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Reverse Nearest Neighbor Search in Semantic
Trajectories for Location-based Services

Xiao Pan, Shili Nie, Haibo Hu, Philip S. Yu, Jingfeng Guo

Abstract —In resource planning scenarios, reverse k nearest neighbor search plays an important role. However, existing reverse k

nearest neighbor search on trajectories only supports spatial features of trajectories. In this paper, we introduce Reverse k Nearest
Neighbors query on Semantic Trajectories (RkNNST). Given a query point from a set of geo-textual objects (e.g., POIs), the query
finds those trajectories which take this query point as one of their k nearest geo-textual correlative objects. To efficiently answer
RkNNST queries, we propose a novel index IMC-tree, which organizes the global and local geo-textual information on
semantic-enriched trajectories. A branch-and-bound search algorithm DOTA is then designed to traverse IMC-tree with various pruning
rules. To speed up the computation of correlative distance, we also design an inverted-file-based algorithm to compute without
enumerating all combinations of geo-textual objects. Experiments on a real dataset validate the effectiveness and efficiency of our
proposed algorithms.

Index Terms —Location-based services, reverse nearest neighbor queries, semantic-enriched trajectories, geo-textual objects

✦

1 INTRODUCTION

W Ith the proliferation of smartphones, wearable de-
vices and geo-social networks (e.g., Foursquare and

Facebook Place), massive amounts of semantic trajectory
data are generated everyday [11], [13], [20], [32]. A semantic
trajectory [7], [26], [30] is a sequence of geo-textual locations
where each location is associated with a timestamp and
some semantic label(s), such as texts, photographs, and
video. Since such semantic trajectories provide rich knowl-
edge about the geo-textual locations, trajectory retrieval
becomes important in many location based services [14],
[15], [23].

In this paper, we study the reverse k nearest neighbor
query problem on semantic trajectories (RkNNST). In a
nutshell, RkNNST can be described as follows. The system
has a set of semantic trajectories and geo-textual objects
(i.e., a location with textual labels). The trajectories1 can
be historical or upcoming. RkNNST would like to retrieve
the reverse k nearest neighbors (RkNN) of a query object,
i.e., trajectories to which the query object is among the
k semantically closest objects, or equivalently, the k most
correlative geo-textual objects.

Figure 1 illustrates an example for our proposed sce-
narios, where (a) illustrates three trajectories t1, t2, t3 with
the semantic keywords of all geo-textual objects, and three
query points q1, q2 and q3, (b) plots the spatial locations
of the three trajectories, and the semantic keywords and
locations in the three queries, and (c) plots both the spatial
and the correlative distances between a query q and each
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1. We use trajectory to denote a semantic trajectory when the context
is clear in the following sections.
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Fig. 1. An RkNNST on semantic trajectories

trajectory. In terms of spatial distance (i.e., the sum of
Euclidean distances between each point in the trajectory
to the query point), the R1NNs of q1 are {t1, t2}; in terms
of correlative distance (to be defined in Definition 2 as a
combination of spatial distance and textual consistency), the
R1NNST of q1 is {t1} only.

RkNNST has many applications in geo-textual and geo-
social services such as resource planning.

(1) Each user in location-based social networks such as
Facebook and Foursquare leaves historical traces and forms
activity trajectory. Each location in an activity trajectory
contains both spatial location and activity tags (e.g., sport,
dining and entertaining) that indicate user’s interests. An
RkNNST query can help a franchise or chain business to
study the demographics of potential customers served by
each store. These demographics can help make customized
marketing and other businesses decisions.

(2) As another example, personalized online services
such as Airbnb recommend a home to those travelers whose
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ongoing traveling route treats this home as one of closet
among all homes in terms of spatial distance and textual
requirement. The textual requirement indicates the features
of the traveling routes match the home owner’s specialty
mostly (e.g, religious culture, natural beauty, shopping and
eating, etc.). Meanwhile, a home owner can discovery her
potential tenants by issuing an RkNNST query.

Classical RNN involves two point sets: facilities and
users [10], [27]. However, in RkNNST, the user sets are se-
mantic trajectories (i.e. sequences of locations with semantic
labels). As such, classical RNN methods cannot be applied
to answer RkNNST. [23] is the first work to investigate RNN
on trajectories for route planning. However, this problem is
different from RkNNST in two aspects. First, [23] returns
all points that take a trajectory as one of its k nearest travel
routes, which is opposite to RkNNST. Second, the trajec-
tories and points do not consider any textual or semantic
information.

In this paper, we study RkNNST query processing.
We face two main challenges. First, the RkNNST answers
depend on sub-sequences of the semantic trajectories w.r.t
the queried keywords. Thus, answering an RkNNST query
needs to explore a huge number of geo-textual objects in
an efficient manner. Specifically, a trajectory t and a query q
are correlative if all keywords of q appear in t. For instance,
t1 is correlative with q1 in Figure 1. Then, there could exist
many sub-trajectories of t1 that are also correlative with q.
For example, t1

2
1(=< p11, p12 >), t1

3
2(=< p12, p13 >) and

the super-sequences of t1
2
1 and t1

3
2. All these sub-sequences

can influence on RkNNST computation.
Second, RkNNST requires the geo-textual information in

both a global (i.e., trajectory) level and a local (i.e., point)
level. To efficiently access candidate sub-sequences, a se-
mantic trajectory index should have both of them. However,
existing indexes on raw trajectories, e.g., STR-tree [16], and
MV3R-tree [22], only focus on the spatial feature without
any textual information. On the other hand, the geo-textual
indexes, e.g., IR-tree [3] and I3 [29], only focus on geo-textual
points as separate objects, not as a sequence of objects, i.e.,
trajectories.

To address these challenges, we propose a novel index
IMC-tree, which preserves the global and local geo-textual
information for the semantic trajectories. The IMC-tree is
constituted by an inverted file and MC-trees, each corre-
sponding to a keyword. Our proposed MC-tree stores the
global spatial feature of the trajectories, while the local
feature is embedded in the tree node. In order to answer
an RkNNST query, an R-tree-based geo-textual index [24]
is employed to index the geo-textual query points. With
both trees, a branch-and-bound RkNNST algorithm DOTA
is proposed to obtain a candidate set in the best-first
paradigm. We also derive several important correlative dis-
tance bounds between a node in the IMC-tree and a node
in the query index, so that trajectories can be pruned in an
early stage.

The contributions are summarized as follows.
• We propose the problem of reverse k nearest neigh-

bor queries on semantic trajectories. (RkNNST).
• We propose a novel index IMC-tree incorporating

with both global and local geo-textual information
of semantic trajectories.

• We propose an efficient algorithm DOTA for answer-
ing RkNNST. It is a branch-and-bound algorithm
that can prune irrelevant trajectories effectively.

• A series of experiments are conducted on a real
dataset to evaluate the performance of our proposed
algorithms.

The rest of the paper is organized as follows. Section
2 formally defines the problem and gives an overview of
the proposed method. The IMC-tree is introduced in Section
3. The query algorithm DOTA is presented in Section 4.
Section 5 specifies several important correlative distance
bounds and the pruning rules. We review the related work
in Section 6. Section 7 details the performance evaluation
results. Finally, the paper is concluded in Section 8.

2 PRELIMINARILY AND METHOD OVERVIEW

2.1 Definitions

We denote all the geo-spatial objects as (l, ws), whose
location l is associated with a set of keywords ws. A se-
mantic trajectory t is a sequence of geo-textual points, i.e.,
t = (p1, p2, ..., pn). A sub-trajectory of t is denoted as tes,
where s ≥ 1 is the start position and e ≤ |t| = n is the end
position of the sub-trajectory. Recall that, if a trajectory t and
a query q are correlative, there could exist sub-trajectories of
t that are also correlative with q. As such, we define the
minimum correlative sub-trajectories.

Definition 1. (Minimum correlative sub-trajectory) Given a
(sub-)trajectory tes ⊆ t correlating with a query q, tes is minimum
if and only if ∄t′ ⊂ tes, q.ws ⊆

⋃
∀p∈t′

p.ws. tes is a minimum

correlative (sub-)trajectory w.r.t. q.

For instance, t1
2
1 and t1

3
2 are both the minimum correl-

ative sub-trajectories (mcs) w.r.t q1 in Figure 1. Obviously,
the minimum correlative sub-trajectory of a trajectory w.r.t.
a query is not unique.

We consider the average distance between the points in
trajectory and the query as the distance from a trajectory to
a query point. For convenient computation, we assume the
trajectory lengths are same. In case the lengths are different,
we can employ linear interpolation or truncate them into
equal sizes. Thus, similar to [28], the distance between a
minimum correlative sub-trajectory and a query q is defined
to be the sum of the distance between each geo-textual point
in the sub-trajectory and q.

Then the correlative distance between a trajectory and q
is the minimum distance between any minimum correlative
sub-trajectory and q. Or formally,

Definition 2. (Correlative distance) Let mcs denote the set of
the minimum correlative sub-trajectories of a trajectory t w.r.t. a
query q. The correlative distance between t and q

cd(t, q) = MIN
∀te

s∈mcs

∑

∀p∈te
s

d(p, q).

For example in Figure 1, cd(t1, q1) =
MIN{

∑
∀p∈t1

2
1

d(p, q1),
∑

∀p∈t1
3
2

d(p, q1)}) = 2.82. The cor-

relative distance is symmetrical, that is, cd(t, q) = cd(q, t).
Theorem 1 below gives the lower and upper bounds of

correlative distance cd(t, q). The lower bound is obtained
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TABLE 1
Interpretation of symbols

term description
tes a semantic trajectory from the start point s to

the end point e

ncnk(t) k most nearest correlative neighbors of t

rnnk(q, QS) k reverse nearest neighbor of q

d(q, t) the spatial distance between q and t

cd(t, q) the correlative distance between q and t

#iwq the minimum number of keywords in the
queries below a node

ss =
(sig, skt)

the abstract, sig is a trajectory signature, and
skt is the location sketch

ET (ET ) a trajectory nodes set ET in the IMC-tree
(ET ∈ ET )

EQ a query node in the query index
MINcd minimum correlative distance
MAXcd maximum correlative distance
mcs a set of the minimum correlative sub-

trajectories

when the labeled keywords set of the nearest point on t to q
contains at least one of keywords in q.ws. The upper bound
d(q, t) is the case when the labeled keywords q.ws scatter at
each position of t. Formally,

Theorem 1. For a trajectory t and a query q,
MIN

∀p∈t&p.ws∩q.ws6=φ
d(p, q) ≤ cd(t, q) ≤ d(q, t),

where d(q, t) =
∑
∀p∈t

d(p, q) is the spatial distance between q

and t.
The lower and upper bounds will be tightened and

applied in the optimization process in Section 5.

2.2 Problem formalization

Before formally introducing RkNNST, we define the k near-
est correlative neighbors given a trajectory t and a geo-
textual object set.

Definition 3. (k Nearest Correlative Neighbors, kNCN) Given
a trajectory t, CO is the set of geo-textual objects which correlate
with t. An object o ∈ CO is one of the k most nearest correlative
neighbors of t within CO, denoted by o ∈ ncnk(t, CO), if and
only if |{o′|∀o′ ∈ CO and cd(t, o′) ≤ cd(t, o)}| < k.

Definition 4. (RkNNST) Given a query set QS, a query q(∈
QS) and a trajectory set TS, our goal is to retrieve trajectories
from TS whose k most nearest correlative neighbors within QS
include q. That is, rnnk(q, QS)={t|q ∈ ncnk(t, QS), t ∈ TS}.

The output of the problem is a set of the minimum cor-
relative sub-trajectories, where each item is {(tid, s, e, cd)}.
tid is the trajectory identity, s and e are the start and end
positions on t, and cd is the correlative distance between tid
and q.

From Definition 4, finding a query point’s RkNNST
is inevitable to find the k nearest correlative neighbors
ncnk(t, QS) of each trajectory t ∈ TS, and then check if the
query point is in ncnk(t, QS). Thus, the simplest method
of RkNNST is to implement k nearest neighbors search
for each trajectory iteratively. Specifically, given a trajectory
t ∈ TS, the nearest correlative neighbors ncnk(t) of t are
found from QS. Then, for each q ∈ ncnk(t), t is one of
RkNNST for q.

The drawback of the method is obvious. Each time we
want to find the RkNNST of a query, ALL trajectories should

T S
w 1 w 2 w 3 w 4e 1 e 2e 3 e 4 e 5 e 6O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9A l g o r i t h m 1q u e r y r e s u l t s e t{ ( t i d , s , e , c d ) }

S t e p 1 :c r e a t i n g i n d e x Q S
R 5A l g o r i t h m 2R 6R 1 R 2 R 3 R 4p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8+ w 1 � w 1+ w 2 � w 2 + w 2 � w 2

O p t i m i £z a t i o nS t e p 2 : I M C ±t r e e a c c e s s S t e p 3 : Q u e r yi n d e x a c c e s sS t e p 1 : c r e a t i n gi n d e x
S t e p 4 : r e t u r nq u e r y r e s u l t s

Fig. 2. Outline of DOTA

be scanned to compute nearest correlative neighbors over
ALL query points. Both the trajectory set TS and the query
points QS are accessed repeatedly. Moreover, computing k
nearest correlative neighbors of t is based on enumerating
the correlative sub-trajectories w.r.t. ∀q ∈ QS. Thus, the
computation of RkNNST is costly, whose time complexity
is O(|TS||QS|) × O(l3), where l is the trajectory size.

2.3 Method outline

Our proposed algorithm DOTA is a branch-and-bound al-
gorithm using the best-first paradigm through the double
trees access (i.e., the IMC-tree and a query index). The
double indexes accesses benefit pruning massive negative
trajectories and queries at an early stage. IMC-tree is a
hybrid index on trajectories TS integrating the global and
local geo-textual information (details in Section 3). We also
employ a R-tree based geo-textual index (e.g., WIBR-tree,
IR-tree, etc.) which supports boolean top-k queries [2], to
index the queries points QS.

DOTA visits the IMC-tree and the index on queries alter-
nately. The basic process is shown in Figure 2. After creating
indexes on the trajectories TS and query points QS, we start
from the IMC-tree access (i.e., Algorithm 1 in Section 4.1),
while the query index access is embedded in each round
of IMC-tree node access (i.e., Algorithm 2 in Section 4.2).
Finally, the two trees accesses are terminated when RkNNST
is obtained. Moreover, we propose a new algorithm (i.e.,
Section 4.3) to compute the correlative distances. We also
propose an improvement strategy for batch process when a
batch of queries arrive simultaneously (i.e., Section 4.4).

Assume that the node fanout of IMC-tree and the R-
tree based query index are Bm and Br respectively. Then,
the time complexity of DOTA is O(|q.ws| · logBm

|TS| ·
logBr

|QS|)×O(l2), where |q.ws| is the number of keywords
in the query point. For convenience, we list the interpreta-
tions of primary symbols throughout the paper in Table 1.

3 IMC-TREE:A HYBRID INDEX ON TRAJECTORIES

In this section, we propose a novel IMC-tree incorporating
with the spatial and textual information, while with global
and local geo-textual information of trajectories.

3.1 Basic structure

The IMC-tree consists of an inverted list and MC-trees. The
inverted list stores the keywords vocabulary (i.e., the textual
information of trajectories). For each keyword, we create an
MC-tree (i.e., the spatial information of trajectories). MC-
trees extend from traditional m-trees [4] with trajectory
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Fig. 3. IMC-tree illustration

abstracts. We will introduce the proposed MC-tree, an im-
portant component of IMC-tree, in this section first, and then
explain the trajectory abstract in the next section.

MC-trees are based on m-trees since m-trees have a
special distance feature, which can help for organizing the
spatial distance between any two trajectories. That is, there
is a radius r for each node in m-trees. The radius defines a
Ball in the desired metric space. Then, every internal node
and leaf residing in a particular node is at most distance r
from the particular node, and every node and leaf node with
node parent keep the distance r from it [4]. We use m-trees to
index trajectory objects. Hence, the spatial distance between
any two trajectories can be bounded using the radiuses.

M-trees require the distance function between index ob-
jects is an metric. That is, the distance function should satisfy
the positivity, symmetry, and triangle inequality postulates.
Before we prove the spatial distance between trajectories is
an metric in Theorem 2, we first define the spatial distance
function of trajectories.

Definition 5. (Spatial distance between trajectories) The spatial
distance between two trajectories t ∈ TS and t′ ∈ TS is defined
as the distance sum of the aligned points generally, i.e., d(t, t′) =
n∑

i=1

d(pi, p
′
i), where pi ∈ t and p′i ∈ t′.

Theorem 2. Given three trajectories t1, t2, t3, (1) d(t1, t2) ≥ 0;
(2) d(t1, t2) = d(t2, t1);(3) d(t1, t2)+d(t1, t3) ≥ d(t2, t3). The
first two properties are obvious. The third one can be proved
by summing n inequations of three aligned points on each
trajectory. For space limited, the detail proof is omitted here.

MC-tree’s structure: The skeleton of an MC-tree is an
m-tree. An MC-tree is a tree structure, being composed of
internal nodes and leaf nodes. Particularly,

(1) An internal node stores a set of routing trajectories2.
A routing trajectory is denoted as or = (tr, pt, d, r, ss).
Specifically, tr is the identity of the routing trajectory; pt
points to the covering tree MC-tree(or) which is an MC-
tree below the routing trajectory or ; d is the spatial distance

2. They are called routing objects in m-trees, which means the dis-
tance between the objects below this node and the routing object is less
than the radius r.

between tr with its parent routing trajectory; r is the cov-
ering radius where d(t, tr) ≤ r(∀t ∈ MC-tree(or)); ss is the
abstract for the trajectories covered by the MC-tree(or).

(2) A leaf node stores the trajectory objects. A trajectory
object ot consists the trajectory identity and the spatial
distance d(ot, or) between the trajectory ot and the parent
routing trajectory or

3.
Example:Figure 3a illustrates an IMC-tree. The keyword

vocabulary includes {w1, w2, ..., wn}, which is organized
as an inverted file. The MC-tree of keyword w1 has two
levels (i.e., the left MC-tree in Figure 3(a)). The MC-tree
of w1 is also illustrated by a visualized figure (i.e., Figure
3(b)), where each solid circle represents a trajectory object
in the leaf nodes. The set of routing trajectory for the root
is {e1(o1), e2(o4), e3(o6)}. That is, o1 is the routing object
of e1, whose covering radius is assumed to be 2. Thus, the
spatial distances from the trajectories below e1 (i.e., o2.t2 or
o3.t3) to the routing trajectory (i.e., o1.t1) are not larger than
2.

Overall, the global textual information is in the inverted
list. If a trajectory doesn’t contain any keyword in the query,
the trajectory will not be checked in the query process.
Meanwhile, the global spatial information concentrates in
MC-trees. The covering radius in each node is the upper
bounds of spatial trajectories between any two trajectories
below the node. The radiuses and the exact locations of the
routing trajectory are used to compute the upper bounds of
the correlative distances between the nodes in MC-trees and
the nodes in query index(in Section 5.2).

3.2 Trajectory abstract

Besides global information, local information of points in
trajectories is also condensed into internal nodes of MC-
trees, representing as trajectories abstracts. The abstract ss
includes two components,i.e., ss = (sig, skt).

(1) Trajectory signature sig identifies the existence of
trajectories below the branch of the MC-tree. sig is repre-
sented as a bit vector, where the i-th bit represents whether
the subtrees of this node contain the trajectory or not. In
particular, each trajectory identity will be mapped onto one
bit by a hash function. Then its i-th bit is 1 if there exists a
trajectory point within this node and its identity is mapped
to the i-th position. Otherwise, the i-th bit is set to 0. sig in
internal nodes is the trajectory signature union of its sub-
nodes.

(2) Location sketch skt points to a linear quad-tree [31].
Employing linear quad-trees, correlative points on trajecto-
ries w.r.t the keyword w are organized. In particular, the
space is divided into equal-size cells, whose locations are
encoded based on the Morton code. The linear quad-tree
keeps the non-empty cells with the codes.For instance, the
location of p31 on t3 in Figure 1 is only in the MC-trees w.r.t.
the keywords a and b. As a result, the nearest correlative
point on trajectories to a query can be found easily using
the method in [31].

Figure 3c illustrates the abstract in e1. We assume there
are 9 trajectories. sig (i.e., a bitvector) represents t1, t2 and
t3 are contained in e1. The location sketch skt points to a

3. When the context is clear, we do not distinguish trajectories and
trajectory objects.
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linear quadtree storing the non-empty cells of Morton code.
That is, the cells in the linear quadtree are traversed by t1,
t2, and t3. Meanwhile, the points of the three trajectories in
the cells contain the keyword w1.

4 DOTA :RkNNST QUERY ALGORITHM ON

DOUBLE TREES ACCESS

DOTA visits the IMC-tree and the index on queries alter-
nately. In the first place, we need to elaborate an important
variable candk, which is the intermediated computation
result. candk stores the k nearest correlative neighbor can-
didate queries for a trajectory (set). As we know that if the
query q is far from a trajectory t than the existing candidates
queries in candk, the trajectory t has no chance to be the
RkNNST of q. This intuition triggers us maintaining candk

for visited trajectories (nodes4). As a result, the irrelevant
trajectories can be pruned.

IMC-tree access is the entrance of DOTA, and the query
index access is embedded in IMC-tree access. The basic
procedure of DOTA is as follows. The roots of MC-trees
w.r.t. the keywords in q.ws are inserted into a queues set. A
queue front ET is popped up. With the queue front ET , the
query index is visited as the best-first paradigm to confirm
the state of the trajectory node ET (i.e., pruned, visit, or
not-sure) and maintain the k nearest correlative neighbor
candidates candk for ET . If the state of ET is not pruned, the
sub-nodes of ET are inserted into the queues set. The above
procedure is repeated. Finally, specific trajectories will be
retrieved from leaf nodes of MC-trees and inserted into the
queues set. When a specific trajectory is popped up, we visit
the query index with specific trajectories. Then, RkNNST
of the query q is updated. The whole procedure is stopped
when the queues set becomes empty.

In this section, we first elaborate the detail access pro-
cedures on two trees in Section 4.1 and Section 4.2 respec-
tively. Then, the algorithm for computation the correlative
distances is proposed in Section 4.3. Finally, we summarize
and improve DOTA for batch process in Section 4.4.

4.1 Access on trajectories index

This section begins with embodying candk. candk is a set
with k pairs, and each pair is in the form of < qi, mdi >
(1 ≤ i ≤ k). For a specific trajectory, candk stores k queries
who are the k-th nearest correlative candidate queries, and
mdi is the correlative distance between qi and this trajectory.
For a trajectory set, candk stores k queries as well, while mdi

is the maximum correlative distance (i.e., the upper bound)
between this query and the trajectory set (i.e., defined in
Section 5.2).

The IMC-tree is visited as the best-first paradigm. Algo-
rithm 1 shows the detailed visiting process. Since each key-
word in the query q.ws corresponds to an MC-tree, we use
a queues set SET to maintain the accessed nodes from the
IMC-tree (shown in Figure 4). Each item in SET is a queue.
The queue QEwi contains the accessed nodes in the MC-
tree corresponding to the keyword wi ∈ q.ws. Each queue
is sorted by the minimum correlative distance, MINcdET q,

4. A trajectory set is covered by a trajectory node from an IMC-tree.
Thus, we use a trajectory node and a trajectory set alternatively when
the context is clear.

between a trajectory set ET and a query q (details refers to
Corollary 1). The queue fronts in SET constitute the set ET ,
which is sorted by MINcdET q logically.

Algorithm 1 Algorithm of IMC-tree Access

Input: an IMC-tree tree1, a WIBR-tree tree2, a query q
Output: RkNNST of q

1: put the roots of MC-trees in tree1 w.r.t. q.ws into SET ;
2: initialize sig∩ by the roots of MC-trees w.r.t. q.ws;
3: if sig∩ = ∅ then
4: break; {Rule 1 in Section 5.3}
5: while SET is not empty do
6: compute MINcdET q ;
7: DeQueue(ET, ET );
8: if ET is an internal node then
9: state=apply Alg. 2 to check the state of ET using tree2;

10: if state 6= pruned then
11: for each child CET below ET do
12: if CET is not pruned by Rule 1 then
13: copy ET .candk to CET and update

MAXcdCET qi
;

14: insert CET into the queue QET in SET ;
15: else
16: if ET is a leaf node then
17: for each t ∈ ET do
18: copy ET .candk to t;
19: compute cdt,q;
20: if cdt,q > t.candk.mdk then
21: t is pruned; {Rule 2 in Section 5.3}
22: else
23: update candk with cdt,q;
24: insert t into the queue QET in SET ;
25: else
26: t is used to update rnnk(q) in tree2;

Initially, the roots of MC-trees w.r.t. the keywords in
q.ws are inserted into SET , and sig∩ is initialized as the
intersection of trajectory signatures in the MC-tree roots
(Line 1 and Line 2). If sig∩ = ∅, none of the trajectories
contains all the keywords in q.ws (Rule 1 in Section 5.3);
otherwise, the minimum queue front ET is popped from
ET (Line 7). With an internal node ET , the query index
is visited in Algorithm 2 (Line 9). After visiting the query
index, the state of ET is confirmed. If ET is pruned, ET

and the branches under ET are neglected. If ET cannot be
pruned (Line 10), the children of ET are inserted into SET .
With a leaf node ET , cd(t, q) for each trajectory t ∈ ET is
computed. The state of t is checked by Rule 2 in Section 5.3.
If t is not pruned, t is inserted into SET (Lines 16∼24).
With a specific trajectory, k nearest correlative neighbors
ncnk(t) of t and k reverse nearest neighbors rnnk(q) of q
are updated during the query index access(Line 26). The
process is repeated until SET is empty.

What needs to be explained further is that, if a trajectory
node ET is un-pruned (Line 10), the sorted list candk of ET

is maintained after the access of the query index. ET .candk

maintains k sorted pairs. When the child CET of ET is
inserted into the queue QET , CET inherits the queries in
candk of ET (Lines 11∼14). The queries in inherited candk

are the intermediate results, which are benefit for pruning
the negative trajectories (Rule 2 in Section 5.3). When ET is
a leaf node, each trajectory t ∈ ET inherits the candk of ET

(Line 18) as well. With the specific trajectories and queries,
the correlative distances are computed for t.candk(Line 19).
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If cd(t, q) is larger than the correlative distance of k-th item
in t.candk, t is pruned (Lines 20∼21); otherwise, t with the
new candk is inserted into SET (Lines 23∼24).. . .. . .... . . . q u e u e Q E w 1q u e u e Q E sq u e u e Q E w 2E T
Fig. 4. SET and ET illustration

m i n p m a x p2 31 2a 1 2b 1 3 4c 5d 2 4 p t dp t ap t b
Fig. 5. Corr. dist. computation

4.2 Access on query index

Recall that we use an R-based geo-textual index on queries
points, which can support boolean top-k search. In our
experiments, we use a WIBR-tree [24], however, which it
is not limited to. The effect of query index access includes
two folds: confirming the state of the trajectories and main-
taining the k nearest correlative neighbor candidates candk.
The query index is also visited as the best-first paradigm,
under two kinds of inputs: a trajectory node ET (Line 9 in
Algorithm 1) and a trajectory t (Line 26 in Algorithm 1).
Algorithm 2 shows the main process of the query index
access with the trajectory node ET . The basic process of the
query index access with a specific trajectory t is almost same
except several correlative distances revision. After that, we
will discuss the difference between access with a trajectory
node and with a trajectory.

In Algorithm 2, we use a priority query queue QueQ to
maintain the nodes of the query index. QueQ is sorted by
the minimum correlative distance, MINcdET EQ

, between
a trajectory node ET and a query node EQ(∈ QueQ)
(details refers to Theorem 3 in Section 5.1). Algorithm 2
begins with checking the node ET by Rule 2 (details in
Section 5.3). If ET is not pruned, the root of query index is
inserted into QueQ (Lines 4∼5). While QueQ is not empty,
the state of ET is checked further by the other rules in
Section 5.3 (i.e., Algorithm 5). If ET can be pruned or must
be visited, the algorithm returns (Lines 8∼9); otherwise
QueQ and ET .candk are updated (Lines 10∼17). Then, ET

is re-checked with the new QueQ.
The basic process of the query index access with a

specific trajectory t is almost same as Algorithm 2 only with
several correlative distances revision. In particular, firstly,
the conditional judgment in Line 1 changes to cd(q, t) >
t.candk.mdk as Rule 2. If the correlative distance between q
and t is larger than the k-th candidate item in t, the query
q is not in ncnk(t). Secondly, the minimum correlative dis-
tance, MINcdET EQ

, between a trajectory node ET and a
query node EQ reduces to the minimum correlative distance
MINcdt EQ

between a query node EQ and a trajectory t
(Definition refers to Theorem 4), and ET .candk changes to
t.candk. Thirdly, the candidate ncnk(t) for t can be obtained
from Line 15 to Line 17 with specific trajectories and queries.

Updating cascade: Remark that t.candk is updated when
we use a specific trajectory t to traverse the query index
(Line 26 in Algorithm 1). When t.candk is updated, the
candk of the leaf node of MC-tree covering t can also be
updated. Similarity, the candk of the ancestor nodes of this

leaf node should also be updated. The update is repeated
until we backtrack to the root of MC-tree. Such that, the
bounds of the IMC-tree nodes become more constrained.
As a result, when a new query arrives, the pruning rules
and the visiting rules (in Section 5.3) will be more effective.
In order to reduce the cost of updating cascade, we delay
the candk updating to the moment when all trajectories
below a leaf node complete candk updating. Similarly, for
a trajectory node in an MC-tree, the updates operation is
delayed until the candk of all its children completes.

Algorithm 2 Query index access with the node ET

Input: an MC-tree node ET , a query index tree2, the query q
Output: the state of ET , ET .candk

1: if MINcdET q > ET .candk.mdk then
2: return prune; {Rule 2 in Section 5.3}
3: else
4: rt=the root of tree2;
5: insert (rt,MINcdET rt) into QueQ;
6: while QueQ is not empty do
7: state=invoke Alg. 5 to prune ET

8: if state=prune or state=visit then
9: return state;

10: pop the front (EQ,MINcdET EQ
) from QueQ;

11: if EQ is an internal node then
12: for each child CEQ of EQ do
13: insert (CEQ, MINcdCEQ ET

) into QueQ;
14: else
15: for each q′ in EQ do
16: if MAXcdq′ ET

< ET .candk.mdk then
17: updating ET .candk with q′;
18: return visit;

4.3 Correlative distances computation

An important step in Algorithm 1 is to compute the cor-
relative distance between a trajectory and a query (Line
19). From Definition 2, we need to find all the minimum
correlative sub-trajectories w.r.t q for computing correlative
distances. Since a minimum correlative sub-trajectory is
a sub-sequence of the trajectory. Thus, a straightforward
method is to enumerate all sub-trajectories through a three-
layer nested loop, and to choose the one whose correlative
distance is minimum. The time complexity of naive method
is O(l3). In this section, we propose an algorithm PI employ-
ing several pointers and an inverted file. PI goes through
the whole trajectory by jumping on segments.

The algorithm contains three main steps. First, we create
a keyword-position inverted file for the trajectory. Each
item in the inverted file contains a keyword and a sorted
posting list. The posting list is constituted by the positions
on the trajectory which contains this keyword. Figure 5
illustrates the inverted file for the trajectory t1 in Figure
1. The keyword a is contained in the position 1 and the
position 2.

Second, we employ |q.ws| pointers to record the cur-
rent checking positions in the inverted file for the differ-
ent keywords. The minimum and the maximum positions
bound a segment. The sample positions in this segment
constitute a correlative sub-trajectory candidate to q. For
example, we want to find the correlative sub-trajectories
for q1({a, b, d}) on t1. Initially, the pointers pta and ptb
both point to the position 1, and the pointer ptd is at the
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position 2. Thus, minp = MIN{pta, ptb, ptc}=1, maxp =
MAX{pta, ptb, ptc} = 2, and the current segment is [1, 2].
The candidate sub-trajectory is t21. Then,

∑
p∈t2

1

d(p, q) is set as

the cd(t, q).
Third, the pointers with smallest position number move

to the next positions in the posting list. The locations
in the new segment constitute another correlative sub-
trajectory candidate t

maxp

minp
. If

∑

p∈t
maxp
minp

d(p, q) is less than

the current cd(t, q), cd(t, q) is updated by
∑

p∈t
maxp
minp

d(p, q).

In the running example, pta and ptb move forward to
the next positions (i.e., 2 and 3 in each posting list) re-
spectively. At this moment, minp = MIN{pta, ptb, ptc}=2,
maxp = MAX{pta, ptb, ptc} = 3. Therefore, the samples
in t32 constitute another candidate trajectory. The movement
step is repeated until one of the pointers points to the end of
the posting list. Continuing with the running example, the
algorithm ends when pta arrives at the end of the list.

The algorithm is shown in Algorithm 3. The worst time
complexity is O(l2).

Algorithm 3 PI: Computing the correlative distance

Input:an inverted file f for trajectory t, q
Output: cd(t, q)

1: pt1, ..., ptm point to the first positions whose keyword is
contained in q.ws;

2: cd = ∞;
3: while pt1 6= NULL and ..., and ptm 6= NULL do
4: minp=min(pt1, pt2, ..., ptm);
5: maxp=max(pt1, pt2, ..., ptm);
6: if cd >

∑

p∈t
maxp
minp

d(p, q) then

7: cd =
∑

p∈t
maxp
minp

d(p, q);

8: pointers who equal minp moves to the next position in
the list;

4.4 Improvement for batch process

Algorithm 1 is the procedure for one query. When a batch
of queries arrives simultaneously, we don’t need to run
Algorithm 1 for every query, since candk for each trajectory
changes little after parts of queries run through the IMC-tree
and the tree of the query index. At that moment, we only
traverse IMC-tree breadth-firstly without the query index
access. The detail algorithm is shown in Algorithm 4.

DOTA for batch process begins with creating an IMC-
tree and a query index on a trajectory set and a query
set respectively (Line 1). For each query q, Algorithm 1 is
invoked initially (Line 4). When every trajectory owns k
nearest candidates candk, the MC-trees associated with q.ws
are traversed breadth-firstly (Lines 6∼19).

5 OPTIMIZATION

In general, given a query q, a trajectory nodes set ET (i.e.,
a trajectory set) and a query node EQ (i.e., a query set)
are being accessed. We divide the situation into two cases
according to the number of trajectories in ET . Case 1, a
trajectory set ET and a query set are being accessed; Case 2,
a trajectory t and a query set are being accessed. The lower
bounds and the upper bounds of the correlative distances

Algorithm 4 DOTA for batch process

Input:a queries set QS, a trajectories set TS
Output: RkNNST for each query

1: create an IMC-tree on TS and a query index on QS;
2: for each q in QS do
3: if NOT ALL trajectories in TS are being visited then
4: invoke Algorithm 1 to find RkNNST for q on two trees;
5: else
6: initialize sig∩ and SET with the roots of the MC-trees
7: if sig∩ = ∅ then
8: continue; {Rule 1 in Section 5.3}
9: while SET is not empty do

10: ET =pop the minimum front from SET;
11: if ET .candk.mdk < MINcdET q then
12: continue; {Rule 2 in Section 5.3}
13: else
14: if ET are NOT leaf node then
15: insert children of ET passing Rule 1 into SET ;
16: else
17: for each t in ET do
18: if cd(q, t) ≤ t.candk.mdk then
19: t is one of the RkNNST of q;

are discussed under the two cases in Section 5.1 and Section
5.2 respectively. Then, the pruning rules are elaborated in
Section 5.3.

5.1 The lower bounds of the correlative distances

5.1.1 Case 1: a trajectory set and a query set

We define the minimum correlative distance between a
trajectory set ET and a query set EQ in Definition 6 under
the general case (i.e., Case 1).
Definition 6. (Minimum correlative distance between a trajec-
tory set and a query set, MINcd)
∀t ∈ ET, ∀q ∈ EQ, cd(t, q) ≥ MINcd.

Theorem 3 will specify MINcd computation. We com-
pute MINcd based on the spatial distance between cnn and
the query set EQ. cnn is the nearest cell obtained from the
abstract (i.e., linear quad-trees) of ET to EQ employing the
existing technique [31].

Theorem 3. Minimum correlative distance between a tra-
jectory set and a query set computation

MINcd = MIN
∀ET∈ET

(MINcdET EQ
),

where MINcdET EQ
= d(EQ, cnn). Generally, a minimum

bounding rectangle is used to represent the location of EQ in
an R-tree based index. d(EQ, cnn) is the traditional minimum
spatial distance between two rectangles.

Proof. ∀t ∈ ET , ∀q ∈ EQ, cd(t, q) ≥ d(p, q) as Theorem 1,
where p is the nearest correlative point to q on t. cnn is the
nearest cell in the location sketch of ET to EQ. Obviously,
d(p, q) ≥ d(cnn, EQ). ∀ET ∈ ET, ∀t ∈ ET , ∀q ∈ EQ,
cd(t, q) ≥ MIN

∀ET ∈ET
d(EQ, cnn).

Particularly, we denote the minimum correlative dis-
tance between a trajectory set ET and a query q as
MINcdET q when EQ degenerates to a query. Corollary
1 is derived from Theorem 3
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Corollary 1. Minimum correlative distance between a tra-
jectory set and a query computation

MINcdET q = MIN
∀ET∈ET

(MINcdET q),

where MINcdET q = d(q, cnn) and d(q, cnn) is the traditional
spatial distance between a point to a rectangle.

5.1.2 Case 2: a trajectory and a query set

Though Case 2 is a special case of Case 1 when ET covers
only one trajectory, we do not compute MINcdt EQ

by
concretizing Theorem 3. That is because we can use the exact
locations instead of location sketch in the specific trajectory.

The distance between the nearest point pnn on t to EQ

is the lower bound of MINcdt EQ
. The best case is that

the labeled keywords set of pnn covers q.ws. Based on this
intuition, Theorem 4 shows the computation method.

Theorem 4. Let pnn ∈ t be the nearest point to EQ considering
the spatial feature only, then

MINcdt EQ
= ⌈

EQ.#iwq

t.#awp
⌉ × d(pnn, EQ).

#awp is the maximum number of keywords labeled

with each location on a trajectory t. Then, at least ⌈
EQ.#iwq

t.#awp
⌉

points on t are required to form a correlative sub-trajectory.

However, MINcdt EQ
in Theorem 4 depends on the

position of pnn heavily. If pnn is not in any correlative sub-
trajectory, MINcdt EQ

is loose. Since the trajectory t and
the keywords set associated with EQ are both specific, we
begin with finding the correlative sub-trajectories mct of t
w.r.t. EQ. Then, we use Theorem 4 on each correlative sub-
trajectory in mct to tighten MINcdt EQ

. Thus, we revise
Theorem 4 in Theorem 5.

Theorem 5. Minimum correlative distance between a tra-
jectory and a query set computation

MINcdt EQ
= MIN

te
s∈mct

(MINcdte
s EQ

).

mct is the set of minimum correlative sub-trajectories of t w.r.t.
the keywords set of EQ. MINcdte

s EQ
is computed as Theorem

4.

5.2 The upper bounds of the correlative distances

In this section, we will define the maximum correlative
distances and give the computation methods under the
above two cases. Before that, we discuss two spatial triangle
inequalities among trajectories and queries.

Theorem 6. Spatial triangle inequalities among trajectories and
queries.

• Given a trajectory t and two queries q1, q2, d(q1, t) +
d(q2, t) ≥ n × d(q1, q2), and d(q1, t) ≤ d(q2, t) + n ×
d(q1, q2).

• Given two trajectories t1, t2 and a query q, d(q, t1) +
d(q, t2) ≥ d(t1, t2) and d(q, t1) + d(t1, t2) ≥ d(q, t2).

The proof is straightforward. Due to space limitations,
we omit it here. The two properties will be used in maxi-
mum correlative distances computation.

5.2.1 Case 1: a trajectory set and a query set

Definition 7. (Maximum correlative distance between a trajec-
tory set and a query set, MAXcd)
∀t ∈ ET, ∀q ∈ EQ, cd(t, q) ≤ MAXcd.

Recall that the upper bounds of any two trajectories can
be obtained through the radiuses marrying up with the spe-
cific locations of routing trajectory. Employing this property,
we can compute the maximum correlative distance between
a trajectory set ET and a query set EQ. ET is constituted by
several trajectory sets. Therefore, the minimum one among
the maximum correlative distances between a trajectory set
ET and a query set EQ is set as MAXcd. Theorem 7 will
show the computation method.

Theorem 7. Maximum correlative distance between a tra-
jectory set and a query set computation

MAXcd = MIN
ET∈ET

(MAXcdET EQ
),

where

MAXcdET EQ
= d(qc, o.t) +

n × L

2
+ o.r.

qc is the center of the minimum bounding rectangle of EQ, L is
the diagonal length of the minimum bounding rectangle of EQ,
and o is the routing trajectory of ET .

Proof. From Theorem 1, ∀q′ ∈ EQ, ∀t ∈ ET , cd(t, q′) ≤
d(q′, t). From the second in-equation of Theorem 6 and the
m-tree feature, d(q′, t) ≤ d(q′, o.t) + d(o.t, t) ≤ d(q′, o.t) +
o.r. From the first in-equation of Theorem 6, d(q′, o.t) <
d(qc, o.t) + n × d(qc, q

′). Since d(qc, q
′) ≤ L/2, d(q′, t) ≤

d(qc, o.t) + n×L
2

+ o.r. Since the AND semantics, the in-
equation for each ET ∈ ET should be satisfied. Therefore,
the minimum value is employed.

In Theorem 7, we don’t need to access each trajectory
below an inter-node ET to compute the upper bounds.
Instead, we only use the dominated trajectory with the help
of the spatial property of MC-tree, which is efficient.

When the query set EQ reduces to a query q, the maxi-
mum correlative distance between ET and q is denoted as
MAXcdET q . MAXcdET q is computed as a special case
of Theorem 7 with qc = q and L=0, which is shown in
Corollary 2.

Corollary 2. Maximum correlative distance between a tra-
jectory set and a query computation

MAXcdET q = MIN
ET∈ET

(MAXcdET q),

where MAXcdET q = d(q, o.t) + o.r and o is the routing
trajectory of ET .

5.2.2 Case 2: a trajectory and a query set

The maximum correlative distance between a trajectory and
a query set is denoted as MAXcdt EQ

. We employ the
maximum spatial distance between p and the minimum
bounding rectangle of EQ computing the maximum correl-
ative distance. Like Theorem 5, we employ the minimum
correlative sub-trajectories to tighten MAXcdt EQ

compu-
tation.
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Theorem 8. (Maximum correlative distance between a tra-
jectory and a query set computation)

MAXcdt EQ
= MIN

te
s∈mct

(MAXcdte
s EQ

)

mcs is the set of the minimum correlative sub-trajectories to
EQ.ws.

MAXcdte
s EQ

=
∑

∀p∈te
s

mxd(p, EQ),

where mxd(p, EQ) is the maximum spatial distance between p
and EQ.

Proof. Assume MAXcdt EQ
is computed on the sub-

trajectory tes. We aim to prove cd(t, q′) ≤ MAXcdte
s EQ

, for
∀q′ ∈ EQ, .

∀q′ ∈ EQ, the correlative distance cd(t, q′) is computed
on the sub-trajectories in mct, since q′.ws ⊆ EQ.ws. Then,
the computation has two cases. One case is that cd(t, q′)
is computed from the sub-trajectory tes; the other case
is that cd(t, q′) is computed from another sub-trajectory
ntes(∈ mcs).

For the first case, the actual minimum correlative sub-
trajectory w.r.t. q′ is the subset of tes. Meanwhile, ∀p ∈ tes,
d(p, q′) ≤ mxd(p, EQ). Thus, cd(t, q′) ≤

∑
∀p∈te

s

d(p, q′) ≤

MAXcdte
s EQ

.
For the other case, the minimum correlative sub-

trajectory w.r.t. q′ is the subset of ntes, denoted as nte−j
s+i .

cd(t, q′) =
∑

p′∈nt
e−j
s+i

d(p′, q′). Since cd(t, q′) is computed on

nte−j
s+i ,

∑

p′∈nt
e−j
s+i

d(p′, q′) <
∑

p∈te
s

d(p, q′). Otherwise, cd(t, q′)

would be computed from tes. From the above proof, we
know

∑
∀p∈te

s

d(p, q′) ≤ MAXcdte
s EQ

. Thus, cd(t, q′) ≤

MAXcdte
s EQ

.

5.3 Pruning and visiting rules

In order to improve the query efficiency, the algorithm
expects to visit the necessary nodes as early as possible,
and the unnecessary nodes as less as possible. During the
access of the IMC-tree (in Algorithm 1), we expect that less
nodes in the IMC-tree are inserted into SET , such that less
rounds of query index access being invoked. If a trajectory
node ET is pruned, the children nodes of ET will not
be inserted into SET . Meanwhile, during the query index
access (in Algorithm 2), we expect a trajectory node ET is
pruned earlier, such that the query index access breaks off
earlier. The essence of the two expectations is same. That is,
we should prune negative trajectory nodes ET as early as
possible.

Based on this intuition, we propose several access rules
(i.e., pruning rules and visiting rules) to achieve this tar-
get. Rule 1 is proposed according to the AND semantics
implied by the textual requirements in the query. Each
keyword w points to an MC-tree in the IMC-tree. Assume
that ETw

is the root of the MC-trees for w ∈ q.ws. Let
sig∩ =

⋂
w∈q.ws

ETw
.sig. In the extreme case, sig∩ = ∅ means

that none of trajectories contains the keywords q.ws mean-
while. We generalize this observation in Rule 1 to prune

the trajectories containing partly or none of the keywords in
q.ws.

Rule 1. (Pruning rule) Assume ETw′
is the current checked node

in the MC-tree corresponding to the keyword w′. If

|q.ws|⋂

i=1&wi 6=w′

QEwi
.sig ∩ ETw′

.sig = ∅,

ETw′
is pruned. QEwi

.sig is the queue signature for the keyword
wi. That is, QEw.sig is the signatures union for all the nodes

in the queue QEw, i.e. QEwi
.sig =

|QEwi
|⋃

j=1

ETwj
.sig, where

ETwj
∈ QEwi

.

Rule 1 shows that the signature of the new node ETw′

is checked by being intersected with the union of the queue
signatures. Readers would prefer ETw′

intersecting with the
signatures of the queue fronts in ET like MC-tree roots
checking at the beginning. However, this way will lead to
missing results. For example, ETw′

contains t1. Unfortu-
nately, t1 is covered by the second nodes in the other queues
instead of the fronts in ET . If only the queue fronts are
checked,t1 would be missing. Rule 1 is used in Algorithm 1
(i.e., Lines 2∼4 and Line 12).

It is obvious that if there exist k queries, whose cor-
relative distances to the trajectory t are less than cd(q, t),
q 6∈ ncnk(t). Even if the k queries are not in ncnk(t),
the observation still holds. We generalize this intuition by
employing the intermediate result candk in ET .

Rule 2. (Pruning rule)

• Rule 2.1: For a trajectory t and a query q, if cd(q, t) >
t.candk.mdk, t is pruned.

• Rule 2.2: For a trajectory node ET , if MINcdET q >
ET .candk.mdk, ET is pruned.

Rule 2.1 is the special case of Rule 2.2. MINcdET q >
ET .candk.mdk implies that for any t ∈ ET , the minimum
correlative distance between t and q is larger than the k-
th maximum correlative distance of ET .Rule 2.1 is used in
Algorithm 1 (Line 20), and Rule 2.2 is applied in Algorithm
2 (Line 1).

The following proposed Rule 3 and Rule 4 are only used
in Algorithm 2 to check the state of the trajectory node ET .
Rule 3 is a pruning rule and Rule 4 is a visiting rule. Before
Rule 3 exposition, we first explain the theorems that Rule 3
is based on.

Theorem 9. Given a query q, a trajectory node ET in the IMC-
tree and a query node EQ ∈ QueQ, if MAXcdET EQ

<
MINcdET q and |EQ| ≥ k, ET and the subtrees of ET cannot
contain RkNNST of q .

Proof. If MAXcdET EQ
< MINcdET q , the queries in EQ

are all nearer to the trajectories in ET than q. Meanwhile,
the number of queries in EQ is not less than k. Thus, q has
no chance to be one of kNCN for trajectories in ET .

When ET is a specific trajectory, Theorem 9 also comes
true. However, the related correlative distances can be com-
puted tightly. Thus, Corollary 3 is formalized as follows.

Corollary 3. A trajectory t cannot be the RkNNST of the query
q if MAXcdt EQ

< cd(t, q) and |EQ| ≥ k.
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Theorem 9 and Corollary 3 consider the queries under
the query node EQ in QueQ only. Incorporating the query
nodes in QueQ and queries in ET .candk, we propose Rule
3.

Rule 3. (Pruning rule): Given the query nodes set QueQ and a
query q,

• Rule 3.1: For a trajectory node ET , assume that num1

is the number of queries in the nodes of QueQ whose
MAXcdET EQ

< MINcdET q , and num2 is the
number of queries in ET .candk whose MAXcdET q′ <
MINcdET q . If num1 + num2 ≥ k, ET is pruned.

• Rule 3.2: For a trajectory t, assume that num1 is
the number of queries in the nodes of QueQ whose
MAXcdt EQ

< MINcdET q, and num2 is the number
of queries in t.candk whose cd(t, q′) < MINcdET q . If
num1 + num2 ≥ k, t is pruned.

All the above rules are pruning rules. On the other hand,
if we know a trajectory node ET must be visited, the query
index doesn’t need to be traversed further in Algorithm
2. Specifically, the loop (i.e., Lines 7∼17) of Algorithm 2
can be broken off earlier. Let’s consider an extreme case:
Given a query q and a trajectory node ET , ∀EQ ∈ QueQ,
MINcdET EQ

> MAXcdET q . This extreme case indicates
that q is nearest to the trajectories in ET . Rule 4 is general-
ized from the extreme case.

Rule 4. (Visiting rule) EQm
is assumed to be the m-th item in

the ordered QueQ, s.t.

• Rule 4.1: Given a trajectory node ET and a
query q, MINcdET EQm−1

≤ MAXcdET q and

MINcdET EQm
> MAXcdET q . If

∑m−1

i=1 |EQi
| <

k, ET must be visited.
• Rule 4.2: Given a trajectory t and a query q,

MINcdt EQm−1
≤ cd(t, q) and MINcdt EQm

>

cd(t, q). If
∑m−1

i=1 |EQi
| < k, t is one of the RkNNST.

Algorithm 5 shows the process that Rule 3.1 and Rule 4.1
are applied to check the state of a trajectory node ET . Under
the special case of ET being a trajectory, Rule 3.2 are used
to prune t and Rule 4.2 is employed to return t as the query
result. The basic procedures are same. Thus, we only show
the specific algorithm of checking the state of ET .

In Algorithm 5, firstly, the number of queries num1

in QueQ, whose maximum correlative distance is smaller
than MINcdET q , and the number of queries num2 in
ET .candk whose maximum correlative distance is smaller
than MINcdET q , are computed. If the sum of num1 and
num2 is larger than k, ET is pruned (Lines 1∼4). Then, the
maximum correlative distance between q and ET is com-
puted. The number of queries in the nodes whose minimum
correlative distance is less than MAXcdET q are computed
from the queue QueQ. If the number of such queies is less
than k, ET must be visited (Lines 5∼10).

6 EXPERIMENTS

In this section, the effectiveness and efficiency of our pro-
posed algorithm are experimentally evaluated under vari-
ous system settings. All the algorithms were implemented
in C++, and were conducted on a PC with an Intel Core i5-
3210M 2.5GHZ CPU and 12 GB RAM, running on WIN 7
desktop edition.

Algorithm 5 Checking the state of ET

Input:ET , QueQ = (EQ1
, EQ2

, ..EQn) and q
Output: the state of ET

1: num1=the number of nodes in QueQ whose max correlative
distance is smaller than MINcdET q;

2: num2=the number of queries in ET .candk, whose max
correlative distance is smaller than MINcdET q;

3: if num1 + num2 ≥ k then
4: return prune; {Rule 3}
5: compute MAXcdET q;
6: for each EQ in QueQ do
7: if MINcdET EQ

≤ MAXcdET q then
8: put EQ into SubQ;
9: if 0 <

∑
EQ∈SubQ

|EQ| < k then

10: return visit; {Rule 4}
11: return notsure;

6.1 Experimental setup

Since WIBR-tree is proved to scale well with the number
of keywords for boolean top-k queries [2], we employ a
WIBR-tree to index the queries points. We compare four
algorithms, namely DOTA, NA, W and WI. DOTA, W and
WI only differ on the index structure, whereas the query
procedures are the same. DOTA is our proposed algorithm.
NA is the naive method with indexes neither on trajectories
nor on queries. W creates a WIBR-tree on the queries only,
and WI uses a WIBR-tree on queries and a keyword inverted
file on trajectories. The four algorithms use the same method
to compute the minimum correlative distance. To the best of
our knowledge, none of the existing algorithms considers
reverse nearest neighbors on semantic trajectories. Hence,
we do not include any existing algorithms for comparison.
We will explore the average process time, the average IMC-
tree size, and the effectiveness of pruning rules on different
experimental settings.

We employ the real check-in data crawled form
Foursquare within the areas of New York (NY) [1], [25].
In total, the dataset contains 424,649 checked-in points and
630,691 keywords. Each points of interested (POI) is asso-
ciated with up to 18 keywords. The POIs checked-in by
one user are ordered by the check-in timestamps. The total
number of trajectories is 49,062. By default, l = 6 consecu-
tive checked-in POIs are extracted to form the trajectory of
this user. 5,000 trajectories are picked up randomly. Then,
the number of points on the trajectories is 30,000. 5,000
queries are randomly picked from the checked-in POIs, that
are not extracted as the positions in the trajectories. The
default IMC-tree degree is 50. The default parameters are
summarized in Table 2.

TABLE 2
Default system settings

parameter default setting

number of points on trajectories 30,000
number of queries (|QS|) 5,000
number of results (k) 6
trajectory length (l) 6
IMC-tree degree 50

6.2 Efficiency Measurement

We compare the time costs of the four algorithms under
different constraints, such as the number of results k, the
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number of query keywords |ws|, the trajectory length l, the
size of queries set |QS| and the size of trajectory set |TS|.

Effect of k: First, we explore the effect of the required
number of results k on the efficiency of the four solutions.
As shown in Figure 6a, DOTA significantly outperforms all
other three solutions. On average, DOTA is at least two
orders of magnitude faster than NA and 19 times faster
than W and WI. The performance difference between DOTA
and WI (W) origins from the effect of IMC-tree and pruning
rules. With the help of the IMC-tree and the pruning rules,
a large number of trajectories under the trajectory node are
pruned during the query process. As a result, the number
of query index access decreases. The lines gap between
NA and W(WI) shows the effect of query index. The per-
formance of all algorithms degrades as k increases since
more candidates need to be retrieved and refined. When
k is between 10 and 30, the running times W and WI are
close. When k increases to 40 or larger, WI is slighter faster
than W with the benefit of the inverted index. However,
the difference is hard to be noticed in Figure 6a. This
phenomenon shows that the pruning effect of the keywords
on the trajectories is limited. The time cost of query index
access and computing the correlative distance dominate the
performance of W and WI.

Effect of |ws|: Next, we expect to set the number of
keywords in the queries at five ranks, i.e., [1-5], [2-6], [3-
7], [4-8], and [5-9]. The effect of keyword number on the
queries is validated. The number of queries for each type
is 1000, then every rank has 5000 queries. However, From
Figure 6c, 99% of POIs in the raw data set associates with
less than 6 keywords. Thus, when the number of queries of
a certain type is less than 1,000, we complement the queries
by appending the most frequent keywords to the POIs with
the closest number of keywords required iteratively. For
instance, in order to get a query with 7 keywords, we add
one most frequent keyword to the POI with 6 keywords.

From Figure 6b, DOTA has superior performance than
the other three algorithms. The average running time of NA
increases with the increase of |ws|. NA doesn’t consist of
any indexes nor pruning rules. Thus, the increased running
time mainly results from computation the correlative dis-
tances. In contrast, the running time of DOTA, W and WI
decreases as |ws| increasing. That implies that the keywords
pruning is more effective with large number of keywords.
The performance gap between W and WI becomes obvious
when |ws| is large. In addition, we observe that the decrease
rate of W and WI is larger than that of DOTA. As we know,
WIBR-tree is created based on the keywords frequency. That
phenomenon implies the the pruning effect of WIBR-tree is
enhanced gradually with the increase of keywords in W and
WI.

Effect of l: Then, we study the average running time
when the trajectory length l varies from 3 to 15. Figure
6d shows that the running time for the four algorithms
increases slightly. The order on the average running time
is DOTA, WI, W and NA. In the four solutions, more mini-
mum correlative sub-trajectories result from the increase in
trajectory lengths. Thus, all solutions consume more time
on computing the correlative distance. We still observe that
the two lines of W and WI overlaps with each other. That
is because the pruning effect of the inverted list on WI
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Fig. 6. Algorithm Efficiency

becomes not obvious with the increase of trajectory length,
since a trajectory has more chance to cover the keywords
in the query. For DOTA, since both the spatial distances
between trajectories and queries are used in the various
upper bounds, the upper bounds become loose with the
trajectory being lengthened. Hence, the running time of
DOTA increases with l. However, the running time of DOTA
is 3.7s when l=15, while W and WI is about 100s.

Effect of |QS|: We proceed to vary the size of query
set |QS| to see how the algorithms perform. The results are
presented in Figure 6e. With the query size increasing, the
average running times for all algorithms increase. That is
because more queries have the chance to be in ncnk(t), and
the average computation, pruning, and query index access
time increase as well. W and WI are about 4 times faster
than NA at |QS| = 10, 000. With the performance of W
and WI degrades, the running time gap between NA and W
(WI) shortens to about 1.3 times. The performance of W and
WI becomes worse when the query size is large. Comparing
with W and WI, the good performance of DOTA is achieved
by using the access rules and the batch process. The pruning
rules enable to prune the non-candidate trajectories earlier
on the IMC-tree, and meanwhile, to reduce the chance of
access on the query index. Moreover, the pruning rules and
visiting rules are beneficial for breaking off from the query
index access easily. The batch process in Algorithm 4 finds
the RkNNST on the IMC-tree and updating t.candk directly,
when the candk of trajectories are fixed. As a result, the
unnecessary query index access is avoided.

Effect of |TS|: Finally, we proceed to study the effect of
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Fig. 7. Effectiveness of Access Rules

the trajectory size. 5,000 to 25,000 trajectories are randomly
picked from the original trajectory set respectively. Each
trajectory size is 6. Thus, the total data size varies from
30,000 to 150,000. Figure 6f shows all methods increase
linearly w.r.t |TS|. Although the trend line of NA appears
to be parallel to the one of W (WI), the performance gap
between NA and W(WI) becomes large with |TS| increas-
ing, since the y-axis is in the log scale. When comparing
the performance trends of DOTA in Figure 6e and Figure
6f, we observe that DOTA is more sensitive to the number
of queries than the number of trajectories. Most points of
the performance line in Figure 6e is higher than the one
in Figure 6f. That is, the pruning efficiency degradation of
IMC-tree with the trajectory size increase is slower than the
one of the query index with the query size increase. The
average running time of DOTA is 19.6s when |TS| is at
25,000.

6.3 Effectiveness Measurement

For effectiveness measurement, we will explore the impact
of the rules and the size of the IMC-tree.

Effect of the rules: We tested the four rules (i.e., Rule 1,
Rule 2, Rule 3 and Rule 4) over various settings. Recall that
Rule 1 indicates the textual requirements testing, that only
the trajectories contain all the keywords in the queries are
retained. Rule 2 and Rule 3 take the use of the property of
minimum correlative distances, maximum correlative dis-
tances, as well as the intermediate result in the trajectories.
Rule 4 is the visiting rule, which can help breaking off
from the query index access earlier, such that the location
information in a trajectory node becomes specific with the
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Fig. 8. Effectiveness of IMC-tree

nodes in IMC-tree being opened. For Rule 2, Rule 3, and
Rule 4, two cases (i.e., the rule on a trajectory node and the
rule on a trajectory) are combined to count since they are
on the basis of the same idea. The y-axis in Figure 7 is the
relative usage ratio for the different pruning rules, that is
the division of the usage frequency by the third quartile5 of
the usage frequencies. A high relative usage ration implies
that the rule is effective.

Figure 7 shows the effectiveness of different rules on
various settings. From the overall perspective, the frequency
of Rule 1 is highest at most cases. Rule 1 avoids the negative
trajectory nodes being inserted into SET, and the number
of query index access decreases directly. In Figure 7a we
observe that the usage frequencies of Rule 2 and Rule 4
increase slightly with k increasing. The rise of Rule 2 is more
obvious than Rule 4. As the number of required results in-
creases, more candidate trajectories traverse over the query
index. Hence, Rule 2.2 for a specific trajectory is invoked
more frequently. The effectiveness of Rule 3 decreases with
k increasing, which echoes the usage trend of Rule 2.2. Since
trajectory nodes are not pruned by Rule 3, more specific
trajectories under the nodes are retrieved. The increase in k
has no effect on the usage of Rule 1.

In Figure 7b, Rule 1 is the most effective rule at all cases.
As |ws| increases, Rule 1 is used more frequently. More
trajectory nodes which do not contain all the keywords in
the query are pruned. Rule 3 is the second most frequently
used rule. The number of Rule 3 usage is dominated mainly
by the usage of Rule 3.2 (i.e., pruning a trajectory). From
Figure 7b, the usage of Rule 3 decreases first, and then
increases from [3-7]. When |ws| is small (≤ 6), most of the
negative trajectories are pruned by other rules. Hence, Rule
3 is invoked less. However, with |ws| continuing to increase,
since more queries are filled by the keywords with the
highest frequency, more trajectory candidates appear. Since
the specific correlative distance between a trajectory and a

5. The reason, that we don’t use the maximum usage frequency, is
to avoid the case that an extreme large maximum usage frequency
overwhelms the effect of other pruning rules.
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query can be computed, the usage of Rule 3.2 increases.
Figure 7b shows the usage of Rule 4 remains stable. The
usage of Rule 2 increases with |ws| increasing, which mainly
results from the growing usage of Rule 2.2 (i.e., pruning rule
on a trajectory). The overall usage of the rules rises, which
leads into running time reduction in Figure 6b.

Increasing trajectories length implies more trajectory
candidates. Hence, Figure 7c shows that the usages of all
rules expect Rule 4 increase slowly. The growth of Rule 1
and Rule 3 is most obvious. The usage of Rule 4 is relatively
stable again. That is, increasing trajectory length cannot
provoke the usage of visiting rule. The propriety order of
rule usage in Figure 7d is same with the one in Figure
7c. That is, Rule 1 is the most effective one, and Rule 2
is the least used one. When |QS| increases from 10,000 to
20,000, the usage ratio of all rules increases. Then, only Rule
3 continues to increase, and the usage of the other rules
changes little when |QS| become larger than 20,000. That
is because we only access IMC-tree in the batch process,
where Rule 3 is used frequently. From Figure 7e, we observe
that the usages of most rules increase linearly, expect Rule 3
increases exponentially. When |TS| is smaller than 15,000,
Rule 1 is most effective. However, the usage of Rule 3
exceeds the usage of Rule 1 when |TS| is 20,000 or larger,
since more specific trajectory candidates trigger Rule 3.2.

IMC-tree size: Figure 8a shows the correlation between
the IMC-tree degree and the average running time. As
we expected, the average running time decreases with the
IMC-tree degree increasing, since the height of IMC-tree
decreases. Figure 8b shows the sizes of the indexes on the
different IMC-tree degrees. When the IMC-tree degree is 20,
the size of IMC-tree is 39.7MB. When the IMC-tree degree
increases to 100, the size of IMC-tree decreases to 26.6MB. It
is meaningless to increase IMC-tree degree blindly. We can
observe that the downward tendency of the line becomes
slow when the IMC-tree degree increases to 60 or larger.
Since the size of IMC-tree is only affected by the size of
trajectory data, we vary the trajectory size from 5,000 to
25,000. The memory size of IMC-tree increases linearly when
the trajectory data size becomes large. When trajectory data
size increases to 25,000, the size of IMC-tree is 124M, which
is acceptable.

7 RELATED WORK

Reverse nearest neighbor queries: RNN has been ex-
tensively studied under a variety of settings and many
sophisticated algorithms have been proposed. The meth-
ods of RNN on moving objects can be classified into
three categories:pre-computing, filtering-and-verification
and branch-and-bound based algorithms [27]. Our proposed
DOTA follows the branch-and-bound fashion. The lower
and upper bounds for each intermediate node or an object
are computed, such that a node will be decided whether the
node is a result. The existing work for answering reverse
spatial-keyword nearest neighbor queries [10], [12] follows
this research line as well. The main difference between our
problem and RNN is that our data sets contain trajecto-
ries (i.e., geo-textual object sequences) and points respec-
tively. Thus, the existing methods on points data cannot be
adapted to our problem. On the other hand, [23] investigates
RNN on spatial trajectories and points. As we mentioned

in Introduction, the problem definitions and the similarity
measurements are totally different.

Indexes on semantics trajectories: There is a significant
commercial and research interest in spatial keyword queries
over semantic trajectories [17], [18], [19], [21], [34]. Similar to
[2], we classify the existing indexes on semantic trajectories
into three categories according to the combination scheme:
loose combination, spatial-first combination, and text-first
combination. Our IMC-tree falls into the last category. IOC-
Tree proposed in [6] is the most similar index with our
IMCtree. IOC-Tree is based on the inverted indexing and
octrees. Trajectory points (i.e., local information) are kept on
the leaf nodes of the octree, and the non-empty leaf nodes
are organized by a dimensional structure. [8], [9] proposed
two indexing structures, i.e., TSP-tree and ESP tree, support-
ing a STKP query. TSR is a trajectory-based semantic R-tree
storing the global information of the trajectories; ESR is an
episode-based semantic R-tree saving the local information
of the trajectories. However, our proposed index IMC-tree
fuses global and local information in ”one” tree. The local
correlative geo-texual objects are maintained as a trajectory
abstract embedded in each internal node. Meanwhile, the
spatial distances between two trajectories (i.e., the global
spatial information) are maintained in our MC-trees.

8 CONCLUSION

In this paper, we investigated reverse nearest neighbors
queries on semantic trajectories RkNNST, which fuses of
spatial information and textual information on trajectories
and queries. We showed that none of the existing work
can effectively answer RkNNST as none of the indexes can
combine both the global and local geo-texutal information at
the same time. To address this problem, we propose a novel
index IMC-tree incorporating the features of an inverted
index and MC-trees. Moreover, we propose a branch-and-
bound algorithm DOTA to prune the irrelevant trajectories
effectively. A series of experiments has been conducted to
evaluate DOTA under various system settings. The exper-
imental results show that the IMC-tree size is about 29M,
and the average processing time is about only 3s, which
validate the efficiency and effectiveness of the proposed
DOTA algorithm.
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