If we 
set target FAR to 1/hour, then corresponding 𝑃𝑃𝑓𝑓𝑓𝑓  is 9.35 ×
10−9. In the following work, measured FA is defined as the 
total number of false alarms and measured false alarm 
probability is calculated by 𝑃𝑃𝑓𝑓𝑓𝑓𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 𝐹𝐹𝐹𝐹

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃 
. Detection 

probability of vibration #1 or #2 is calculated by 𝑃𝑃𝑑𝑑1 𝑜𝑜𝑜𝑜 𝑑𝑑2 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 #1 𝑜𝑜𝑜𝑜 #2
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 #1 𝑜𝑜𝑜𝑜 #2

. 
 
B. Average-energy-based method for vibration detection 

The detection performance of average-energy-based method 
is analyzed first. The calculated average energy along the FUT 
is shown in Fig. 10. Zoom-in view of the last 2.4km is shown 
in the inset. According to (8), the threshold is estimated as the 
noise power multiplied by 1.1778. The acquired 10 minutes 
RBS traces without applying any vibration are used to estimate 
the noise power for threshold determination. With the existence 
of noise uncertainty, the estimated noise power is set to the 
upper bound of the noise power to achieve target FAR. 
Therefore, the estimated noise power at each position is set to 
the maximum power. The threshold is shown in Fig. 10 with a 
blackline (𝜆𝜆𝑝𝑝). Using 𝜆𝜆𝑝𝑝 as a decision threshold, the detection 
performance is shown in Table IV. The detection probability is 
58.6% for vibration #1 and 81.8% for vibration #2. The 
detection probability of vibration #2 is higher than vibration #1 
since vibration #2 has a higher overall SNR, as shown in Fig. 
14. The SNR is estimated by: 𝑆𝑆𝑆𝑆𝑆𝑆� = (𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛−𝑣𝑣𝑣𝑣𝑣𝑣�����������)/
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛−𝑣𝑣𝑣𝑣𝑣𝑣�����������, where 𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣  is the power of vibration, and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛−𝑣𝑣𝑣𝑣𝑣𝑣����������� is 
the mean power of the 200m section in front of vibration 
positions. During a one-hour measurement period, the SNR of 
vibration #1 varies from -10.3dB to 11.1dB with an average of 
2.5dB and that varies from -2.2dB to 13.8dB with an average of 
7.7dB for vibration #2. Fig.11 shows that SNR is not a constant 
but instead fluctuates in a wide range due to signal fading 
phenomena and time-varying signals and noise.  

During a one-hour measurement period, the total number of 
FA is 9384 and corresponds to 8.77 × 10−5  measured false 
alarm probability. To reduce the false alarm probability, we 
need to set a higher decision threshold, however, this will 
decrease the detection probability. A possible solution to 
mitigate the effect of noise uncertainty is adapting the decision 
threshold to the noise power at different positions and different 

time slots. For this, we need to estimate the noise power in real-
time. Noise estimation algorithms in [25,26] can be used to 
assist the determination of a dynamic decision threshold at the 
cost of higher computational complexity. Another proposal to 
improve the detection performance is to reduce noise 
uncertainty in DAS. Noise uncertainty caused by signal fading 
can be alleviated by schemes in [9,10] for hardware 
optimization and can also be reduced by denoising algorithms 
such as in [6,11,13].  

 
C. Autocorrelation-energy-based method for vibration 
detection 

For the average-energy-based method, the knowledge of 
accurate noise power is essential in threshold determination. 
Inaccurate estimated noise power will result in detection 
performance degradation. However, in most situations, it is 
difficult to pre-estimate the noise power. Then we use 
autocorrelation-energy-based method for vibration detection 
without knowing the noise power information. With the same 
data in Fig. 10, 𝜌𝜌 𝜇𝜇⁄  along the FUT is shown in Fig. 12. Unlike 
average energy along the FUT that decreases exponentially, 
𝜌𝜌 𝜇𝜇⁄  at different positions are at the same level with a confined 
fluctuation range and the mean of 𝜌𝜌 𝜇𝜇⁄  is determined by (21). 
Therefore, a single threshold can be applied for vibration 
detection at different positions. According to (23), the decision 
threshold value is 1.4118 when the target FAR is 1FA/hour, 
which is shown in Fig. 12 with blackline (𝜆𝜆𝑝𝑝). The detection 
probabilities are 100% for vibration #1 and 98.6% for vibration 
#2, as shown in Table IV. Using 𝜆𝜆𝑝𝑝  as decision threshold, 
measured FA is 12 within one hour, corresponding to 
1.12 × 10−7  false alarm probability, which is two orders of 
magnitude smaller than average-energy-based method. 

As shown in Fig. 13,  𝜌𝜌 𝜇𝜇⁄  of noise distribution is on the left 
side while that of vibrations is on the right side and they are 
well separated. Ideally, if the non-vibration positions along the 
FUT are all white noise,  𝜌𝜌 𝜇𝜇⁄  distribution of non-vibration 
positions follows a perfectly symmetric Gaussian distribution. 
However, as shown in Fig. 13,  𝜌𝜌 𝜇𝜇⁄  of noise is slightly right-
skewed, which may due to the non-white environmental noise. 
Vibration #1 has a higher overall 𝜌𝜌 𝜇𝜇⁄ , which brings a higher 
detection probability. 𝜌𝜌 𝜇𝜇⁄  is related with both SNR and 
correlation strength. Estimated SNR distributions of vibration 
#1 and #2 are shown in Fig.11. To estimate the correlation 
strength of two different vibrations, their phases are unwrapped. 
Demodulated phases of vibration #1 and #2 and their 
corresponding power spectral density (PSD) are shown in Fig. 
14. Vibration #1 is a square wave and presents a strong 
repeating pattern as shown in Fig. 14(a1). The estimated 
correlation strength 𝛶𝛶�#1 = 6.2 . Vibration #2 caused by 
mechanical vibrations does not show a notable pattern, as 
shown in Fig. 14 (a2). From its PSD, we can see that it has a 
weak periodicity at 25Hz and has a narrow frequency band from 
5Hz to 60Hz. The estimated correlation strength 𝛶𝛶�#2 = 2.17. 
𝛶𝛶�#1 is much higher than 𝛶𝛶�#2 and it can explain why vibration #2 
has a higher detection probability than vibration #1 even though 
it has a lower overall SNR. 
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The data processing time of the two methods are also 
computed, as shown in Table IV. The processing time per 
second along the FUT is 0.14 ms for average-energy-based 
method and 116.67 ms for autocorrelation-energy-based 
method. The two algorithms are both implemented using 

Matlab offline with AMD Ryzen7 2700X Eight-Core CPU and 
32G RAMs. The processing time for the autocorrelation-
energy-based method is about 800 times slower than the 
average-energy-based method, but it is still fast enough and can 
be used for real-time monitoring. 

 
TABLE IV 

DETECTION PERFORMANCE COMPARISON OF AVERAGE-ENERGY-BASED METHOD AND AUTOCORRELATION-ENERGY-BASED METHOD 
 Decision threshold 𝜆𝜆𝑝𝑝 Processing time per 

second along FUT  𝑃𝑃𝑑𝑑1(#1) 𝑃𝑃𝑑𝑑2(#2) Measured FA 𝑃𝑃𝑓𝑓𝑓𝑓𝑀𝑀  
Average-energy-based method 63% 96.6% 9384 8.77 × 10−5 0.14 ms 

Autocorrelation-energy-based method 100% 98.1% 12 1.12 × 10−7 111.67 ms 
 

 
D. Discussions 
• For decision threshold: A threshold 𝜆𝜆𝑝𝑝 is required to decide 

whether the vibration is present or absent. This threshold 
determines both 𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑓𝑓𝑓𝑓. A common strategy for setting 
𝜆𝜆𝑝𝑝 is based on a target FAR and can be obtained by inverting 
the analytical expression of 𝑃𝑃𝑓𝑓𝑓𝑓 . For the average-energy- 
based method, the decision threshold is a function of 𝑃𝑃𝑓𝑓𝑓𝑓 
and noise power, as indicated by (8). The actual noise power 
is generally unknown in DAS and getting accurate 
knowledge of noise power is extremely difficult since the 
noise power changes temporally and spatially. We can use 
the upper bound of noise power in threshold calculation as 
given in (14), which requires a long time to record the 
background noise. And setting decision threshold based on 
the historic background noise may not reliable for current 
data. Instead, a better choice is to use the autocorrelation-
energy-based method, with which the decision threshold is 
immune to noise uncertainty and only determined by𝑃𝑃𝑓𝑓𝑓𝑓 
according to (23).  

• For environmental noise induced FA: background noise 
consists of DAS system noise and environmental noise. The 
DAS system noise can be regarded as additional white 
Gaussian noise (AWGN) in a short time period. The 
environmental noises from wind interference, structure-free 
vibration and the temperature change may not be AWGN 
and will interfere with the vibration signal. Therefore, 
environmental noises may cause additional false alarms and 
they cannot be eliminated by just increasing the decision 
threshold level in the vibration detection stage. As an 
alternative, they can be ruled out in the pattern recognition 
stage based on some prior knowledge about the vibration 
signal. 

VI. CONCLUSION 
In this work, we propose the autocorrelation-energy-based 

method for vibration detection and compare it with the average- 
energy-based method in a DAS system. Statistical theories have 
been used for guiding the decision threshold setting and 
quantifying the relationship between detection performance and 
the SNR.  The experiment is carried out to evaluate the 
detection performance of two methods. It is shown that the 
proposed autocorrelation-energy-based method gives better 
detection performance compared with the average-energy-

based method. Furthermore, if the vibration signal is highly 
correlated, detection probability will be enhanced. The 
proposed method does not need any prior knowledge to detect 
vibrations and does not rely on the noise power to set the 
decision threshold, which makes it useful for vibration 
detection in DAS. 

APPENDIX 

LEMMA1. Sum of squares of 𝑁𝑁𝑠𝑠 independent standard Gaussian 
random variables is a Chi-square random variable with 𝑁𝑁𝑠𝑠 
degrees of freedom. 
Let 𝑁𝑁𝑠𝑠 ∈ ℕ . We say 𝑋𝑋  has a Chi-square distribution with 
𝑁𝑁𝑠𝑠 degrees of freedom (𝜒𝜒𝑁𝑁𝑠𝑠

2 ) if and only if its probability density 
function (PDF) is: 

𝑓𝑓𝜒𝜒(𝑥𝑥,𝑁𝑁𝑠𝑠) = �
1

2𝑁𝑁𝑠𝑠 2⁄ Γ(𝑁𝑁𝑠𝑠/2)
𝑥𝑥𝑁𝑁𝑠𝑠/2−1𝑒𝑒−𝑥𝑥/2     𝑥𝑥 ≥ 0   

0                                               𝑥𝑥 < 0
 

where Γ(∙)  denotes Gamma function. We denote 𝑐𝑐 =
1

2𝑁𝑁𝑠𝑠 2⁄ Γ(𝑁𝑁𝑠𝑠/2)
.  

Proof A1: the square of a standard Gaussian random variable 
is a Chi-square random variable with 1 degree of freedom. 
Let 𝑍𝑍 be a standard Gaussian random variable and let 𝑋𝑋 be its 
square: 𝑋𝑋 = 𝑍𝑍2. 
• For 𝑥𝑥 ≥ 0, the distribution of 𝑋𝑋 is: 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 𝑃𝑃(𝑍𝑍2 ≤ 𝑥𝑥) = � 𝑓𝑓𝑧𝑧(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑥𝑥
1
2

−𝑥𝑥
1
2

 

where 𝑓𝑓𝑧𝑧(𝑧𝑧) is the probability density function of a standard 
Gaussian random variable: 𝑓𝑓𝑧𝑧(𝑧𝑧) = 1

√2𝜋𝜋
exp (−1

2
𝑧𝑧2) 

• For 𝑥𝑥 < 0 , 𝐹𝐹𝑋𝑋(𝑥𝑥) = 0 . Because 𝑋𝑋 = 𝑍𝑍2 , it will not be 
negative.  

    Using Leibniz integral rule and the fact that density function 
is the derivative of the distribution function, the PDF of 𝑋𝑋 , 
denoted by 𝑓𝑓𝑋𝑋(𝑥𝑥), is obtained as follows: 
• For 𝑥𝑥 ≥ 0: 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝑑𝑑𝐹𝐹𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑑𝑑

 

Detection performance 
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= 𝑓𝑓𝑧𝑧 �𝑥𝑥
1
2�
𝑑𝑑 �𝑥𝑥

1
2�

𝑑𝑑𝑑𝑑
− 𝑓𝑓𝑧𝑧 �−𝑥𝑥

1
2�
𝑑𝑑 �−𝑥𝑥

1
2�

𝑑𝑑𝑑𝑑
=

1
√2𝜋𝜋

𝑥𝑥−
1
2 exp �−

1
2
𝑥𝑥�

=
1

2
1
2Γ �1

2�
𝑥𝑥
1
2−1exp (−

1
2
𝑥𝑥) 

• For 𝑥𝑥 < 0, trivially, 𝑓𝑓𝑋𝑋(𝑥𝑥) = 0.  
   Therefore, 𝑓𝑓𝑋𝑋(𝑥𝑥) is the PDF of a Chi-square random variable 
with 1 degree of freedom. 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
1

21 2⁄ Γ(1/2)
𝑥𝑥1/2−1𝑒𝑒−1/2     𝑥𝑥 ≥ 0   

0                                               𝑥𝑥 < 0
 

 
Proof A2:  sum of 𝑁𝑁𝑠𝑠 independent Chi-square random variables 
is a Chi-square random variable with 𝑁𝑁𝑠𝑠 degrees of freedom. 
    The distribution of a random variable is often characterized 
in terms of its moment generating function. The moment 
generating function of a Chi-square random variable 𝑋𝑋 with 1 
degree of freedom is: 
𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸[exp(𝑡𝑡𝑡𝑡)] 

= 𝑐𝑐 � exp(𝑡𝑡𝑡𝑡) 𝑥𝑥
1
2−1 exp �−

1
2
𝑥𝑥� 𝑑𝑑𝑑𝑑

∞

0

= 𝑐𝑐 � 𝑥𝑥
1
2−1 exp �− �

1
2
− 𝑡𝑡� 𝑥𝑥� 𝑑𝑑𝑑𝑑    {𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦 = �

1
2
− 𝑡𝑡� 𝑥𝑥}

∞

0

= 𝑐𝑐 �
2

1 − 2𝑡𝑡
�
1
2
� y

1
2−1 exp(−𝑦𝑦) 𝑑𝑑𝑑𝑑

∞

0

=
1

2
1
2Γ �1

2�
�

2
1 − 2𝑡𝑡

�
1
2
Γ �

1
2
�

= (1 − 2𝑡𝑡)−1/2 
   The moment generating function of a sum of mutually 
independent random variables is just the product of their 
moment generating functions. Therefore, sum of 𝑁𝑁𝑠𝑠 
independent Chi-square random variables is: 

𝑀𝑀𝑋𝑋(𝑡𝑡) = �𝑀𝑀𝑋𝑋𝑖𝑖(𝑡𝑡)

𝑁𝑁𝑠𝑠

𝑖𝑖=1

= �(1 − 2𝑡𝑡)−1/2

𝑁𝑁𝑠𝑠

𝑖𝑖=1

= (1 − 2𝑡𝑡)−𝑁𝑁𝑠𝑠/2 

   The result shows that moment generating function of 𝑋𝑋 is the 
moment generating function of a Chi-square random variable 
with 𝑁𝑁𝑠𝑠  degree of freedom. Therefore, 𝑋𝑋  is a Chi-square 
random variable with 𝑁𝑁𝑠𝑠 degrees of freedom, 𝑋𝑋~𝜒𝜒𝑁𝑁𝑠𝑠

2 . 
 
LEMMA2. The expected value of a Chi-square random variable 
with 𝑁𝑁𝑠𝑠  degrees of freedom is 𝐸𝐸(𝑋𝑋) = 𝑁𝑁𝑠𝑠 , the variance is 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 2𝑁𝑁𝑠𝑠. 
The expected value of a Chi-square random variable with 𝑁𝑁𝑠𝑠 
degree of freedom is: 

𝐸𝐸(𝑋𝑋) = � 𝑥𝑥𝑓𝑓𝜒𝜒(𝑥𝑥,𝑁𝑁𝑠𝑠)𝑑𝑑𝑑𝑑 
∞

0
 

=  𝑐𝑐 � 𝑥𝑥𝑁𝑁𝑠𝑠 2⁄ +1𝑒𝑒− 𝑥𝑥2𝑑𝑑𝑑𝑑  
∞

0

=  𝑐𝑐 �−𝑥𝑥𝑁𝑁𝑠𝑠 2⁄ 𝑒𝑒−𝑥𝑥 2⁄ |0∞ + � 𝑁𝑁
∞

0
𝑥𝑥𝑁𝑁𝑠𝑠 2−1⁄ 𝑒𝑒−𝑥𝑥 2⁄ 𝑑𝑑𝑑𝑑�

= 𝑁𝑁𝑠𝑠 � 𝑓𝑓𝜒𝜒(𝑥𝑥,𝑁𝑁𝑠𝑠)
∞

0
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑠𝑠     
 

𝐸𝐸[𝑋𝑋2] = � 𝑥𝑥2𝑓𝑓𝜒𝜒(𝑥𝑥,𝑁𝑁𝑠𝑠)𝑑𝑑𝑑𝑑 
∞

0
 

= 𝑐𝑐 � 𝑥𝑥𝑁𝑁𝑠𝑠 2⁄ +1𝑒𝑒−
𝑥𝑥
2     𝑑𝑑𝑑𝑑 

∞

0

= 𝑐𝑐 �−2𝑥𝑥𝑁𝑁𝑠𝑠 2⁄ +1𝑒𝑒−𝑥𝑥 2⁄ |0∞ + � 𝑁𝑁𝑠𝑠𝑥𝑥𝑁𝑁𝑠𝑠 2⁄ −1𝑒𝑒−
𝑥𝑥
2 𝑑𝑑𝑑𝑑

∞

0
�

= 𝑁𝑁𝑠𝑠(𝑁𝑁𝑠𝑠 + 2)         
Therefore, the variance of a Chi-square random variable with 
𝑁𝑁𝑠𝑠 degree of freedom is: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2 = 𝑁𝑁𝑠𝑠(𝑁𝑁𝑠𝑠 + 2) −𝑁𝑁𝑠𝑠2 = 2𝑁𝑁𝑠𝑠 
Under  ℋ0, we have: 

𝐸𝐸�𝑓𝑓𝑢𝑢(𝑥𝑥)� = 𝐸𝐸(
𝜎𝜎𝑤𝑤2

𝑁𝑁𝑠𝑠
𝑓𝑓𝜒𝜒 �

𝑥𝑥𝑥𝑥𝑤𝑤 
2

𝑁𝑁𝑠𝑠
,𝑁𝑁𝑠𝑠�) =

𝜎𝜎𝑤𝑤 
2

𝑁𝑁𝑠𝑠
∙ 𝑁𝑁𝑠𝑠 = 𝜎𝜎𝑤𝑤 

2  

𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑢𝑢(𝑥𝑥)� = 𝑉𝑉𝑉𝑉𝑉𝑉(
𝜎𝜎𝑤𝑤 
2

𝑁𝑁𝑠𝑠
𝑓𝑓𝜒𝜒 �

𝑥𝑥𝑥𝑥𝑤𝑤 
2

𝑁𝑁𝑠𝑠
,𝑁𝑁𝑠𝑠�) =

𝜎𝜎𝑤𝑤 
4

𝑁𝑁2 ∙ 2𝑁𝑁𝑠𝑠 =
2𝜎𝜎𝑤𝑤 

4

𝑁𝑁𝑠𝑠
 

Under  ℋ1, we have: 

𝐸𝐸�𝑓𝑓𝑢𝑢(𝑥𝑥)� = 𝐸𝐸 �
𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2
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𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑠𝑠2

𝑁𝑁𝑠𝑠
𝑓𝑓𝜒𝜒 �

𝑥𝑥(𝜎𝜎𝑤𝑤 
2 + 𝜎𝜎𝑠𝑠2)
𝑁𝑁𝑠𝑠

,𝑁𝑁𝑠𝑠�� 

                       = �
𝜎𝜎𝑛𝑛 
2 + 𝜎𝜎𝑠𝑠2

𝑁𝑁𝑠𝑠
�
2

∙ 2𝑁𝑁𝑠𝑠 

                       =
2(𝜎𝜎𝑤𝑤 

2 + 𝜎𝜎𝑠𝑠2)2

𝑁𝑁𝑠𝑠
 

REFERENCES 
[1] S. Dou, N. Lindsey, A. M. Wagner, T. M. Daley, B. Freifeld, M. Robertson, 
J. Peterson, C. Ulrich, E. R. Martin, and J. B. Ajo-Franklin, “Distributed 
acoustic sensing for seismic monitoring of the near surface: A traffic-noise 
interferometry case study,” Scientific reports, 7(1): 1-12, 2017. 
[2] J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-
optic intrusion sensor system,” Journal of Lightwave Technology, 23(6): 2081-
2087, 2005. 
[3] F. Tanimola, D. Hill, “Distributed fiber optic sensors for pipeline 
protection,” Journal of Natural Gas Science and Engineering, 1(4-5): 134-143, 
2009. 
[4] P. Healey, “Fading in heterodyne OTDR,” Electronics Letters, 20(1): 30-
32, 1984. 
[5] H. F. Taylor, C. E. Lee, “Apparatus and Method for Fiber Optic Intrusion 
Sensing,” U.S. Pantent 5194847A, 16 March,1993. 
[6] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on 
coherent detection of phase-OTDR,” Journal of Lightwave Technology, 28(22): 
3243-3249, 2010. 
[7] H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, 
and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer 
assisted by first-order Raman amplification for distributed vibration sensing 
over >100 km,” Journal of Lightwave Technology, 32(8): 1510-1518, 2014. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

[8] Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, 
and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed 
amplification,” Optics Letters, 39(20): 5866-5869, 2014. 
[9] M. Ren, P. Lu, L. Chen, and X. Bao, “Theoretical and experimental analysis 
of 𝜑𝜑-OTDR based on polarization diversity detection,” IEEE Photonics Letter, 
28(6): 697-700, 2016. 
[10] A. H. Hartog, L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, T. Dean, 
T. Cuny, A. Constantinou, and F. V. Englich, “The use of multi‐frequency 
acquisition to significantly improve the quality of fibre‐optic‐distributed 
vibration sensing,” Geophysical Prospecting, 66(S1): 192-202, 2018. 
[11] Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving 
detection performance of distributed vibration sensor,” IEEE Photonics 
Technology Letters, 24(7): 542-544, 2012. 
[12] T. Zhu, X. Xiao, Q. He and D. Diao, “Enhancement of SNR and spatial 
resolution in 𝜑𝜑 -OTDR system by using two-dimensional edge detection 
method,” Journal of Lightwave Technology, 31(17): 2851-2856, 2013. 
[13] H. He, L. Shao, H. Li, P. Wei, B. Luo, X. Zou and L. Yan, “SNR 
enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering 
algorithm,” IEEE Photonics Journal, 9(3): 1-10, 2017. 
[14] H. Zhu. C. Pan, and X. Sun, “Vibration pattern recognition and 
classification in OTDR based distributed optical-fiber vibration sensing 
system,” in Proc. SPIE, 9062, San Diego, CA, United States, 2014. 
[15] F. Jiang, H. Li, Z. Zhang, Y. Zhang, and X. Zhang, “Localization and 
discrimination of the perturbation signals in fiber distributed acoustic sensing 
systems using spatial average kurtosis,” Sensors, 18(9): 2839, 2018. 
[16] S. Liang, X. Sheng, S. Lou, “Experimental investigation on lower nuisance 
alarm rate phase-sensitive OTDR using the combination of a Mach–Zehnder 
interferometer,” Physics & Technology, 75: 117-123, 2016. 
[17] B. M. Tabi Fouda, D. Han, B. An, X. Lu, and Q. Tian, “Events detection 
and recognition by the fiber vibration system based on power spectrum 
estimation,” Advances in Mechanical Engineering, 10(11): 
1687814018808679, 2018. 
[18] J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martín-
López, P. C. Guillén, G. D. Pauw, F. D. Smet, W. Postvoll, C. H. Ahlen, and 
M. González-Herráez, “Real field deployment of a smart fiber-optic 
surveillance system for pipeline integrity threat detection: Architectural issues 
and blind field test results,” Journal of Lightwave Technology, 36(4): 1052-
1062, 2018. 
[19] H. Urkowitz, “Energy detection of unkown deterministic signals,” 
Proceedings of the IEEE, 55(4): 523-531, 1967. 
[20] J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and 
Explanations of Interference Fading of a  𝜑𝜑-OTDR With a Multi-Frequency 
Source,” Journal of lightwave technology, 31(17): 2947-2954, 2013. 
[21] J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, P. 
Corredera, and S. Martin-Lopez, “Machine learning methods for pipeline 
surveillance systems based on distributed acoustic sensing: A review,” Applied 
Sciences, 7(8): 841, 2017. 
[22] M. Adeel, C. Shang, D. Hu, H. Wu, K. Zhu, A. Raza, and C. Lu, “Impact-
Based Feature Extraction Utilizing Differential Signals of Phase-Sensitive 
OTDR,” Journal of Lightwave Technology, 38(8): 2539-2546, 2020. 
[23] M. Rosenblatt, “A central limit theorem and a strong mixing condition,” 
Proceedings of the National Academy of Sciences of the United States of 
America, 42(1): 43, 1956. 
[24] Y. Zeng, Y.C. Liang, “Spectrum-sensing algorithms for cognitive radio 
based on statistical covariances, “ IEEE Transactions on Vehicular Technology, 
58(4): 1804-1815, 2008. 
[25] R. Martin, “Noise Power Spectral Density Estimation Based on Optimal 
Smoothing and Minimum Statistics”, IEEE Transactions on Speech and Audio 
Processing, 9(5): 504-512, 2001. 
[26] I. Cohen, B. Bergdugo, “Noise Estimation by Minima 
Controlled Recursive for Robust Speech Enhancement,” IEEE 
Signal Processing Letters, 9(1): 12-15, 2002． 
 
 
 
 
 


	I. INTRODUCTION
	II. data structure and data processing of DAS
	A. Data structure of DAS
	B. Data processing of DAS

	III. Vibration detection based on average energy method
	A. Theoretical model
	B. Average-energy-based method for vibration detection in DAS
	C. Detection probability with the relationship of SNR, processing window size, and false alarm probability
	IV Autocorrelation-energy based method
	A. Characteristics of autocorrelation

	V. experimental results and discussions
	VI. Conclusion
	Appendix
	Lemma1. Sum of squares of ,𝑁-𝑠. independent standard Gaussian random variables is a Chi-square random variable with ,𝑁-𝑠. degrees of freedom.
	Proof A1: the square of a standard Gaussian random variable is a Chi-square random variable with 1 degree of freedom.
	References



