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Abstract—Domain adaptation aims to reduce the mismatch
between the source and target domains. A domain-adversarial
network (DAN) has been recently proposed to incorporate ad-
versarial learning into deep neural networks to create a domain-
invariant space. However, DAN’s major drawback is that it is
difficult to find the domain-invariant space by using a single
feature extractor. In this paper, we propose to split the feature
extractor into two contrastive branches, with one branch dele-
gating for the class-dependence in the latent space and another
branch focusing on domain-invariance. The feature extractor
achieves these contrastive goals by sharing the first and the last
hidden layers but possessing decoupled branches in the middle
hidden layers. For encouraging the feature extractor to produce
class-discriminative embedded features, the label predictor is
adversarially trained to produce equal posterior probabilities
across all of the outputs instead of producing one-hot out-
puts. We refer to the resulting domain adaptation network as
“contrastive adversarial domain adaptation network (CADAN)”.
We evaluated the embedded features’ domain-invariance via a
series of speaker identification experiments under both clean
and noisy conditions. Results demonstrate that the embedded
features produced by CADAN lead to a 33% improvement in
speaker identification accuracy compared with the conventional
DAN.

Keywords— Domain adaptation; domain invariance; speaker
recognition; domain adversarial networks; adversarial learning.

I. INTRODUCTION

Speaker recognition is to verify or identify the identities
of speakers by analyzing the acoustic characteristics of their
speech [1]. I-vectors [2] and x-vectors [3] have proved to be
very successful speaker embeddings for speaker recognition.
Using probabilistic linear discriminative analysis (PLDA) [4]
as the backend, the channel noise component in the i-vectors
or x-vectors can be significantly suppressed.1 However, i-
vectors/PLDA systems assume that the training and test data
follow the same distribution, which implies that any mis-
match between the training and deployment environments may
severely degrade the performance [5]–[8]. Earlier research
[9] has demonstrated that when there is a severe mismatch
between the training (out-of-domain) and deployment (in-
domain) environments, the amount of in-domain data has a
large impact on the performance of i-vector/PLDA systems.

This work was partially supported by RGC of Hong Kong SAR, Grant No.
PolyU152113/17E, and Taiwan MOST Grant No. 109-2634-F-009-024.

1Because the methods described in this paper are equally applied to both
i-vector/PLDA and x-vector/PLDA frameworks, we will use “i-vector” in the
sequel for terminology simplicity.

In the literature, most of the domain adaptation methods
decouple the speaker embedding process and the backend
scoring process, i.e., domain adaptation is applied either during
or after speaker embedding (see [1] for a comprehensive
review). The advantage of decoupling is that embedding-
level domain adaptation can be applied to whatever backend
classifiers. Similarly, scoring-level domain adaptation can be
applied to whatever speaker embeddings. This decoupling
strategy makes the domain adaptation methods more versatile.

To address the domain mismatch problem, Garcia-Romero
and McCree [5] proposed to estimate the within-speaker and
between-speaker variabilities by treating them as random vari-
ables and used the maximum a posteriori (MAP) adaptation
to compute these parameters on the basis of the labelled in-
domain data. These covariances can also be treated as latent
variables [7] whose joint posterior distribution can be factor-
ized by using the variational Bayes algorithm. Thus, the point
estimates for scoring the in-domain data are computed from
the factorized distribution. These earlier methods correspond
to supervised domain adaptation because they require the in-
domain training data to have speaker labels.

One approach to dealing with unlabelled data is to hypoth-
esize speaker labels by unsupervised clustering of in-domain
data [10], [11]. With the hypothesized speaker labels, an in-
domain PLDA model can be trained. An adapted PLDA model
can be obtained by using the interpolated covariance matrices
of the out-of-domain PLDA model and the in-domain PLDA
model [10]. The drawback of the clustering approach is that the
number of speakers in the in-domain data is usually unknown.

Another way to perform unsupervised adaptation is to find
a domain-invariant space from several datasets, each collected
from one domain. For example, Aronowitz [12], [13] proposed
an inter-dataset variability compensation (IDVC) algorithm to
reduce the mismatch between datasets. The algorithm was
further extended in [14]. IDVC assumes that within the i-
vector space there is a low-dimensional subspace that is more
sensitive to dataset mismatch. Therefore, the goal of IDVC is
to find this subspace and remove it from all of the i-vectors. To
find this subspace, IDVC either divides a big heterogeneous
dataset into a number of source-dependent subsets or makes
use of multiple datasets with each dataset represents one
source. Another approach is to normalize the covariances
of out-of-domain i-vectors [15], which has similar notion as
within-class covariance normalization [8] but without using
speaker labels. The authors in [15] named the method as
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dataset invariant covariance normalization (DICN). Recently,
the authors in [16], [17] used maximum mean discrepancy
(MMD) among multiple datasets as a loss function for training
an autoencoder so that domain-invariant i-vectors can be
extracted from its middle layer. Unlike IDVC and DICN, the
MMD loss reduces domain mismatches beyond the second
order statistics.

Domain adversarial training (DAT) [18]–[20] is a state-
of-the-art domain adaptation method for domain adaptation.
The method adversarially trains a set of networks comprising
a feature extractor, a label predictor and a domain discrim-
inator. The three components work cooperatively but also
challenge each other to form a domain-invariant space with
maximum class information. In [21], Wang et al. demonstrated
the effectiveness of domain adversarial training for speaker
recognition through creating a domain-invariant and speaker-
discriminative space. PLDA was used as the back-end to score
the vectors extracted from the adversarial network. The results
suggest that DAT outperforms other unsupervised domain
adaptation methods including IDVC [12], [13], DICN [15],
and matrix interpolation [10].

In this paper, we propose a contrastive adversarial domain
adaptation network (CADAN) that utilizes adversarial learning
to create a domain-invariant space with maximum speaker
information. Features extracted from this space can replace
the conventional i-vectors for speaker recognition. Unlike the
conventional domain adversarial network (DAN), we separate
the feature extractor in DAN into two parts, one part for
maximizing the class information in the domain-invariant
space and the other part minimizes the domain information.
The weights of the two parts are separately updated to achieve
these two contrastive goals. Also, unlike the conventional DAN
in which the label predictor is trained to minimize the cross-
entropy loss, we purposely weaken the capability of the label
predictor in classifying speakers. This has the effect of forcing
the feature extractor to work harder to produce more class
discriminative features. Because our class-label predictor aims
to make the life of the feature extractor harder as opposed to
making it easier, we name it as the fuzzifier.

In addition to comparing with DAN, this paper also uses t-
distributed stochastic neighbor embedding (t-SNE) [22] plots
to illustrate the domain-invariance and class discrimination
of the embedded features created by the CADAN during
adversarial training. Experimental results on NIST 2012 SRE
demonstrate that the CADAN can achieve nearly ideal domain
adaptation for gender mismatch on speaker identification and
outperforms state-of-the-art domain adversarial networks in
both clean and noisy environments.

II. BACKGROUND

A. I-vector and PLDA Framework

I-vectors [2] are compact representation of speaker ut-
terances. The method uses factor analysis to compress the
frame-based acoustic information of an utterance into a low-
dimensional vector called the i-vector. Mathematically, given
the acoustic feature vectors of an utterance, its MAP-adapted

GMM-supervector [23] µs is assumed to be generated by a
factor analysis model:

µs = µ+ Tws, (1)

where µ is the universal mean vectors obtained by stacking the
mean of a universal background model (UBM), T is a low-rank
total variability matrix modeling the variabilities of speakers
and channels, and ws is a latent vector whose posterior mean
is the i-vector. Details of the i-vector extraction process can
be found in [1], [24].

Because the i-vectors contain both speaker and non-speaker
(typically channel) information, it is important to suppress
the non-speaker information during scoring. A state-of-the-
art approach to achieving this goal is to apply supervised
factor analysis on a set of training i-vectors with speaker
labels to find a speaker subspace within the i-vector space.
The covariances of i-vectors are considered as the sum of
speaker covariances and non-speaker covariances. The method
is called probabilistic linear discriminant analysis (PLDA) in
the literature [4], [25].

Given a dataset comprising length normalized [26] i-vectors
X = {xij ∈ <D; i = 1, . . . , N ; j = 1, . . . ,Hi} where N is
the number of speakers and Hi is the number of sessions of
speaker i, the PLDA model can be expressed as follows:

xij = m + Vzi + εij , (2)

where zi ∈ <M , i = 1, . . . , N, are the latent variables, εij is
the residue that follows a Gaussian distribution, m is the global
mean of i-vectors and V defines the speaker subspace. When
the prior of zi’s follows a standard Gaussian and εi’s follow a
Gaussian with zero mean and full covariance matrix Σ, Eq. 2
is known as the simplified Gaussian PLDA. Its parameters
can be obtained by the expectation-maximization algorithm
[4], [24].

B. Adversarial Learning

Adversarial learning is a machine learning technique typ-
ically used for developing and evaluating security systems
under adversarial environments and malicious attacks [27].
Recently, the technique is popularized by the success of
generative adversarial networks (GANs) [28] and their en-
hancements that overcome the training difficulties [29], [30]
and mode collapse [31]–[33].

Adversarial learning can be applied to train a DNN to create
a domain-invariant space [18] or to align the class distributions
of the source task and the target task [34]. Unlike GANs, these
networks do not have random inputs; instead, they receive
domain-dependent feature vectors as inputs. Their goal is to
create a representation with minimum domain dependence.
The domain adversarial network in [18] incorporates adver-
sarial learning into deep neural networks by creating a latent
space in which the domain discrepancy is suppressed while the
class-dependent information is maintained. A DAN comprises
three components: a feature extractor, a domain discriminator,
and a label predictor. During training, the feature extractor and
the label predictor are jointly trained to minimize the cross-
entropy errors in the label predictor’s output. Also, the feature
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extractor is jointly trained with the domain discriminator. But
unlike the feature-extractor–label-predictor combination, for
the feature-extractor–domain-discriminator combination, the
feature extractor is adversarially trained so that the resulting
features maximize the loss of the domain discriminator. The
adversarial learning algorithm acts like a two-player game in
which the feature extractor is trained to confuse the domain
discriminator that is tuned to distinguish the target domain
from the source domain. The designated output at the inter-
mediate layer of the domain-adversarial neural network is not
only domain-invariant but also class discriminative.

C. Domain Mismatch in Speaker Recognition

Domain mismatch can severely degrade speaker recognition
performance [5]–[7], [13], [35]. There are various causes of
domain mismatch, the most prominent being the discrepancy
between training and test environments arising from different
channels, languages, dialects, genders, noise types, noise lev-
els, and reverberation effects.

Gender difference is one of the most severe and obvious
mismatch due to the physiological differences between male
and female. A recent study [36] demonstrated that speaker
verification performance can be improved by predicting the
gender of an unknown speaker followed by gender-dependent
scoring. In another study [11], a DNN was used for computing
the posterior probabilities of genders, which were then used
as mixture posteriors in a PLDA mixture model. It was shown
that although the gender information could not be perfectly
predicted, it is helpful for the PLDA mixture model to score
the i-vectors, resulting in performance superior to a gender-
independent PLDA model. The systems in these studies, how-
ever, require a gender classifier because both of their speaker
embeddings and backend classifiers are gender-dependent. We
advocate that gender-independent speaker recognition sys-
tems are more practical because they neither need gender
information in the training data nor gender classifiers during
recognition. To this end, we treat the gender-mismatch as a
domain adaptation problem. By minimizing the gender effect
on the speaker embeddings, it is possible to build gender-
independent systems without compromising performance.

Another cause of mismatch is background noise, which
could be of different types and levels. As demonstrated in
[37], different levels of noise could cause the i-vectors to fall
on distinct regions of the i-vector space, which motivates the
use of mixture PLDA models as the backend classifier. In this
paper, we focus on the mismatches caused by different levels
of car noise, factory noise, and babble noise. We advocate that
domain adaptation is essential for reducing the noise mismatch
because, in most cases, we could not predict the type of noise
that a deployed system will encounter.

III. CONTRASTIVE ADVERSARIAL DOMAIN
ADAPTATION

The main challenge in domain adaptation is that we need
to minimize the domain information in feature vectors without
affecting their class information. We propose a new contrastive
adversarial domain adaptation network (CADAN) to meet

this challenge. This section explains the design philosophy,
architecture, and training algorithm of the CADAN.

A. Design Philosophy and Network Architecture

In the original DAN, the feature extractor is particularly
hard to train because it needs to produce features that meet
two contrastive objectives: maximum class discrimination and
minimum domain dependency. In practice, its weights are
tuned to meet the first objective but will be re-adjusted to
meet the second one in the same epoch. This is in analogy
to asking a person to learn two different but related tasks at
the same time, which of course will not be as effective as
learning one task at a time. While we may change the training
strategy so that the two tasks can be learned consecutively, it
is also undesirable because the network may forget the first
task after learning the second one. A better approach is to
delegate some task-specific neurons for the respective tasks.
To this end, we propose splitting the middle hidden layers of
the feature extractor network into two branches so that they
become partially decoupled from each other during adversarial
training. In spite of the decoupling, the two sub-networks need
to cooperate with each other because for each input vector,
the feature extractor needs to produce one embedded feature
vector as output. Therefore, the two branches share the input
layer and the output layer. The architecture is shown in Fig. 1.

In addition to the contrastive feature extractor, another
key difference between the proposed architecture in Fig. 1
and the DAN is the label predictor. In DAN, the feature
extractor and label predictor are jointly trained to minimize the
cross-entropy of the target classes. However, in the proposed
architecture, the class encoder is trained to minimize the
cross-entropy but the label predictor is trained to produce
equal outputs (posterior probabilities). Therefore, instead of
making the predictor more capable of classifying the latent
feature vectors, we make it less capable of doing so. From the
label predictor perspective, the latent features become fuzzier
after every epoch. The deliberately weakening of the label
predictor will encourage the class encoder in Fig. 1 to try
harder to produce more speaker discriminative features so that
they can be classified correctly by the adversarially trained
label predictor. Because the label predictor is adversarially
trained, the embedded features become more confusable to
the label classifier. Therefore, we refer to the label classifier
as “Fuzzifier”.

In the proposed approach, the feature extractor G is split
into a domain suppressor Gdom and a class encoder Gcls.
As shown in Fig. 1, the neurons in the feature extractor are
separated into the blue group Gcls, which is to be trained with
the fuzzifier F to maximize class discrimination, and the green
group, which is to be trained with the domain discriminator.
Because of the different objectives when training the weights
(blue) for encoding class-discriminative information and the
weights (green) for domain discrimination, both Gcls an Gdom
become better in performing their respective tasks. Without the
separate structure, training will become unstable if the weights
are updated twice for different purposes in each epoch.
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B. Training Algorithm

The training of F and Gcls in Fig. 1 are as follows:

Train F : min
F

{
−Ex∼pdata(x)

[
K∑

k=1

1

K
logF (G(x))k

]}
(3a)

Train Gcls : min
Gcls

{
−Ex∼pdata(x)

[
K∑

k=1

y
(k)
cls logF (G(x))k

]}
,

(3b)

where G(x) is the output of the contrastive feature extractor,
F (·)k is the k-th output of the fuzzifier whose designated
output is the posterior of class k, and y

(k)
cls is equal to 1 if

x comes from the k-th class; otherwise it is equal to 0. Unlike
ordinary DAN in which the targets of the class classifier are
in one-hot format, in CADAN, the targets of F in Eq. 3(a)
are set to [ 1K , . . . , 1

K ]T. It can be shown that the minimum of
the cross-entropy in Eq. 3(a) occurs when F (G(x))k = 1

K
for all k. When this happens, the encoded vectors ẑ = G(x)
will be most confusable to the fuzzifier. During training, the
classification ability of F will keep on weakening. The weak
F will make the class encoder Gcls to work harder to produce
class-discriminative features to reduce the cross-entropy in
Eq. 3(b).

The encoder Gdom in Fig. 1 aims to make the embedded
vectors ẑ’s domain invariant. This can be achieved by the
following optimization:

Train D : min
D

{
−Ex∼pdata(x)

[
M∑

m=1

y
(m)
dom logD(G(x))m

]}
(4a)

Train Gdom : min
Gdom

{
−Ex∼pdata(x)

[
M∑

m=1

1

M
logD(G(x))m

]}
,

(4b)

where y
(m)
dom = 1 when x comes from domain m; otherwise

y
(m)
dom = 0. The weights of Gdom are updated to obtain a

domain invariant space so that the encoded vectors ẑ’s become
confusable to the discriminator D. To achieve this, the targets
of D in Eq. 4b are set to [1/M, . . . , 1/M ]T. The domain
discriminator D is trained to best differentiate these confusable
vectors into different domains. The pseudo-code for training
a CADAN is shown in Algorithm 1, where for each mini-
batch, D, Gdom, Gcls, and F are trained consecutively. The
training algorithm optimizes the domain discriminator, domain
suppressor, class encoder and fuzzifier in each learning epoch.
The class encoder is updated with R steps within an epoch.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of the CADAN in suppressing
domain mismatch, we employed it in a speaker identification
task in which genders are considered as domains and speaker
identities are considered as classes (see Section II-C for the
rationale of reducing gender mismatch via domain adaptation).
Therefore, K and M in Fig. 1 correspond to the number of
speakers and the number of domains (or datasets), respectively.

A. Speech Data and Acoustic Features

Speech files from NIST 2004–2012 Speaker Recognition
Evaluation (SRE04–12) were used as the training and test
datasets. Car noise and factor noise from NOISEX-92 [38]
were added to the speech files of SRE04–12 at an SNR of
6dB. Also, babble noise from the PRISM dataset [39] was
added to the speech files of SRE04–12 at SNR of 0dB, 6dB,
and 15dB. Each dataset was first divided into male and female
subsets. The speech files of each speaker were further split
into training and test sets to ensure that the speakers in the
test utterances must exist in the training set.

Because SRE04–12 contains telephone conversations and
interviews, this way of splitting the data can also ensure that
the contexts of the training utterances are totally different from
those of the test utterances. A 2-channel voice activity detector
(VAD) [40] was applied to remove silence regions. We follow
the standard signal processing pipeline for extracting acoustic
features from utterances [1]. Specifically, for each speech
frame, 19 MFCCs together with energy plus their first and
second derivatives were computed, followed by cepstral mean
normalization [41] and feature warping [42] with a window
size of three seconds. A 60-dim acoustic vector was extracted
every 10ms, using a Hamming window of 25ms.

B. I-Vector Extraction

A subset of the telephone and microphone speech files in
SRE05–10 were used for training a gender-independent UBM
with 1024 mixtures. Then, MAP adaptation [43] was applied
to adapt the gender-independent UBM to gender-dependent
UBMs using the speech files of the respective gender as adap-
tation data. For each gender, a 500-factor total variability (TV)
matrix (T in Eq. 1) was estimated. The gender-dependent TV
matrices and UBMs were used for extracting gender-dependent
i-vectors. Using MAP adaptation to create gender-dependent
UBMs can ensure that there is a one-to-one correspondence
between their Gaussians, which in turn ensures that the GMM-
supervectors of both genders (µs and µ in Eq. 1) live in the
same Euclidean space. As a result, the gender-dependent i-
vectors also live in the same 500-dimensional i-vector space.

C. Configuration and Training of DAN and CADAN

To ensure fair comparisons between DAN and CADAN,
we kept their structure almost the same. Specifically, both
of them have 500 input nodes, 3 hidden layers with 1,200
ReLU nodes in each layer, and 500 output nodes in the feature
extractor. However, for CADAN, the 2nd hidden layer was
split into two parts: 800 nodes for the class (speaker) encoder
and 400 nodes for the domain (gender) suppressor. The ratio
of 2:1 is motivated by the intuition that speaker information is
more diverse than gender information, thereby requiring more
nodes to encode. For both DAN and CADAN, the fuzzifier
and the domain discriminator comprise two hidden layers,
each with 500 ReLU nodes. The fuzzifier has 67 output nodes
corresponding to 67 speakers and the domain discriminator
has two output nodes.

We used the i-vectors of both genders in SRE04–10 to
train a DAN and a CADAN. After training, we used the
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Task 1: Class Encoder G!"#(x)

Task 2: Domain Suppressor G$%&(x)

i-vecter
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Domain Discriminator "(#$) 
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#$ =	*(!)

Contrastive Feature Extractor

Fig. 1: Contrastive Adversarial Domain Adaptation Networks (CADAN). The blue layers constitute the adversarial networks
for enhancing class information and the green layers are responsible for reducing domain mismatch. The subscript ”cls” and
”dom” stand for class and domain, respectively.

feature extractor network of the DAN and the contrastive
feature extractor network of the CADAN to produce DAN-
and CADAN-transformed vectors ẑ’s for both training and
test i-vectors in the datasets. The training subset of the trans-
formed vectors were then used for training gender-dependent
PLDA models. The DAN and CADAN trained by SRE04–
10 correspond to the columns “SRE04–10” in Table I and
Table II. To investigate the behavior of DAN and CACAN
under noisy environments, babble noise was added to the
telephone utterances of SRE04–12. We used the i-vectors
extracted from the noise-contaminated SRE04–10 utterances
to train a DAN and a CADAN, and their performance on
noise-contaminated SRE12 utterances is shown in the columns
“Noisy SRE12” in Table I and Table II.

D. PLDA Training and Scoring
A pre-processing step was applied to the transformed

vectors before they were used for training PLDA models.
Specifically, the DAN- and CADAN-transformed vectors were
subjected to within-class covariance normalization [44], length
normalization [26], and linear discriminant analysis (LDA).
The LDA reduces the dimension of the transformed vectors to
200. The WCCN and LDA matrices are gender-dependent and
were estimated from the transformed i-vectors in SRE05–10.
Similarly, the WCCN and LDA matrices for “Noisy SRE12”
were obtained from the i-vectors of noise contaminated speech
in SRE12. The pre-processed vectors were then used for
training condition-dependent (clean or noisy) and gender-
dependent PLDA models.

In the testing phase, test i-vectors were transformed by the
feature extractors of DAN and CADAN, respectively, followed
by WCCN, length normalization, and LDA. The test i-vector
pairs were then passed to the corresponding PLDA model for
scoring. Fig. 2 shows the DAN/CADAN transformation, vector
pre-processings and PLDA scoring.

Because each speaker has multiple training sessions (i-
vectors), the speaker ID of each test i-vector was identified
based on the maximum average PLDA scores (averaged across
all training sessions of each speaker) with respect to all
speakers in the dataset.

Pre-
processing

DAN/
CADAN

Target-Speaker     
i-vectors

PLDA 
Scoring

Scores

Fig. 2: Transformation of i-vectors by the feature extractor
of DAN or CADAN and pre-processing for PLDA scoring.
The transformation is considered as domain adaptation in this
work.

V. RESULTS AND DISCUSSIONS

A. Comparing DAN and CADAN

While the DAN and CADAN were trained on the speech
(i-vectors) of both genders, the UBMs, T-matrices, and PLDA
models are gender-dependent. With these gender-dependent
PLDA models, we could have three kinds of experiments: (1)
same-gender, (2) cross-gender, and (3) mix-gender.
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Out-of-Domain In-Domain
SRE04–10 Noisy SRE12 SRE04–10 Noisy SRE12

Gender of PLDA models male female male female male female male female
Gender of test i-vectors female male female male male female male female

I-Vector None 0.6115 0.6281 0.5439 0.3248 0.8758 0.9375 0.8619 0.6890
Transformation DAN 0.6337 0.6004 0.6364 0.3912 0.8417 0.9304 0.6932 0.5681

Method CADAN 0.6987 0.6723 0.7343 0.6556 0.8887 0.9468 0.8307 0.6541

TABLE I: Speaker identification accuracies on SRE04–10 and noisy SRE12 with and without i-vector transformation under
gender-match and gender-mismatch scenarios. Out-of-domain (in-domain) means that the gender of PLDA models is the same
as (different from) that of the test i-vectors. The column labels “SRE04–10” and “Noisy SRE12” denote the source of test
data for obtaining the identification accuracies. See Section IV-C for the noise contamination procedure.

SRE04–10 Noisy SRE12
Gender of PLDA models male female male female
Gender of test i-vectors Both Both

I-Vector None 0.6687 0.5770 0.6494 0.5391
Transformation DAN 0.6512 0.6051 0.6264 0.5512

Method CADAN 0.7134 0.6823 0.6807 0.5691

TABLE II: Speaker identification accuracies on SRE04–10 and noisy SRE12 with and without i-vector transformation when
the test i-vectors come from both genders but the PLDA model belongs to one gender only.

SRE04–10 (Male, Microphone Speech)
Training Domain of PLDA models Factory Factory Babble Babble Car Car

Test Domain of i-vectors Car Babble Factory Car Babble Factory
I-Vector None 0.7446 0.7523 0.7677 0.7119 07371 0.7393

Transformation DAN 0.7213 0.7551 0.6921 0.7022 0.7130 0.7447
Method CADAN 0.7594 0.7658 0.7807 0.7232 0.7113 0.6986

TABLE III: Speaker identification accuracies on the male SRE04–10 microphone speech contaminated by car, factory and
babble noise at an SNR of 6dB.

SRE04–10 (Male, Microphone Speech)
Training Domain of PLDA models 15 dB 15 dB 6 dB 6 dB 0 dB 0 dB

Test Domain of i-vectors 0 dB 6 dB 15 dB 0 dB 6 dB 15 dB
I-Vector None 0.6607 0.8012 0.7397 0.6438 0.6412 0.6303

Transformation DAN 0.6312 0.8177 0.7212 0.6551 0.6405 0.6191
Method CADAN 0.6487 0.7871 0.7447 0.6617 0.6377 0.6544

TABLE IV: Speaker identification accuracies on the male SRE04–10 microphone speech contaminated by babble noise at SNR
of 0dB, 6dB, and 15dB.

1) Same-gender Experiments. The PLDA models were trained
and scored on the DAN- and CADAN-transformed i-
vectors derived from the same gender.

2) Cross-gender Experiments. The male PLDA models were
tested on female vectors and vice versa for the female
PLDA models.2

3) Mix-gender Experiments. The gender-dependent PLDA
models were tested on the vectors from both genders.

Table I shows the performance of the baseline (the row
with label ‘None’) and the DAN- and CACAN-transformed

2It is possible to do this because the PLDA model is only a scorer; it accepts
two vectors as input and computes the score of these two vectors as output.
Therefore, a male PLDA model can be used for scoring female i-vectors.

i-vectors. The baseline performance is based on an i-vector
PLDA system in which the PLDA model was trained by the
pre-processed i-vectors without domain adaptation.

Table I demonstrates that CADAN performs the best un-
der the cross-gender scenario (out-of-domain columns) and
performs well under the same-gender scenario (in-domain
columns), although it is out-performed by the baseline under
gender-match noisy conditions. The positive results reveal
that contrastive-adversarial domain adaptation is capable of
producing more effective features with rich speaker infor-
mation. Under noisy scenarios, the CADAN demonstrates
superior performance in out-of-domain data by boosting the
accuracy by 33%. It is noteworthy that while adversarial
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(a) Raw i-vectors on SRE04–10 (b) DAN i-vectors on SRE04–10 (c) CADAN i-vectors on SRE04–10

(d) Raw i-vectors on noisey SRE12 (e) DAN i-vectors on noisy SRE12 (f) CADAN i-vectors on noisy SRE12

Fig. 3: t-SNE plots of raw i-vectors and DAN- and CADAN-transformed i-vectors derived from clean SRE04–10 utterances
and noisy SRE12 utterances. I-vectors were derived from the utterances of 10 male speakers (•) and 10 female speakers (?).
The numbers on top of each cluster are the speaker numbers (Speakers 1–10 are male and Speakers 11–20 are female) and
each speaker is represented by one colour. Note that the DAN- and CADAN-itransformed i-vectors are of 500 dimensions
which is the same as the dimension of the raw i-vectors.

transformation of i-vectors can increase speaker identification
accuracy under gender-mismatch (out-of-domain) condition, it
is counter-intuitive to apply the transformation under gender-
match (in-domain) condition. This is evident by the “In-
Domain” columns in Table I where not applying any trans-
formation achieves the best performance. This result suggests
that some speaker information is inevitably lost in the i-vector
transformation process. Nevertheless, the loss is much smaller
in CADAN than in DAN.

We further extended our experiments to gender-mixed sce-
narios, in which each PLDA model was trained by one gender
only but tested on both genders. As shown in Table II, CADAN
performs the best under all conditions.

In addition to gender mismatch, domain mismatches caused
by different noise types and different noise levels were also
investigated in Table III and Table IV, respectively. Table III
shows that the CADAN achieved better and stabler perfor-
mance in the majority of scenarios where the PLDA was
trained by the noised-contaminated utterances of one kind of
noise but tested on the other types of noise. Similarly, Table IV
shows that the performance of CADAN is more stable under

noise-mismatch scenarios.

B. Visualization of CADAN

To investigate the hidden causes of the better performance
achieved by CADAN, we used the t-SNE software to display
the i-vectors in Fig. 3. The t-SNE plots of clean SRE04–10
reveal three interesting observations. (1) There is a significant
gender mismatch between the i-vectors of male and female
speakers, as evident by the clear gaps in the middle of
Fig. 3a and Fig. 3d that separate the two genders (• and
?). While Fig. 3a shows that the raw i-vectors do contain
speaker information (as evident by the speaker clusters),
some speakers such as Speakers 13, 14, and 16 are fairly
confusable. (2) DAN is able to create a gender-invariant space,
as evident by the absence of a clear gap between the two
genders in Fig. 3b. However, as compared to the raw i-
vectors in Fig. 3a, the feature extractor of DAN removes
some of the speaker information when it attempts to make the
transformed i-vectors gender indistinguishable, as evident by
the larger speaker clusters in Fig. 3b. This means that DAN
is not able to maximize speaker information and minimize
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domain information simultaneously. (3) Compared with the
raw and DAN-transformed i-vectors, CADAN can produce i-
vectors that possess the strongest discriminative information
and simultaneously suppress domain information significantly,
which result in highly compact speaker clusters in Fig. 3c.

Fig. 3d shows that noise has detrimental effect on i-vectors.
It not only makes the gender gap bigger, but also increases
the overlapping among speaker clusters. Under noisy environ-
ments, the domain (gender) mismatch is so severe that DAN
can only reduce the gender gap but fails to create a domain
invariant space, as shown in Fig. 3e. On the other hand, as
shown in Fig. 3f, CADAN is not only able to create a domain-
invariant space but also able to reduce the cluster overlapping.
This ability makes CADAN significantly outperforms raw i-
vectors and DAN-transformed i-vectors in Table I under the
cross-gender scenario.

Fig. 4 shows the cross-entropy loss of DAN and CADAN
during the course of training. The results clearly show that
CADAN enjoys faster convergence, smoother training, and
lower training error as compared to DAN.

DAN

CADAN

Fig. 4: The cross-entropy loss of (1) the feature extractor cum
the class predictor in DAN [18] and (2) the class encoder
Gcls(x) cum the class fuzzifier F in CADAN. Identical learn-
ing rate (0.001) was applied in both cases.

C. Insights from the Training Process

A deeper investigation was conducted to gain more insights
into the training process of CADAN by plotting the intermedi-
ate transformed i-vectors at different training epochs in Fig. 5.
At Epoch 0, the weights of CADAN was initialized by the
Xavier initializer, which leads to scattered i-vectors in Fig. 5a.
When training progresses (Fig. 5b), the fuzzifier F and class
encoder Gcls dominate the process by minimizing intra-speaker
variability but the domain mismatch remains intact. After
producing a discriminative subspace, the domain discriminator
D and the domain suppressor Gdom work on pulling the male
and female groups together. At this stage (Epoch = 150),
Fig. 5c, the adapted subspace with discriminative information
is produced. One advantage of CADAN is that the refinement

of clusters will be further conducted if training continued. At
the final stage (Epoch = 320, Fig. 5d), the clusters are nearly
ideal and the subspace is domain-invariant. The behavior of
CADAN during the course of training reveals that it is able
to response to different training objectives. In particular, with
in a short training window, CADAN will either learn to
perform domain adaptation or speaker discrimination, which
exactly matches our original intention to design two separate
feature extractors that response to different training objectives
independently.

(a) Epoch = 0 (b) Epoch = 100

(c) Epoch = 150 (d) Epoch = 320

Fig. 5: t-SNE plots at different training stages of CADAN. I-
vectors were derived from the utterances of 10 male speakers
(•) and 10 female speakers (?). The numbers on top of each
cluster are the speaker numbers (Speakers 1–10 are male and
Speakers 11–20 are female) and each speaker is represented
by one colour.

(a)

Adversarially Transformed I-Vectors (Epoch = 140)

(b)

Fig. 6: t-SNE plots of transformed vectors (ẑ) obtained by (a)
CADAN with a fuzzifier in Fig. 1 and (b) a CADAN with the
fuzzifier replaced by a speaker classifier. Refer to the caption
of Fig. 5 for the meaning of markers and colors.
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D. Speaker Fuzzifier Versus Speaker Classifier

Recall that the motivation of using a fuzzifier instead of a
speaker classifier in CACAN is that the former is better at forc-
ing the class encoder Gcls in Fig. 1 to produce more speaker
discriminative latent vectors than the latter. To demonstrate
that it is indeed the case, we conducted another experiment
in which the fuzzifier in Fig. 1 was replaced by a speaker
classifier C. The network is similar to a DAN except for
the splitting of the feature extractor into two branches. The
objective functions in Eq. 3a and Eq. 3b are modified as
follows:

Train C : min
C

{
−Ex∼pdata(x)

[
K∑

k=1

y
(k)
cls logC(G(x))k

]}
(5a)

Train Gcls : min
Gcls

{
−Ex∼pdata(x)

[
K∑

k=1

y
(k)
cls logC(G(x))k

]}
.

(5b)

The training of Gdom and D in Eq. 4a and Eq. 4b remains
unchanged.

Fig. 6 compares the transformed vectors obtained by the
proposed CACAN and a CACAN whose fuzzifier is replaced
by a speaker classifier. The result clearly shows that the
fuzzifier can make the transformed vectors more speaker
discriminative. A possible explanation is that minimizing the
cross-entropy in Eq. 5a will make the lower layers of the
speaker classifier to contain speaker information. This infor-
mation will be wasted because we will only use the feature
extractor to produce the transformed vectors after training.
On the other hand, minimizing the cross-entropy in Eq. 3a
encourages confusable input but Eq. 3b encourages speaker
discriminative transformed vectors. As a result, the fuzzifier
ensures that speaker information will be kept in the latent
representation ẑ.

In summary, the fuzzifier can force the class encoder to take
all of the responsibility for producing discriminative features
so that all of the usable discriminative information is encap-
sulated inthe class encoder by which a more discriminative
subspace can be created.

VI. CONCLUSIONS

In this work, we proposed a contrastive adversarial domain
adaptation network (CADAN) which achieves a significant im-
provement in domain adaptation for speaker recognition when
compared with state-of-the-art domain adversarial network
(DAN). We contributes to two major modification of the origi-
nal recipe: (1) splitting the encoder into two separate networks
(class encoder and domain suppressor) for different purposes
and (2) replacing the classifier with a fuzzifier for enhancing
the discriminative information in the encoded features ẑ. A
profound improvement was observed by using PLDA models
to score the encoded i-vectors for speaker recognition. The
visualization of the encoding process of CADAN also shows
that the modified networks are more effective in producing
discriminative features and suppressing domain information.

While this paper has shown that CADAN can improve gender-
and noise-dependent systems, it is interesting to investigate
its performance on speaker recognition systems trained with
gender-mix speech under a wide variety of noisy conditions
in future work.
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