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Abstract—There are two basic types of feature representations 

for speech signals. The first type refers to probabilistic models, 

such as the Gaussian mixture model (GMM). The second type 

refers to vector-based feature representations, such as the 

Gaussian supervector (GSV). Since vector-based feature 

representations are easier to use and process, they are more 

popular than probabilistic model-based feature representations. 

In this paper, we begin by explaining the rationale behind two 

widely used vector-based feature representations, viz. GSV and 

the i-vector, and then make extensions. GSV is a supervector (SV) 

based on maximum a posteriori (MAP) adaptation. Its 

computation is simple and fast, but its dimensionality is high and 

fixed. While the i-vector is a latent vector (LV) based on factor 

analysis (FA). Although the computation can be time-consuming 

because of additional model parameters, its dimensionality is 

changeable. To generalize GSV, we propose the MAP SV, which is 

also based on MAP adaptation but can have an even higher 

dimensionality and thus carry more information. To boost the 

computational efficiency of the i-vector, we adopt the concept of 

the mixture of factor analyzers (MFA) and propose the MFA LV, 

which exhibits a similar flexibility in dimensionality but is faster 

in computation. The experimental results for speaker 

identification and verification tasks demonstrate that, MAP SV 

can be more robust than GSV, and MFALV is comparable to or 

even better than the i-vector in effectiveness and meanwhile 

maintains a higher computational efficiency. With a powerful 

backend, GSV and MAP SV are comparable to the i-vector and 

MFALV, but the latter two are more flexible in dimensionality. 

Index Terms—Acoustic and speech signal processing, 

vector-based feature representation, Gaussian supervector, 

i-vector, supervector and latent vector

I. INTRODUCTION

piece of acoustic signal may carry different types of

information. For example, a speech signal may carry 

information about the speaker, the acquisition device, or the 

surrounding environment. A nonspeech acoustic signal may 

carry information regarding acoustic scenes or environmental 

sounds. In order to further process the acoustic signal for 

detection, recognition or visualization purposes, effective and 

informative feature representations should be constructed. As 

the length of a piece of acoustic signal may vary, it is common 
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to first divide the signal into equal-length short-time frames to 

obtain a sequence of frame-level feature vectors, and then 

obtain a sample-level feature representation based on them. 

The sample-level feature representation can be a 

probabilistic model, such as the adapted Gaussian mixture 

model (GMM) [1], which works well for speaker recognition 

[1][2] and acoustic scene classification [3]. Intrinsically, it is 

difficult to compare the similarity of two probabilistic models 

in terms of distance. A feasible distance metric for two 

probabilistic models is the Kullback-Leibler (KL) divergence; 

however, it is not symmetric, and its calculation involves an 

integration over the whole feature space. This makes KL 

divergence inconvenient, as a closed-form solution only exists 

for simple models. Nonetheless, approximations can be made 

with certain constraints such that the computation is tractable 

[4]. 

Naturally, we prefer to use a vector to represent an acoustic 

sample, which means that the comparison of acoustic samples 

becomes the comparison of vectors. In addition, vector-based 

feature representations are also easy to visualize. Two prevalent 

vector-based feature representations are the Gaussian 

supervector (GSV) and the i-vector [5]. The applications of 

GSV include speaker recognition [4], speech acquisition device 

identification [6][7], speech clustering [8] and acoustic scene 

classification [9]. The i-vector has been widely adopted for 

speaker recognition [10][11][5] and is also applicable to voice 

search [12], acoustic scene classification [13][14] and acoustic 

signal clustering [15]. Due to the generality of GSV and the 

i-vector, their applications also extend to action recognition

[16], facial expression recognition [17], and video indexing

[18].

Both GSV and the i-vector are obtained based on the 

posterior probabilities provided by a universal background 

model (UBM), which is usually a GMM trained using 

unlabeled data. Nonetheless, the computation of GSV only 

depends on the parameters of the GMM, while that of the 

i-vector requires more parameters. From this perspective, GSV

can be more efficient in computation than the i-vector, but the

latter can have a flexible dimensionality. UBM provides some

prior information regarding the distributions of the acoustic

features [19], which is highly useful, especially when the

number of labeled data is limited. The posterior probabilities

can also be provided by a deep belief net (DBN) trained in an

unsupervised manner [20] or a deep neural network (DNN)

trained in a supervised manner [21]. The activations of the

hidden layer in a DNN can also be used to produce vector-based
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feature representations, such as the d-vector [22] and the 

x-vector [23][24]. However, performance improvement usually 

requires abundant training data or data augmentation [24]. 

GSV is based on maximum a posteriori (MAP) adaptation of 

the UBM. After adapting the parameters of the GMM-based 

UBM using the frame-level feature vectors obtained from an 

acoustic sample, the adapted mean vectors are concatenated to 

form the GSV. Naturally, one may wonder whether we can 

concatenate other parameters of the adapted GMM to obtain a 

more informative feature representation. This results in the 

proposed MAP supervector (SV), which may involve the 

concatenation of different MAP adapted parameters. The 

concatenation mechanism also makes the choice of the UBM 

flexible. In addition, we also propose a simple means of 

determining the value of the relevance factor used to construct 

GSV or MAP SV. 

The i-vector is based on a factor analysis (FA) model, where 

it is presumed that an acoustic sample is generated by a latent 

vector. It is then obtained as the expected value of that latent 

vector. In the model assumption, the latent vector can be treated 

as being shared among all the frame-level feature vectors in an 

acoustic sample, as all of them together produce it. This sharing 

mechanism makes the i-vector robust and able to capture the 

common characteristics among all the frame-level feature 

vectors in an acoustic sample. However, this mechanism also 

makes the computation inefficient when the dimensionality of 

the latent vector is high. Thus, some studies try to simplify its 

formulation to reduce the computational burden [25][26]. The 

e-vector is a variant of the i-vector, differing in the estimation 

of the factor-loading matrix [42]. It can be more discriminative 

than the i-vector but still suffers from the high computational 

burden. 

In this paper, from a different angle, we employ the mixture 

of factor analyzers (MFA) as the UBM to construct feature 

representations, resulting in the MFA supervector (MFASV) 

and MFA latent vector (MFALV). Different from the i-vector, 

MFA adopts the assumption that each frame-level feature 

vector has its own latent vector, whose dimensionality is then 

considerably lower than that of the i-vector. As a consequence, 

the estimation of model parameters for MFA is more efficient 

than the i-vector. MFALV is then obtained as the weighted sum 

of the expectations of the latent vectors, and MFASV is an 

affine transformation of MFALV. The rationale of MFA is that 

it models the frame-level feature vectors better if they carry 

abundant information and exhibit large variation across frames. 

In [44], MFA has also been used as a probability estimator for 

speaker identification and demonstrated some improvements 

over GMM. In this paper, we employ MFA to construct 

vector-based feature representations. In [45], the authors report 

that there may be redundancies within the frame-level feature 

vector; therefore, they employ the mixture of probabilistic 

principal component analysis (MPPCA) to model the 

distribution of the frame-level feature vectors, which is similar 

to employing MFA, as MPPCA is a special form of MFA with 

some constraints on the noise covariance. However, the 

MPPCA-based frame-level feature vectors are then fed into the 

i-vector framework, which also suffers from a high 

computational burden. 

The performance of GSV, the i-vector and their extensions 

(viz. MAP SV, MFALV and MFASV) are evaluated by 

performing two small-scale speaker identification tasks and one 

large-scale speaker verification task. Linear support vector 

machine (SVM) and the probabilistic linear discriminant 

analysis (PLDA) model are employed as the classifiers. PLDA 

is also used to produce the verification score. SVM is an 

efficient classifier with a broad range of applications, while 

PLDA is a powerful model for certain specific research areas 

such as face recognition [27]-[29], speaker recognition 

[21]-[26], and audio-visual studies [30][31]. 

The major contributions of this paper include the following 

points: 

• We analyze and discuss the rationale of GSV and the i-vector 

and perform comprehensive comparative experiments to 

evaluate their effectiveness and efficiency. 

• Starting from GSV, we propose MAP SV, which generalizes 

GSV. MAP SV demonstrates the generality of the concept 

of the Supervector and can even be further extended. 

• Starting from the i-vector, we propose MFALV, which can 

consume less time to compute and less memory space to 

store. Both theoretical analysis and experimental results 

show that, compared to the i-vector, MFALV has higher 

computational efficiency and similar effectiveness. 

• We compare different feature representations from both 

theoretical and experimental perspectives, attempting to 

provide some inspirations for designing new types of 

feature representations. 

The rest of this paper is organized as follows. In Section II, 

we describe the formulation of GSV and explain the rationale 

behind it. We then extend it to MAP SV, which may carry more 

abundant information. The concept of MAP SV can even be 

further extended. In Section III, we describe the formulation of 

the i-vector and explain how to interpret it from the perspective 

of FA. We then introduce MFA and MFALV and make 

comparisons with the i-vector in terms of formulation and 

computational complexity. In Section IV, we analyze the 

relationship between GSV, the i-vector and their extensions, 

and explain the importance of UBM. In Section V, we make 

comparisons and discussions about GSV, the i-vector and their 

extensions in two speaker identification tasks and one speaker 

verification task, in terms of effectiveness and efficiency. In 

Section VI, a conclusion is drawn, together with some 

inspirations. 

II. GSV AND ITS EXTENSIONS 

A. Formulation of GSV 

GSV is based on adapting the parameters of a universal 

background model (UBM). The UBM is usually a GMM. 

Suppose a GMM-based UBM has been constructed, denoted as 

{ | 1,2... }m m M = = , where { , , }m m m m   = represents 

the parameters of the m-th Gaussian component with weight 

m , mean m  and standard deviation m  ( m  is a vector, 

assuming the covariance of each Gaussian component is 
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diagonal). Given an acoustic sample s, denoted as a sequence of 

T frame-level feature vectors {
1x ,

2x ,…
Tx }, the posterior 

probability ( )m tx  with respect to component 
m  given the 

observation of a vector 
tx  is calculated using (1), where 

( | , )t m mp x    is the Gaussian probability with parameters 

{ , }m m  . 
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Then the zero-order, first-order and second-order sufficient 

statistics are computed as given by (2) ~ (4) respectively, based 

on maximum likelihood estimation (MLE) [1]. The square 

operation is an elementwise operation. 
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Having the sufficient statistics, a new set of parameters for 

each component can be obtained based on maximum a 

posteriori (MAP) adaptation, as given by (5) ~ (7), where 
m , 

m  and 
m  denote the adapted weight, adapted mean and 

adapted standard deviation, respectively, m  is the adaptation 

coefficient given by (8), where r is the relevance factor, and λ is 

an automatically determined factor used to ensure the weights 

sum to unity [1]. The square operation is an elementwise 

operation. MAP adaptation adjusts the parameters of the UBM 

towards the statistics of the sample s, and the relevance factor r 

indicates the degree of adjustment. 
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GSV is then the concatenation of the adapted mean vectors 

m  for m=1,2…M, as given by (9) [4]. If the dimensionality of 

tx  is D×1, then the dimensionality of GSV is MD×1. 
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B. Rationale behind GSV 

The proposal of GSV originates from the difficulty of 

utilizing the KL divergence to compare two distributions for 

speaker recognition [4]. Before the emergence of GSV, an 

acoustic sample s can be represented by an adapted GMM with 

parameters { | 1,2... }m m M = = , where { , , }m m m m   = is 

given by (5) ~ (7). For two acoustic samples a and b, suppose 

their corresponding adapted GMMs are represented by 
( ) ( ){ | 1,2... }a a

m m M = =  and ( ) ( ){ | 1,2... }b b

m m M = = , 

with ( ) ( ) ( ) ( ){ , , }a a a a

m m m m   =  and ( ) ( ) ( ) ( ){ , , }b b b b

m m m m   = . The 

KL divergence between ( )a  and ( )b  is defined in (10), 

where ( ) ( )a

mp x  and ( ) ( )b

mp x  represent the Gaussian probability 

with parameters ( ) ( ){ , }a a

m m   and ( ) ( ){ , }b b

m m  , respectively. 
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The KL divergence between two GMMs is upper bounded by 

the weighted sum of the KL divergence between each pair of 

Gaussian components, as expressed in (11) [32]. 
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If we assume ( ) ( )a b

m m m  = =  and ( ) ( )a b

m m m  = = , and 

define a diagonal matrix 
m  whose ii-th element is the square 

of the i-th element of 
m , (11) is further simplified to (12). 

This assumption on the adapted weights and adapted standard 

deviations ensures that the upper bound can be written in the 

form of a Euclidean distance. The result in (12) is also given by 

[4], but some details are not mentioned, such as the assumption 

of some adapted parameters being equal. Therefore, we provide 

a detailed proof in the appendix. 
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The righthand side in (12) is the distance between two 

normalized GSVs (nGSV) given by (13), where the vector 

division operation is an elementwise operation. This implies 

that under the assumption that the weight and the covariance of 

the two adapted GMMs are the same, the distance between the 

two adapted GMMs can be approximated by the distance 
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between the two nGSVs. This finding lays the foundation for 

GSV. 
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The distance between two GMMs can also be measured 

using the Bhattacharyya distance, which can then be 

approximated as the Euclidean distance between two 

GMM-UBM mean interval (GUMI) supervectors [49]. A 

GUMI supervector performs normalization using the average 

of the covariances of the two GMMs; therefore, its computation 

depends on the statistics of a pair of acoustic samples. However, 

given an acoustic sample, we may prefer that a feature 

representation is generated merely from this specific sample, 

instead of a pair of samples. 

C. Generalization of GSV: MAP Supervector 

GSV is merely the concatenation of the adapted mean 

vectors. Naturally, we may wonder whether it is feasible to 

concatenate other parameters, such as the adapted weights and 

adapted standard deviations, as some studies show that the 

weight parameter may provide complementary information to 

the mean parameter [50]. This idea is heuristic but simple to 

implement, leading to a more general type of feature 

representation, which we name the MAP supervector (MAP 

SV). The MAP adaptation procedure in (5) ~ (7) is highly 

intuitive and meaningful. It indicates that the adapted 

parameters are simply the weighted sum of the UBM 

parameters (i.e., prior parameters) and the sample-based 

parameters (i.e., posterior parameters). The key parameter is 

the posterior probability provided in (1). This posterior 

probability can also be provided by other types of UBM, such 

as DBN [20]. 

In general, we have MAP weight SV (WSV), MAP mean SV 

(MSV), which is GSV, and MAP variance SV (VSV), as given 

by (14) ~ (16), respectively. If the dimensionality of tx  is D×1, 

then WSV has a dimensionality of M×1, MSV has a 

dimensionality of MD×1, and VSV has a dimensionality of 

MD×1. We may further concatenate WSV, MSV and VSV to 

form a concatenated SV having a dimensionality of 

(M+2MD)×1, as given by (17), which may carry more abundant 

information and be more robust than the SV based on a single 

type of adapted parameters. Further operations can be applied 

to MAP SV, such as performing factor analysis on WSV [50]. 
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In addition to performing the normalization using the 

parameters of the UBM, which is the case of nGSV, we may 

alternatively perform the normalization using the adapted 

parameters, yielding the normalized MSV (nMSV), as given by 

(18), where the vector division operation is an elementwise 

operation. 
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Usually, the relevance factor r in (8) is determined according 

to some prior experimental results. In this paper, we propose a 

heuristic but reasonable way to semiautomatically determine 

the value of r, which is given by (19), where β is a scaling factor, 

T is the number of frame-level feature vectors for the sample s, 

and M is the number of mixture components in the UBM. 

Therefore, r can be different for different samples, depending 

on T. 
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The rationale of (19) is explained as follows. When 1 = , 

we have 
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m
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according to (1) and (2). This means that, if the sample s fits 

well to some Gaussian component m such that 
0[ ]mE x r T , 

then 0.5m  , causing the adapted parameters to be adjusted 

more towards the sample s instead of the m-th component in the 

UBM. Therefore, the larger the posterior probability ( )m tx  is, 

the greater the adapted parameters will be adjusted towards the 

sample; the smaller the posterior probability is, the greater the 

adapted parameters will be adjusted towards the m-th 

component in the UBM. β controls the dependence of the 

adapted parameters on the sample or the UBM. When 1  , 

the adapted parameters are more dependent on the sample; 

when 1  , the adapted parameters are more dependent on the 

UBM. Therefore, 1 =  is the critical point, and the 

appropriate value of β can be determined by varying the value 

in the neighborhood of 1 = . On this ground, determining the 

value of β is relatively simpler than directly determining the 

value of r, because r can have any value. In [51], an adaptive 

relevance factor is proposed, which makes the adaptation less 

affected by T. However, the adaptive relevance factor is 

considerably more complicated, and different mixture 

components have different relevance factors. 

D. Beyond MAP Supervector 

The Supervector can be a very generic feature representation. 

GSV or MAP SV is based on the concatenation of the MAP 

adapted parameters. By using other ways to compute the 

adapted parameters, such as computing the gradients of the 

UBM [43], other types of supervectors can be constructed. In 
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addition, the UBM can be any type of mixture model, such as 

GMM or MFA, or deep neural networks, such as DBN, or even 

the combination of GMM and DBN. The feasibility of such a 

combination lies in the fact that the adapted parameters are 

simply concatenated instead of interacting with each other. The 

flexibility in the design of the UBM and the adaptation method 

leads to various types of feature representations. 

III. I-VECTOR AND ITS EXTENSIONS 

A. Formulation of the I-vector 

The i-vector is based on the parameters of a UBM, which is 

usually a GMM, similar to GSV. From the perspective of the 

i-vector, an acoustic sample s={
1x ,

2x ,…
Tx } is supposed to be 

able to be represented by a supervector 
sX , which is assumed 

to be generated by a latent vector 
sz  and expressed as a factor 

analysis (FA) model given by (20), where 
UBM  is the 

concatenation of the mean vectors of the UBM with 

{ | 1,2... }m m M = =  and { , , }m m m m   = , V is the 

factor-loading matrix, and 
s  is the noise term with a zero 

mean and a diagonal covariance Ψ [10]. The subscript s 

indicates that both 
sX  and 

sz  are dependent on the sample s. 

The expected value of 
sz  is then the i-vector, denoted as [ ]sE z . 

If the dimensionality of 
tx  is D×1, the dimensionality of 

sX  

will then be MD×1, but the dimensionality of 
sz  can be smaller, 

which is the advantage of the i-vector over GSV. 

 

 
s UBM s sX Vz = + +  (20) 

 

An interesting characteristic is that, both sX  and sz  are 

unobservable, but their expected values can be estimated using 

the expectation-maximization (EM) algorithm [33]. Before 

using the EM algorithm, the zero-order, first-order and 

second-order centralized Baum-Welch statistics need to be 

computed, as given by (21) ~ (23), respectively. 
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The centralized Baum-Welch statistics are used to form the 

sample-level zero-order, first-order and second-order statistics, 

as given by (24) ~ (26), respectively, where I is an identity 

matrix with a dimensionality of D×D. The subscript s indicates 

that these statistics depend on a specific sample s. 
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Having the sample-level statistics, the factor-loading matrix 

V is obtained using the EM algorithm, which involves an E-step 

and an M-step. In the E-step, the posterior expected mean and 

the posterior expected covariance are computed using (27) and 

(28) respectively, where the parameters { , }V   are computed 

in the M-step. 

 

 
1 0 1 1[ ] ( [ ] ) [ ]T T

s s sE z I V E X V V E X − − −= +  (27) 

 

 
1 0 1[ ] ( [ ] ) [ ] [ ]T T T

s s s s sE z z I V E X V E z E z − −= + +  (28) 

 

In the M-step, the model parameters { , }V   are computed 

using the posterior expectations in the E-step and a set of 

training acoustic samples S as given by (29) and (30), where 

diag{.} is the operation that sets all the nondiagonal elements to 

zero. 

 

 0[ ] [ ] [ ] [ ]T T

s s s s s

s S s S

E X VE z z E X E z
 

=   (29) 

 

 ( )0[ ] [ ] [ ] [ ]T T

s s s s

s S s S

E X diag E XX VE z E X
 

 
= − 

 
   (30) 

 

After several EM iterations and finding the values of { , }V  , 

given a sample s, the i-vector is obtained using (27). Having 

obtained the i-vector corresponding to a sample s, we can then 

recover the unobservable supervector sX  using its expected 

value [ ]sE X . To be clearer, we call the i-vector the FA latent 

vector (FALV) and [ ]sE X  the FA supervector (FASV), as 

given by (31) and (32), respectively. 

 

 [ ]FALV sX E z=  (31) 

 

 [ ] [ ]FASV s UBM s UBM FALVX E X VE z VX = = + = +  (32) 
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B. Rationale behind the I-vector 

Strictly speaking, the i-vector is not the consequence of a 

standard FA model. Although (20) is the same as the 

assumption of an FA model, the parameters { , }V   are 

computed in a different way [34]. Additionally, in the 

formulation of the i-vector, the high-dimensional vector 
sX  is 

unobservable, which makes the formulation of standard FA 

inapplicable. Nevertheless, this inconsistency does not mean 

that the performance of the i-vector is poor. In contrast, the 

i-vector performs notably well, as the model parameters are 

estimated by MLE [33]. The log-likelihood ( )s  of a sample s 

is given by (33), where ,( | , )t s m mp x X   is the Gaussian 

probability with mean ,s mX  and covariance 
m , and 

m  is 

the m-th submatrix of Ψ, i.e., 
m  consists of the variables 

between row (m−1)D+1 and row mD and between column 

(m−1)D+1 and column mD (as Ψ is a diagonal matrix). ,s mX  is 

given by (34), where 
mV  is the m-th submatrix of V, which 

consists of the variables between row (m−1)D+1 and row mD. 

The log-likelihood given by (33) is thus equivalent to that in 

[33] when adopting the i-vector assumption in [10]. 

 

 

( )

,

1 1

,

1 1

1/2/2
1 1

1

, ,

1 1

( ) ln ( | , )

( ) ln ( | , )

1
( ) ln

(2 )

1
( )( ) ( )

2

m t

M T
x

t s m m

m t

M T

m t t s m m

m t

M T

m t D
m t m

M T
T

m t t s m m t s m

m t

s p x X

x p x X

x

x x X x X



 


 

 

= =

= =

= =

−

= =

=

=

=

− − −









 (33) 

 

where 

 

 ,s m m m sX V z= +  (34) 

 

The log-likelihood of a set of training samples is then given 

by (35), which is the objective function needing to be 

maximized with respect to { , }V  . 

 

 ( )
s S

s


=   (35) 

 

The formulation of the i-vector resembles a standard FA 

model, but the model parameter estimation procedure 

resembles more of a mixture of factor analyzers (MFA) [35]. 

Nevertheless, the i-vector is neither the result of FA nor MFA. 

With respect to a mixture component m, a frame-level vector 

tx  is assumed to follow a Gaussian distribution with mean 

m m sV z +  and covariance m . The parameters { , , }m m mV   

are different for different mixture components, but the latent 

vector sz  is shared across different mixture components. This 

makes it suitable to estimate 
sz  with limited training data, as 

all the training data are reused M times, which means the 

training data are augmented M times with respect to 
sz . 

C. Origin of the I-vector: Baum-Welch Supervector 

In a standard FA model, a high-dimensional vector Y is 

assumed to be generated by a low-dimensional latent vector y, 

as expressed in (36), where μ is the global mean, W is the 

factor-loading matrix, and ε is the noise vector, which is 

assumed to follow a Gaussian distribution with zero mean and 

diagonal covariance Σ. 

 

 Y Wy = + +  (36) 

 

The model parameters { , , }W   are estimated using the 

EM algorithm [34]. The E-step is given by (37) and (38). 

 

 
1 1 1[ ] ( ) ( )T TE y I W W W Y  − − −= + −  (37) 

 

 
1 1[ ] ( ) [ ] [ ]T T TE yy I W W E y E y − −= + +  (38) 

 

Interestingly, the E-step for the i-vector can be reformulated 

into the same form as FA, given by (39) and (40), with 
sy z= , 

0[ ]sW E X V= , 0[ ]sE X = , and [ ]sY E X− = . 

 

 
( ) ( ) ( )( )

( ) ( )

1
1

0 0 0

1
0 0

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

T

s s s s

T

s s s

E z I E X V E X E X V

E X V E X E X





−
−

−

= +



 (39) 

 

 
( ) ( ) ( )( )

1
1

0 0 0[ ] [ ] [ ] [ ]

[ ] [ ]

T
T

s s s s s

T

s s

E z z I E X V E X E X V

E z E z


−

−

= +

+

 (40) 

 

In this reformulation, the latent vector sz  corresponds to a 

high-dimensional vector given by (41), which we name the 

Baum-Welch supervector (BWSV), as it is based on the 

centralized Baum-Welch statistics. 

 

 [ ]BWSV sX E X=  (41) 

 

Besides, the E-step for the i-vector can also be reformulated 

in another way, which still has the same form as FA, given by 

(42) and (43), where sy z= , W V= , 0 1[ ]sE X −= , and 

0 1[ ] [ ]s sY E X E X −− = . 

 

 
( )( )

( ) ( )

1
1

0 1

1
0 1 0 1

[ ] [ ]

[ ] [ ] [ ]

T

s s

T

s s s

E z I V E X V

V E X E X E X





−
−

−

−
− −

= +



 (42) 
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 ( )( )
1

1
0 1[ ] [ ] [ ] [ ]T T T

s s s s sE z z I V E X V E z E z
−

−
−= + +  (43) 

 

In this way, the latent vector 
sz  corresponds to another 

high-dimensional vector given by (44), which we name the 

normalized BWSV (nBWSV), as it has an extra term 0 1[ ]sE X −  

serving as a sort of normalization. 

 

 0 1[ ] [ ]nBWSV s sX E X E X−=  (44) 

 

We may also add back the global mean, which will be 
UBM  

from the perspective of the i-vector. Then, we obtain the 

mean-shifted BWSV [ ]s UBME X +  and the mean-shifted 

nBWSV 0 1[ ] [ ]s s UBME X E X − + . Interestingly, the m-th 

subvector of the mean-shifted nBWSV (i.e., the variables 

between row (m−1)D+1 and row mD) can be expressed as (45), 

which is exactly the m-th subvector of GSV with 1m = . This 

implies that the i-vector is an affine transformation of GSV. 

 

 

0 1 1

1

1

1

( )( )
ˆ ˆ[ ] [ ]

( )

( )

( )

T

m t t mt

m m m mT

m tt

T

m t tt

T

m tt

x x
E x E x

x

x x

x

 
 







− =

=

=

=

−
+ = +

=









 (45) 

 

D. Extension of the I-vector: MFA Supervector and Latent 

Vector 

An MFA can be parameterized by { | 1,2... }m m M = = , 

where { , , , }m m m mw u W =  represents the parameters of the 

m-th factor analyzer with weight 
mw , mean 

mu , factor-loading 

matrix 
mW , and noise covariance   (   is shared across 

different factor analyzers) [35]. Based on this MFA model, a 

frame-level feature vector tx  can be expressed as (46), where 

tz  is the corresponding latent vector presumed to follow a 

Gaussian distribution with zero mean and identity covariance, 

and t  is the noise term presumed to follow a Gaussian 

distribution with zero mean and diagonal covariance  . 

 

 
1

( )
M

t m m m t tm
x w u W z 

=
= + +  (46) 

 

The conditional probability of tx  generated by the m-th 

factor analyzer given the latent vector tz , is given by (47), 

where ( | , )t m m tp x u W z +  is the Gaussian probability with 

mean m m tu W z+  and covariance  . 

 

 ( | , ) ( | , )t t t m m tp x z m p x u W z = +  (47) 

 

Then, the probability of tx  generated by the m-th factor 

analyzer and that generated by the MFA is given by (48) and 

(49), respectively. 

 

 ( | ) ( | , )T

t t m m mp x m p x u W W = +  (48) 

 

 
1

( | ) ( | , )
M T

t m t m m mm
p x w p x u W W 

=
 = +  (49) 

 

Given a set of training vectors {
1x ,

2x ,…
Nx }, the model 

parameters { , , , }m m mw u W   can be estimated using the EM 

algorithm [35], similar to the estimation process of FA and 

GMM. In the E-step, the posterior expected mean and the 

posterior expected covariance of the latent vectors 

{
1z ,

2z ,…
Nz } with respect to the m-th factor analyzer are 

computed using (50) and (51), respectively. 

 

 
1 1 1[ ] ( ) ( )T T

m n m m m n mE z I W W W x u − − −= + −  (50) 

 

 
1 1[ ] ( ) [ ] [ ]T T T

m n n m m m n m nE z z I W W E z E z − −= + +  (51) 

 

The posterior probability is computed using (52). 

 

 

1

( | , )
ˆ ( )

( | , )

T

m n m m m

m n M T

j n j j jj

w p x u W W
x

w p x u W W





=

+
=

+
 (52) 

 

In the M-step, the model parameters { , , , }m m mw u W   are 

re-estimated using the posterior expectations [ ]m nE z  and 

[ ]T

m n nE z z  and the posterior probability ˆ ( )m nx . The weight 

mw  is computed using (53). 

 

 
1

1
ˆ ( )

N

m m nn
w x

N


=
=   (53) 

 

To ease the computation, the augmented posterior 

expectations [ ]m nE z  and [ ]T

m n nE z z  and the augmented 

factor-loading matrix mW  are formed, as given by (54). 

 

 

 

[ ] [ ] [ ]
[ ] , [ ]

1 [ ] 1

T

m n T m n n m n

m n m n n T

m n

m m m

E z E z z E z
E z E z z

E z

W W u

  
= =   

   

=

(54) 

 

Using the augmented posterior expectations, mW  and   can 

be computed using (55) and (56), respectively. 

 

 

1

1 1

ˆ ˆ( ) [ ] ( ) [ ]
N N

T T

m m n n m n m n m n n

n n

W x x E z x E z z 

−

= =

  
=   

  
   (55) 
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 ( )
1 1

1
ˆ ( ) [ ]

N M
T

m n n m m n n

n m

diag x x W E z x
N

 
= =

 
= − 

 
  (56) 

 

After several EM iterations and obtaining the parameters 

{ , , , }m m mw u W  , given a sample s={
1x ,

2x ,…
Tx }, a sequence 

of latent vectors {
1[ ]mE z , 

2[ ]mE z ,… [ ]m TE z } can be obtained 

using (50). The MFA latent vector (MFALV) is then obtained 

as the weighted sum of {
1[ ]mE z , 

2[ ]mE z ,… [ ]m TE z }, 

weighted by ˆ ( )m tx . The m-th subvector of MFALV is given 

by (57), and MFALV is then the concatenation of its subvectors 

as given by (58). 

 

 1

,

1

ˆ ( ) [ ]

ˆ ( )

T

m t m tt

MFALV m T

m tt

x E z
X

x





=

=

=



 (57) 

 

 ,1 ,2 ,

T
T T T

MFALV MFALV MFALV MFALV MX X X X =    (58) 

 

Similar to the i-vector, we can form an MFA supervector 

(MFASV) based on MFALV, as given by (59) and (60). 

 

 , ,MFASV m m m MFALV mX u W X= +  (59) 

 

 ,1 ,2 ,

T
T T T

MFASV MFASV MFASV MFASV MX X X X =    (60) 

 

E. Comparison between the Formulation and Computational 

Complexity of the I-vector and MFA 

Given a set of training samples {
1a ,

2a ,…
Sa } where S is the 

total number of training samples. Suppose the s-th sample is 

represented by a sequence of sT  frame-level feature vectors, 

denoted as { 1x , 2x ,…
sTx }, then according to (33) ~ (35), from 

the perspective of the i-vector, the parameters { , }V   are 

obtained by maximizing the log-likelihood 
i vector−

, as given by 

(61), where 
m  is the mean parameter of GMM, and the 

exponent ( )m tx  is based on the GMM, as given by (1). This 

log-likelihood is based on the individual sample’s 

log-likelihood ( )s . 

 

( )

1 1 1 1

( ) ln ( | , )
s

m t

TS S M
x

i vector t m m s m

s s m t

s p x V z
 −

= = = =

= = +   (61) 

 

From the perspective of MFA, the log-likelihood is based on 

the individual frame-level feature vector’s log-likelihood ( )n . 

The training vectors are collected from all the training samples, 

denoted as { 1x , 2x ,… Nx }, where nx  denotes the n-th 

frame-level feature vector, and 
1

S

ss
N T

=
=  . Then, the 

parameters { , }mW   of MFA can be treated as the solution of 

maximizing the log-likelihood 
MFA

 given by (62), where 
mu  

and the exponent 
mw  are the parameters of MFA. 

 

 
1 1 1

( ) ln ( | , ) m

N M N
w

MFA n m m n

n m n

n p x u W z 
= = =

= = +   (62) 

 

The differences between the formulation of the i-vector and 

that of MFA can be seen from (61) and (62). For instance, in 

i vector−
, each sample is considered independent, and the 

frame-level feature vectors in the same sample share the same 

latent vector, whereas in 
MFA

, each frame-level feature vector 

is considered independent, and even those from the same 

sample have different latent vectors. In addition, in 
i vector−

, 

m  is the m-th mean vector of the GMM, and the exponent 

( )m tx  is the posterior probability based on the GMM. While 

in 
MFA

, both 
mu  and the exponent 

mw  are re-estimated based 

on the training data, which are dependent on the MFA instead 

of the GMM. This means that MFA has more parameters to be 

estimated than the i-vector, endowing it with more flexibility. 

However, for the i-vector, since the same latent vector is shared 

among all the frame-level feature vectors that belong to the 

same sample, the freedom of the parameter space is reduced, 

which makes the i-vector more robust. 

Suppose the dimensionality of the i-vector or MFALV is 

H×1. According to (27) and (28), the E-step for the i-vector 

requires computing the inverse of a matrix 
1 0( [ ] )T

sI V E X V −+ , whose size is H×H. Therefore, if H is 

notably large, the computation of the i-vector is inefficient, and 

sometimes may even be infeasible if the memory space is not 

enough. In contrast, as seen from (50) and (51), the E-step for 

MFA requires computing the inverse of a smaller matrix 
1( )T

m mI W W −+ , whose size is (H/M)×(H/M). Because we 

assume that the dimensionality of 
MFALVX  is H×1, the 

dimensionality of ,MFALV mX  has to be H/M; thus, the 

dimensionality of the latent vector in (50) and (51) is H/M 

(assuming H is an integer multiple of M). Therefore, for MFA, 

even if the dimensionality of MFALV is large, the computation 

can still be efficient.  

Specifically, let the number of training samples be S, the 

dimensionality of the frame-level feature vector be D×1, the 

dimensionality of the i-vector or MFALV be H×1, and the 

number of mixture components in the GMM or the MFA be M. 

Then, for the i-vector, the size of V is MD×H, the size of Ψ is 

MD×MD, the size of 
0[ ]sE X  is MD×MD, and the size of 

[ ]sE X  is MD×1. For MFA, the size of mu  is D×1, the size of 

mW  is D×(H/M), and the size of Σ is D×D. Suppose each 

sample produces T frame-level feature vectors, and assume the 

time complexity of inverting a matrix with size A×A is 3( )O A , 

and the time complexity of the multiplication of a matrix with 

size A×B and a matrix with size B×C is ( )O ABC . Considering 

the E-step of the i-vector given by (27) and (28) and the E-step 



 9 

of MFA given by (50) and (51), if we neglect the time 

consumption of addition operations, the time consumption of 

inverting Ψ and Σ (because they are diagonal matrices whose 

inversion is easy to compute), and the time consumption of 

[ ]T

s sE z z  and [ ]T

m n nE z z  (because most time will be consumed 

by computing [ ]sE z  and [ ]m nE z ), then for the i-vector, the 

time complexity of the E-step is approximately given by (63). 

 

 

( )



( ) ( ) ( )( )

( )

3

2 3 3 2 2

( ) ( 1)

i vector

E stepC S O H MD MD MD H

O H O H H MD MD

SH O M D O H O M D

−

−      

+ +    

=  + +

 (63) 

 

Similarly, the time complexity of the E-step for MFA is 

approximately given by (64). 

 

 

( ) ( )( )

( )

3

3

2 2

2

1

2

MFA

E step

H H
C MST O D D

M M

H H H
O O D D

M MM

T
SH O MD O H

M

−

  
      

 

   
+ +        

   

=  +

(64) 

 

The factor S in (63) is the number of training samples, as the 

expectation term [ ]sE z  for the i-vector corresponds to the 

whole sample. The factor ST in (64) is the number of training 

frame-level feature vectors, as the expectation term [ ]m nE z  for 

MFA corresponds to a frame-level feature vector. Another 

factor M is also needed, as [ ]m nE z  corresponds to only one 

mixture component in the MFA. The inclusion of these 

multiplication factors can be clearly seen from the algorithms 

given in the appendix. As the E-step dominates the time 

consumption of the EM iteration, the time complexity of 

training the model parameters for the i-vector and that for 

MFALV can be approximated by (63) and (64), respectively. 

Given an acoustic sample, its corresponding i-vector is 

[ ]sE z , while its corresponding MFALV is the weighted sum of 

[ ]m nE z , as seen from (31) and (57), respectively. Therefore, 

given the model parameters, the time complexity of computing 

an i-vector and that of computing an MFALV can be 

approximated by (65) and (66), respectively. 

 

 ( ) ( ) ( )( )
( )

( ) 2 3 3 2 2

i vector

E stepi vector

feature

C
C H O M D O H O M D

S

−

−−  =  + +   

  (65) 

 

 ( ) ( )( )
( )

( ) 2 2

2
2

MFA

E stepMFALV

feature

C T
C H O MD O H

S M

−
 =  +  (66) 

 

From (63) ~ (66), if T is small such that T<<M, the 

computation of MFALV will be considerably more efficient 

than that of the i-vector. This implies that MFALV is more 

suitable for short-duration data. 

Regarding the space complexity, as shown by (62), MFALV 

only needs to store the parameters of the MFA, namely, the 

weight, the mean, the factor-loading matrix, and the noise 

covariance (which is a diagonal matrix) parameters of the MFA. 

This leads to the space complexity as given by (67). 

 

 

( )

( )

MFALV

space

H
C O M MD MD D

M

O M MD DH D

 
= + + + 

 

= + + +

 (67) 

 

As shown by (61), the i-vector needs to store the parameters 

of the GMM and the FA model, namely, the weight, the mean 

and the standard deviation parameters of the GMM, as well as 

the factor-loading matrix and the noise covariance (which is a 

diagonal matrix) parameters of the FA model. This leads to the 

space complexity as given by (68). 

 

 
( )( ) ( 2 ) ( )

( 3 )

i vector

spaceC O M MD MDH MD

O M MD MDH

− = + + +

= + +
 (68) 

 

By comparing (67) and (68), MFALV requires less storage 

space than the i-vector. Nevertheless, the dimensionality of 

MFALV has to be an integer multiple of M, which is less 

flexible than the i-vector. 

IV. RELATIONSHIP BETWEEN DIFFERENT VECTOR-BASED 

FEATURE REPRESENTATIONS AND THE NECESSITY OF UBM 

GSV and its extensions are obtained by adapting the 

parameters of a GMM-based UBM using MAP adaptation. 

TABLE I 

VECTOR-BASED FEATURE REPRESENTATION 

 

UBM type Abbreviation Description Dimensionality 

GMM 

WSV (Eq. (14)) Concatenation of adapted weight D×1 
MSV (GSV) (Eq. (15)) Concatenation of adapted mean MD×1 

VSV (Eq. (16)) Concatenation of adapted standard deviation MD×1 

nGSV (Eq. (13)) Concatenation of adapted mean, scaled by weight and covariance MD×1 
nMSV (Eq. (18)) Concatenation of adapted mean, scaled by adapted weight and covariance MD×1 

Concatenated SV (Eq. (17)) Concatenation of WSV, MSV and VSV (M+2MD)×1 

MFA 

FASV (Eq. (32)) Transformation of FALV, plus GMM mean MD×1 
FALV (i-vector) (Eq. (31)) Posterior expectation of the latent vector 1×1 ~ MD×1 

MFASV (Eq. (60)) Transformation of MFALV, plus MFA mean MD×1 

MFALV (Eq. (58)) Concatenation of the posterior expectations of the latent vectors M×1 ~ MD×1 

 



 10 

FALV (i-vector) and MFALV are obtained based on the 

parameters of an MFA-based UBM using the MLE algorithm. 

FASV and MFASV are based on FALV and MFALV, 

respectively. In addition, FALV (i-vector) makes use of both 

the parameters of the GMM-based UBM and the MFA-based 

UBM to form the feature representation, whereas MFALV 

merely uses the parameters of the MFA-based UBM to form the 

feature representation. However, the parameters of the 

MFA-based UBM are initialized from those of the GMM-based 

UBM. Interestingly, FALV can also be treated as an affine 

transformation of GSV. 

As a matter of fact, UBM plays an important role in 

constructing the aforementioned feature representations. It has 

two main uses. First, UBM provides prior knowledge about the 

underlying distributions of the acoustic features. During the 

computation of the sample-level feature representation, the 

feature representation embeds both the information from that 

specific sample and the information from the UBM (which 

contains information from many samples). Therefore, UBM 

provides additional information for the feature representation. 

Second, UBM provides feature alignment. Intuitively, we may 

treat one mixture component in the UBM as one attribute. Each 

sample is fed into the UBM to adapt different mixture 

components, reflecting how this sample possesses different 

attributes. This provides feature alignment in the resulting 

feature representation, namely, the variables in the same 

position of different feature vectors represent the same 

attribute. 

Regarding the space complexity, GSV or its extensions only 

need to store the parameters of the GMM, namely, the weight, 

the mean and the standard deviation parameters of the GMM. 

This leads to the space complexity of ( )O M MD MD+ +  

= ( 2 )O M MD+ , where D is the dimensionality of the 

frame-level feature vector, and M is the number of mixture 

components in the GMM. As shown in the previous section, if 

the dimensionality of MFALV and FALV (i-vector) is H, then 

the space complexity of MFALV is ( )O M MD DH D+ + + , 

while that of FALV (i-vector) is ( 3 )O M MD MDH+ + . 

The characteristics of different vector-based feature 

representations are also listed in Table I. 

V. EXPERIMENTS AND DISCUSSIONS 

In this section, we make experimental comparisons between 

different vector-based feature representations in terms of their 

effectiveness and efficiency. Two speaker identification tasks 

are performed using the Kingline081 dataset [36] and the 

Ahumada dataset [37]. One speaker verification task is 

performed using the Voxceleb1 dataset [46]. 

Kingline081 is an American English speech corpus 

consisting of continuous speech with normal speed. A part of 

this corpus is used in the experiments, which consists of the 

utterances of 20 speakers. Each speaker contributes 

approximately the same number of utterances. The utterances 

are recorded in three sessions, with each having approximately 

2000 samples. The first two sessions are used for training and 

constructing the UBM, and the third session is used for testing. 

This yields a training set of 3997 utterances and a testing set of 

1998 utterances. The length of each utterance varies from 2s to 

10s, and the average length is approximately 4s. 

Ahumada is a Spanish speech corpus consisting of 

text-dependent and text-independent speech at varying speeds. 

A part of this corpus is used in the experiments, which consists 

of the telephone speech utterances of 25 speakers. Each speaker 

contributes approximately the same number of utterances. The 

utterances are recorded in four sessions, with each having 

approximately 600 samples. Two sessions are used for training 

and constructing the UBM, while the remaining two sessions 

are used for testing. This yields a training set of 1199 utterances 

and a testing set of 1200 utterances. The length of each 

utterance varies from 2s to 2min, but most utterances have a 

length of approximately 3s. The average length is about 13s. 

Voxceleb1 consists of 1251 celebrities’ utterances with 

various acoustic environments and noises extracted from 

YouTube videos. The length of each utterance varies from 4s to 

2min, and the average length is approximately 8s. The 

development set consists of 1211 celebrities’ utterances, while 

the remaining 40 celebrities’ utterances are used for testing. We 

select the first 100 celebrities’ utterances in the development set 

for constructing the UBM, which contains 11090 utterances. 

The utterances of the celebrities with id10001 to id10050 in the 

development set are used for training, containing 5730 

utterances. The testing set consists of the utterances of 40 
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Fig. 1.  Effectiveness of GSV and its extensions on Kingline081 speech corpus, 

employing SVM as the classifier. 
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Fig. 2.  Effectiveness of GSV and its extensions on Ahumada speech corpus, 

employing SVM as the classifier. 
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celebrities, containing 37720 pairs of utterances. 

The GMM-based UBM consists of 128 mixture components 

for the speaker identification tasks and 64 mixture components 

for the speaker verification task, constructed using the mixture 

splitting technique [38]. The model parameters { , }V   for the 

i-vector are initialized to have ones on the principal diagonal 

and zeros otherwhere. For MFA with model parameters 

{ , , , }m m mw u W  , the mean parameter 
mu  is initialized to be the 

mean parameter 
m  of the GMM-based UBM, and the weight 

parameter 
mw  is initialized to be 1/M. The factor-loading 

matrix 
mW  and the noise covariance   are initialized to have 

ones on the principal diagonal and zeros elsewhere. The 

frame-level feature vector is the MFCC vector [39] with a 

dimensionality of 20, extracted using the Hamming window 

with a frame length of 40ms and a frame shift of 20ms. 

A. GSV and Its Extensions for Speaker Identification 

In this part, we compare the speaker identification accuracy 

achieved by GSV and its extensions on the Kingline081 and 

Ahumada speech corpora. Linear SVM is employed as the 

classifier, which is implemented using LIBSVM [40]. The 

experimental results are shown in Fig. 1 and Fig. 2 (some 

accuracy values are too low to be shown). The dimensionality 

of GSV (MSV), nGSV and VSV is 2560×1, the dimensionality 

of WSV is 128×1, and the dimensionality of the concatenated 

MAP SV is 5248×1. Different values of the parameter β are 

used to construct the supervectors. 

As shown in the figures, MSV tends to outperform WSV and 

VSV, reflecting that the adapted mean parameter plays the most 

important role. Among all, WSV gives the worst performance 

because its dimensionality is too low to embed enough 

information. In addition, the adapted weight may strongly 

depend on the content of the speech instead of the speaker’s 

characteristics, which is undesirable. Nevertheless, combining 

the adapted weight and adapted standard deviation parameters 

into MSV may further improve its quality and robustness to 

different choices of β, as demonstrated by the concatenated 

MAP SV. The normalization operation can also be useful, as 

observed from the performance of nGSV and nMSV. 

Another important observation is that the performance of the 

supervectors varies considerably with different choices of β. 

According to (8) and (19), the larger β is, the smaller the 

adaptation coefficient m  is. As seen from (5) ~ (7), the 

adaptation coefficient controls the ratio between the 

information the supervector absorbs from the specific sample s 

and the information the supervector absorbs from the UBM. 

The smaller m  is, the more the supervector will depend on the 

statistics of the UBM instead of the statistics of the specific 

sample s. A high dependence on the UBM leads to the high 

similarity between two supervectors. Thus, briefly speaking, a 

larger value of β causes the supervectors to be more similar to 

each other, which may degrade the performance of a 

discriminative classifier, such as SVM. 

B. I-vector and Its Extensions for Speaker Identification 

In this part, we compare the speaker identification accuracy 

achieved by the i-vector and its extensions on the Kingline081 

and Ahumada speech corpora. Linear SVM is employed as the 

classifier. The experimental results are shown in Fig. 3 and Fig. 

4. The i-vector and its extensions are computed using different 

EM iterations to investigate the influence of this factor. The 

dimensionalities of FALV (i-vector), FASV, MFALV and 

MFASV are all 2560×1. 

We see that the latent vectors (viz. FALV and MFALV) 

outperform their corresponding supervectors (viz. FASV and 

MFASV). This observation can be explained from the 

perspective of philosophy, that is, the supervector and the latent 

vector serve as the appearance and the essence of a sample, 

respectively. The latent vector is the cause of the supervector, 

and the supervector is the effect of the latent vector. From this 

angle, we may expect the latent vector to be cleaner. 

The highest accuracy achieved by FALV is slightly better 

than MFALV, but the highest accuracy achieved by FASV is 

significantly worse than MFASV. In other words, the 

performance gap between FALV and FASV is larger than that 

between MFALV and MFASV. In fact, although the 

computation of FALV involves all the frame-level feature 

vectors in a sample, FASV is only related to FALV, which 

means that the relationship between FASV and individual 

frame-level feature vectors is weak. In contrast, MFALV is 

calculated as the weighted sum of the latent vectors of the 
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Fig. 3.  Effectiveness of i-vector and its extensions on Kingline081 speech 
corpus, employing SVM as the classifier. 
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frame-level feature vectors, and consequently, MFASV, as an 

affine transformation of the latent vectors, is strongly related to 

individual frame-level feature vectors. In addition, the mean 

parameter used in computing FASV is fixed to be the mean 

parameter of the GMM-based UBM, whereas that used in 

computing MFASV is the mean parameter of the MFA-based 

UBM, which is re-estimated based on the model assumption. 

It is also noted that increasing the number of EM iterations 

can improve the performance of FALV but not MFALV. This 

effect probably results from the model assumptions of the two 

methods. For FALV, the latent vector is assumed to be shared 

among all the frame-level feature vectors, aiming to capture 

common characteristics among different frames. While for 

MFALV, the individual frame-level feature vectors are 

assumed to have their own latent vectors, aiming to capture 

variation across different frames. 

C. Effectiveness and Efficiency of Different Feature 

Representations for Speaker Identification 

In this part, we compare the performance and the 

computation time when using GSV, the i-vector and their 

extensions for speaker identification. The scalable PLDA [41] 

is employed for performing the classification. The latent 

vectors in the PLDA model have the same dimensionality as the 

feature representations, and the parameters of the PLDA model 

are estimated using 2 EM iterations. 

The experimental results on speaker identification accuracy 

are shown in Fig. 5 and Fig. 6 (some accuracy values are too 

low to be shown), and the dimensionalities of different feature 

representations are 2560×1, except for the concatenated MAP 

SV, whose dimensionality is 5248×1. 

As shown in Fig. 5 and Fig. 6, GSV and its extensions are 

notably sensitive to the value of β, especially for nGSV and 

nMSV. Actually, PLDA is also an FA model that assumes the 

feature representation to follow Gaussian distributions. Since 

the scaling factor β controls how much information the GSV 

absorbs from the UBM, it seems to control how much the GSV 

will fulfill the model assumptions made by PLDA. 

Nevertheless, with a suitable value of β, the highest accuracy 

achieved by GSV is comparable to (Fig. 5) or even better than 

the i-vector (Fig. 6) when PLDA is employed as the classifier. 

From another perspective, as the i-vector can be treated as an 

affine transformation of GSV, this transformation may cause 

the loss of information carried by the i-vector. 

It is also observed that the highest accuracy achieved by 

MFALV is comparable to (Fig. 5) or even better than the 

i-vector (Fig. 6) when PLDA is employed as the classifier. 

MFALV adopts a more complicated model assumption for each 

frame-level feature vector, which may be beneficial if a 
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Fig. 5.  Effectiveness of GSV, i-vector and their extensions on Kingline081 speech corpus, employing PLDA as the classifier. (a) Results of GSV and its 

extensions. (b) Results of i-vector and its extensions. 
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Fig. 6.  Effectiveness of GSV, i-vector and their extensions on Ahumada speech corpus, employing PLDA as the classifier. (a) Results of GSV and its extensions. 
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frame-level feature vector indeed carries abundant information. 

This abundance may occur when the speech signal is 

contaminated by session variability. We also notice the 

different trends of MFALV and the i-vector on different 

datasets, which is probably due to the different characteristics 

of the two datasets. Kingline081 (Fig. 5b) contains phonetically 

rich speech uttered at normal speed, while Ahumada (Fig. 6b) 

contains some text-independent content and text-dependent 

content, which has less phonetic information. In addition, the 

speech is uttered at varying speeds; thus, there may be large 

variation across frames. MFALV assumes that each frame-level 

feature vector has its own latent vector, while the i-vector 

assumes that all the frame-level feature vectors share the same 

latent vector; therefore, the former may better describe the 

characteristics of individual frame-level feature vectors in the 

situation of varying speeds. 

The computation time of GSV, the i-vector and MFALV is 

shown in Fig. 7 and Fig. 8, where the consumed time is 

estimated by running the MATLAB codes on an iMac desktop 

computer with 32G memory. For the i-vector and MFALV, 

time is consumed in the stage of parameter estimation and the 

stage of feature computation, whereas for GSV, there is only 

the stage of feature computation. The model parameters of the 

i-vector and MFALV are estimated with 1 EM iteration, and 

GSV is computed with β=0.1. The number of mixture 

components in the UBM varies from 2 to 128, and thereby the 

dimensionality of GSV, the i-vector and MFALV varies from 

40×1 to 2560×1. 

As shown in Fig. 7 and Fig. 8, the computation time of the 

i-vector is notably short at a low dimensionality but becomes 

increasingly longer with increasing dimensionality. When the 

dimensionality is high, MFALV is more efficient than the 

i-vector. This observation is consistent with our theoretical 

analysis on the time complexity of MFALV and the i-vector. 

The computation of GSV is always the fastest because of its 

simplicity in computation and the avoidance of additional 

parameter estimation. Nonetheless, the scaling factor β has to 

be chosen carefully, and the dimensionality of GSV is not as 

flexible as the i-vector and MFALV. 

D. Performance of Different Feature Representations for 

Speaker Verification 

In this part, we compare the performance of GSV, the 

i-vector and their extensions on speaker verification. The 

performance is evaluated in terms of the equal error rate (EER), 

which is generally the lower the better. The cosine distance [10] 

and the PLDA model [47] are used to generate the verification 

score. The latent vectors in the PLDA model have the same 

dimensionality as the feature representations, and the 

parameters of the PLDA model are estimated using 1 EM 

iteration. 

The experimental results on speaker verification are shown 

in Fig. 9 and Fig. 10. The dimensionality of different feature 

representations is 1280×1, except for the concatenated MAP 
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Fig. 7.  Efficiency of GSV, i-vector and MFALV on Kingline081. 

16

32

64

128

256

512

1024

2048

4096

8192

40 80 160 320 640 1280 2560

ti
m

e 
(s

ec
o

nd
)

dimensionality

efficiency of GSV, i-vector and MFALV

FALV (i-vector)

parameter estimation

FALV (i-vector)

feature computation

MFALV

parameter estimation

MFALV

feature computation

GSV

 
Fig. 8.  Efficiency of GSV, i-vector and MFALV on Ahumada. 
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Fig. 9.  EER achieved by GSV, i-vector and their extensions on Voxceleb1, using cosine distance score. (a) Results of GSV and its extensions. (b) Results of 
i-vector and its extensions. 
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SV, whose dimensionality is 2624×1.    

As shown in Fig. 9a and Fig. 10a, nGSV and nMSV perform 

better than GSV and the concatenated SV when cosine distance 

is used for scoring, but perform worse when PLDA is used for 

scoring. This observation, together with the discussions in 

previous parts, implies that the normalization operation takes 

effect only when the backend is linear, such as a linear SVM or 

the cosine distance measure. Nevertheless, PLDA scoring is 

considerably better than cosine distance scoring. It is also 

notable that β strongly affects the performance of GSV and its 

extensions, and a small value of β is preferred, because the 

smaller β is, the more discriminative the feature representation 

will be. The concatenated SV outperforms GSV regardless of 

which scoring method is used, demonstrating that other adapted 

parameters provide complementary information to the adapted 

mean parameter. 

As shown in Fig. 9b and Fig. 10b, FALV and MFALV 

significantly outperform their corresponding supervectors (i.e., 

FASV and MFASV) when cosine distance is used for scoring, 

but the performance gap is narrowed when PLDA is used for 

scoring, as PLDA exploits the relationship between the 

variables in a feature representation. It is noticed that, FALV 

works well using both scoring methods, while MFALV 

approaches FALV’s effectiveness only when PLDA scoring is 

used. This observation demonstrates the robustness of FALV. 

As seen from Fig. 9 and Fig. 10, FALV gives the best EER 

among all, but GSV, the concatenated SV and MFALV are 

competitive when a powerful backend, such as the PLDA 

model, is used for scoring. 

E. Statistical Significance of Performance Difference 

In this part, we briefly analyze the statistical significance of 

the performance difference when using different feature 

representations. The performance is measured using the error 

rate e, which is (1 )accuracy−  for speaker identification tasks, 

or approximately the EER for speaker verification tasks. We 

adopt the method in [48]. Let (1 )−  be a confidence level 

( 0 1  ), 
0e  and 

1e  be the two error rates, and N be the 

number of training samples. According to [48], if 

( )1 0 /2 0 0 1 1| | (1 ) (1 )e e z e e e e N−  − + − , where /2z  is a 

value related to α, then the difference between 
0e  and 

1e  is 

statistically significant with a confidence level of (1 )− . The 

lower bound for 
1 0| |e e−  to be statistically significant with a 

confidence level of 95% is plotted with respect to different 

values of 
0e  (the baseline) for different datasets in Fig. 11. 

More details about the lower bound are given in the appendix. 

On Kingline081 (Fig. 5), the lowest error rates achieved by 

GSV, the i-vector and MFALV are 9.36%, 9.31% and 9.21%, 

respectively. According to Fig. 11, the difference between these 

error rates is not statistically significant. On Ahumada (Fig. 6), 

the lowest error rates achieved by GSV, the i-vector and 

MFALV are 21%, 32.5% and 22.67%, respectively. According 

to Fig. 11, the difference between GSV and MFALV is not 

statistically significant, while the difference between GSV and 

the i-vector and the difference between the i-vector and 

MFALV are statistically significant with a confidence level of 

95%. On Voxceleb1 (Fig. 10), the lowest EERs achieved by 

GSV, the i-vector and MFALV are 9.51%, 8.83% and 9.77%, 

respectively. According to Fig. 11, the difference between GSV 

and MFALV is not statistically significant, while the difference 

between GSV and the i-vector and the difference between the 

i-vector and MFALV are statistically significant with a 

confidence level of 95%. In some sense, statistical 

insignificance implies that the performance of different feature 

representations is similar. 

8

9

10

11

12

13

14

15

16

17

0 0.1 0.5 1 5

eq
ua

l 
er

ro
r 

ra
te

 (
%

)

scaling factor β

GSV and its extensions with PLDA score

MSV (GSV)

Concatenated SV

nMSV

nGSV

8

9

10

11

12

13

14

15

16

17

1 2 3 4 5

eq
ua

l 
er

ro
r 

ra
te

 (
%

)

number of EM iterations

i-vector and its extensions with PLDA score

FALV (i-vector)

FASV

MFALV

MFASV

 
            (a)                          (b) 

 
Fig. 10.  EER achieved by GSV, i-vector and their extensions on Voxceleb1, using PLDA score. (a) Results of GSV and its extensions. (b) Results of i-vector and 

its extensions. 
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VI. CONCLUSION AND INSPIRATION 

In this paper, we analyze two popular vector-based feature 

representations, viz. GSV and the i-vector, from the angle of 

their construction mechanisms and underlying rationales. 

Through analyzing the formulation, we make extensions for 

GSV and the i-vector, introducing new types of feature 

representations as alternatives to GSV and the i-vector.  

GSV is the concatenation of the adapted mean parameters of 

a GMM-based UBM. This inspires us to extend GSV to MAP 

SV, which can be the concatenation of the adapted weight 

parameters, adapted mean parameters or the adapted standard 

deviation parameters. Concatenating all these adapted 

parameters produces a concatenated SV, whose dimensionality 

is even higher than GSV and thus carries richer information. 

The i-vector is the posterior expectation of the latent vector 

in an FA model. It assumes the latent vector to be shared by all 

the frame-level feature vectors. This renders the i-vector quite 

robust, but the computational burden can be high if the 

dimensionality of the latent vector is high. By introducing MFA 

as the UBM, we propose the MFALV, which assumes that each 

frame-level feature vector has its own latent vector. This results 

in a much lower dimensionality of the latent vectors, making 

the computation more efficient. Experimental results 

demonstrate that the performance of MFALV is comparable to 

or even better than the i-vector, and maintains a lower 

computational complexity. Nevertheless, the dimensionality of 

MFALV is not as flexible as the i-vector. 

As a brief comparison, GSV is based on the parameters of a 

GMM-based UBM, the i-vector is based on the parameters of a 

GMM-based UBM and the parameters of an FA, and MFALV 

is based on the parameters of an MFA-based UBM, whose 

parameters are initialized from a GMM-based UBM. These 

feature representations are actually closely related in concept, 

where UBM plays an important role. Because of the different 

mechanisms in computation, GSV is the fastest among all, but 

its dimensionality is not as flexible as the i-vector and MFALV. 

GSV is a supervector (SV), while the i-vector and MFALV are 

latent vectors (LV). From a philosophical angle, SV and LV 

can be regarded as playing the role of appearance and essence 

of an acoustic sample, respectively. This interpretation may 

help explain their different behaviors under different backends. 

The concept of SV is general and extensible. For example, 

MAP SV is obtained by concatenating the MAP adapted 

parameters of the UBM. In fact, the concatenated parameters 

may not necessarily be based on MAP adaptation. Other types 

of adaptation or operation on the UBM are feasible, such as 

calculating the gradients [43]. In addition, the UBM can have 

different choices, such as GMM, MFA, DBN or DNN. The 

UBM can even be the combination of different models, such as 

the combination of GMM and MFA, or the combination of 

GMM and DBN. This kind of combination is feasible because 

SV is obtained by simply concatenating the individual adapted 

parameters, and different adapted parameters are not entangled. 

Interestingly, FA or MFA or other types of latent factor analysis 

can be applied to SV to produce various types of LV, which 

then leads to a large variety of new feature representations. 
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