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An Effective Sub-Superpixel-Based Approach for
Background Subtraction

Abstract—How to achieve competitive accuracy and less
computation time simultaneously for background estima-
tion is still an intractable task. In this paper, an effective
background subtraction approach for video sequences is
proposed based on a sub-superpixel model. In our algo-
rithm, the superpixels of the first frame are constructed
using a simple linear iterative clustering method. After
transforming the frame from a colour format to gray level,
the initial superpixels are divided into K smaller units, i.e.
sub-superpixels, via the k -means clustering algorithm. The
background model is then initialized by representing each
sub-superpixel as a multidimensional feature vector. For
the subsequent frames, moving objects are detected by the
sub-superpixel representation and a weighting measure.
In order to deal with ghost artifacts, a background model
updating strategy is devised, based on the number of pixels
represented by each cluster center. As each superpixel is
refined via the sub-superpixel representation, the proposed
method is more efficient and achieves a competitive ac-
curacy for background subtraction. Experimental results
demonstrate the effectiveness of the proposed method.

Index Terms—Background subtraction, k -means cluster-
ing, superpixel.

I. INTRODUCTION

THE task of background subtraction is to divide an ob-
served image into two complementary sets of pixels, i.e.

the foreground object and the background that does not contain
any object of interest. For analyzing an image or a video,
the computational efficiency can be improved significantly by
dealing with only the foreground object detected via back-
ground subtraction [1], [2]. In most background-estimation
methods, the static part is generally assumed to be the back-
ground, and the rest is considered as the foreground object.
Nevertheless, background subtraction remains a challenging
research topic nowadays, because of many unfavorable factors
in real applications, such as illumination variations, noise,
ghost artifacts, etc. [3], [4], [5].

So far, many effective works have been reported for back-
ground estimation. A complete survey was provided in [6]
for the traditional and recent approaches. In [6], the various
algorithms were categorized in terms of the mathematical
models and the critical situations to handle. Gaussian model
is a relatively simple and widely used statistical model. In the
Gaussian model, the pixel intensity values of the consecutive
frames can be modeled by a Gaussian distribution. As the
most common approach, Gaussian mixture model (GMM) was
proposed in [7] to deal with the dynamic backgrounds. Sub-
sequently, many improvements of the GMM were developed
to be more robust and adaptive to the critical situations [8].

Nevertheless, for the background and foreground, the prob-
ability density functions (pdfs) are likely to vary from image

to image, and will not have a known parametric form. By
estimating the pdf directly from the data, a nonparametric
kernel density estimation approach (KDE) [9] was proposed
to build the statistical representations of the background and
the foreground. Instead of using an explicit pixel model, each
background pixel is modeled with a set of closest samples in
the VIsual Background Extractor (ViBe) [10]. In [11], each
background pixel is assigned with a series of key color values
stored in a codebook. A multiscale spatial-temporal back-
ground model was proposed in [12] to detect motion in low
contrast dynamic scenes. In [13], a robust background model
for object detection, namely co-occurrence probability-based
pixel pairs (CP3), was proposed to deal with the illumination
variation and the burst motion.

In [14], a thorough review was made for the recent develop-
ments of a class of approaches, which can be represented by a
decomposition framework of low-rank plus additive matrices.
Compared to the mono or the trichromatic images, the multi-
spectral images can provide a more elaborate spectral-spatial
and temporal model for a more accurate segmentation. In order
to alleviate the heavy computation cost and complexity, an
online stochastic tensor decomposition approach was proposed
for background subtraction in multispectral video sequences
[15]. In [16], to ensure continuity on spatial and temporal
manifolds, a background-foreground model was proposed by
incorporating the spatial and temporal sparse subspace clus-
tering into the robust principal component analysis (RPCA)
framework [17].

Instead of low level or hand-crafted features, a background
subtraction algorithm was proposed based on spatial features
learned with convolutional neural networks [18]. In [19], a
detailed analysis was performed for deep neural network-
based background subtraction approach with respect to the
feature maps, the important filters for the detection accuracy,
and the operations to suppress false positives from dynamic
backgrounds. By using the output features from different
layers of the network, a multiscale fully convolutional net-
work architecture was proposed for infrared foreground object
detection [20].

In some real-time applications, the computational efficiency
is a major concern for background-subtraction algorithms. In
this paper, an effective background subtraction approach is
proposed, based on the sub-superpixel model. Instead of a
whole superpixel, each initialized superpixel is divided into K
smaller units, i.e. sub-superpixels, via the k-means clustering
algorithm. A multidimensional feature vector is then used to
represent each superpixel. In order to deal with the ghost
artifact, a background model updating strategy is devised,
based on the number of pixels represented by each cluster
center. As the superpixel is refined and its representation is
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simplified, the proposed approach can achieve a competitive
accuracy and require less computation time for background
subtraction.

The remainder of the paper is organized as follows. A
brief review is given in Section II for the various superpixel-
based approaches. In Section III, we present our proposed
background-subtraction algorithm. Experimental results and
related discussions are given in Section IV, and the concluding
remarks are presented in Section V.

II. RELATED WORKS

During the past few years, many research studies have
been carried out on background substraction. In this study, we
propose a superpixel based model for background substraction.
Therefore, in this Section, we make a brief review to some
superpixel based background substraction methods.

The size of the picture element to model the background can
either be a pixel, a block, or a region [21]. As a typical region-
level representation, superpixels, i.e. clusters of similar pixels,
have been introduced for background estimation. Compared to
the pixel-based methods, the use of superpixels can improve
the accuracy of background estimation, and can significantly
reduce the computational complexity and the memory require-
ment.

In [22], a simple linear iterative clustering algorithm (SLIC)
was proposed by using the k-means clustering to generate
superpixels in the labxy color-image plane space. Due to its
simplicity and efficiency, subsequently, SLIC has been adopted
or improved in other background substraction approaches. Two
multi-scale background subtraction methods were proposed by
varying the size and zone of superpixels [23] or by random
sampling [24] during the superpixel segmentation process of
SLIC. In [25], the subpixels were first extracted via the SLIC
method, and the corresponding pixel means were computed to
be used as the input observation matrix of RPCA for moving
object detection.

Instead of the original video sequence, the static and
dynamic superpixels were first separately obtained by the
entropy rate superpixel segmentation method. Then, a on-
line max-norm based matrix decomposition was employed
on each segmented superpixel to separate the low rank and
initial outliers support [26]. In [27], a hybrid background
subtraction algorithm was proposed by using hierarchical
superpixel segmentation, spanning trees and optical flow. In
[28], a superpixel-based video-object segmentation algorithm
was proposed by using perceptual organization and location
prior.

In [29], an efficient and effective superpixel-based algo-
rithm, named SuperBE, was proposed for background estima-
tion. For SuperBE, the RGB mean and colour covariance ma-
trices are used as the discriminative features in the background
model. The experimental results demonstrated that SuperBE
performed favorably against several state-of-the-art algorithms.
Nevertheless, some useful information may be lost when a
superpixel is used to represent a group of pixels.

As superBE is the most related work, Table I shows a
comparative table on the different main features between
SuperBE and our proposed method.

End

Begin

Construct the superpixels and 
determine the corresponding 
adjacency relation using linear 

iterative clustering.

Compute the mean and 
standard deviation of the 
pixel values of superpixel.

l=l+1

The detection 
mask

Divide each superpixel into K smaller units 
by the k-means clustering algorithm; 

compute the number of nearest neighbor 
pixels of the cluster center and the number 

of foreground points.

The first frame
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Detect moving objects via the 
weighting similarity metric.
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Perform the morphological operation to fill 
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Fig. 1. Flowchart of the sub-superpixel-based approach to
background subtraction. Part A: background model initializa-
tion, Part B: moving object detection, Part C: background
model updating.

III. METHODOLOGY

Figure 1 shows the flowchart of the sub-subpixel-based
background-subtraction method. There are three main compo-
nents in the proposed method: background model initialization,
moving object detection, and background model updating. A
detailed description of these three parts is presented in the
following subsections.

A. Background Model Initialization

The process of background model initialization is shown in
the part A of Fig. 1. For the first (l = 1) frame, superpixels
are initially constructed by using the linear iterative clustering
algorithm [22]. The adjacency relations are then determined
for these superpixels. The segmentation result of the first
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TABLE I
A comparative table on the different main features between SuperBE and our proposed method.

Methods Main feature of super-
pixel representation

Dimension of super-
pixel representation

Foreground
detection method

Background model
update

Ghost artifacts
processing

SuperBE

Mean and covariance
matrix for the pixel
intensity of RGB
channels.

30*(3+9)=360

The difference of
mean and covariance
matrix between
the superpixel and
background model.

Substitute the mean
and covariance matrix
of the background
model by that of the
current superpixel
with a given
probability.

No special measure
to deal with the
ghost artifacts.

SBS

(a) Cluster centers of
super-pixel, the pixel
number belonging to
each cluster;
(b) The number of
outliers;
(c) The variance of
pixels within super-
pixel.

10*(1+1)+2=22

(a) The difference
between the pixel
and background
model;
(b) The weighting
metric in (6).

Update the superpixel
feature representation

A background model
updating strategy to
deal with the ghost
artifacts

frame, represented by the superpixels, is stored and used for
all the other subsequent frames.

For the ith (i = 1, · · · , N) superpixel of the first (l = 1)
frame, the mean µ1i and the standard deviation σ1i of its pixel
values can be computed as follows:

µ1i =
1
Ni

Ni∑

j=1

xij , (1)

and

σ1i =

√√√√ 1
Ni

Ni∑

j=1

(xij − µ1i)
2
, (2)

where xij is the jth pixel in the ith superpixel, and Ni is
the corresponding number of pixels in the superpixel. Further-
more, each superpixel is further divided into K smaller units,
i.e. sub-superpixels, via the k-means clustering algorithm.
Given a threshold δ1, two feature metrics are defined, which
are the number of nearest-neighbor pixels (bk

1i) of the cluster
center ck

1i (k = 1, · · · ,K) and the number of foreground
points (n1i). For all the cluster centers ck

1i, we have

bk
1i = bk

1i + 1, if
∣∣xij − ck

1i

∣∣ ≤ δ1, k = 1, · · · ,K. (3)

For all the pixels in the ith superpixel, the number of fore-
ground points n1i is given as follows:

n1i = n1i+1, if
∣∣xij − ck

1i

∣∣ > δ1, k = 1, · · · ,K, j = 1, · · · , Ni

(4)

B. Moving Object Detection
The part B of Fig. 1 shows the main steps of moving object

detection. For the second (l = 2) frame, the superpixels can
be directly obtained by using the segmentation results from
the first frame. Similarly, we compute bk

2i and n2i. Moreover,
a mask matrix Pli is generated to record the estimation results
of the ith superpixel in the lth frame. Initially, the elements
plij , (i = 1, · · · , N ; j = 1, · · · , Ni) of Pli are all set to be
zeros. If the jth pixel in the ith superpixel is judged as a
foreground point according to (4), then the element plij is
assigned to be 255.

Furthermore, we need to determine if there is a moving
object contained inside or as a part of a superpixel in the
second frame. Considering bk

1i and bk
2i in the form of a

histogram, the similarity measure db can be computed as
follows:

db =
1
Ni

K∑

k=0

min(bk
2i, b

k
1i). (5)

Given a threshold value δ2 , there is a moving object in
the superpixel, or the current background cannot represent
the superpixel accurately, when db < δ2. Then, we need
recalculate σ2i according to (1) and (2).

Moreover, considering σ and n, a weighting metric is
defined as follows:

Di =
1
db

(λ1|σ2i − σ1i|+ (1− λ1)|n2i − n1i|). (6)

Given a threshold δ3, if Di > δ3, the foreground points
are kept up for this superpixel. Otherwise, the background
model corresponding to the superpixel needs to be updated.
Furthermore, all the pij of a superpixel, which are not marked
as foreground, are set as zero. Moreover, the morphological
close and open operations are applied to fill the holes inside
the moving objects.

C. Background Model Updating
The background model updating process is shown in the

part C of Fig. 1. For the superpixels to be updated, the cluster
centers of the first frame are randomly substituted with those
of the second frame. Given the new cluster centers ck

1i, we
need to calculate σ1i, bk

1i and n1i again.
In addition, an effective updating strategy is devised for

the similarity measure db, to deal with “ghost” artifacts. If a
superpixel is marked as foreground for M consecutive frames,
the similarity measure db can be computed as follows:

db =
1
Ni

K∑

k=0

min(bk
1i, b

k
1it ×

Ni

Nit
) (7)

where bk
1it and Nit are the corresponding bk

1i and Ni of
the tth neighbor superpixel. Then, the weight metric Di is
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TABLE II
The definition of seven performance metrics and the

corresponding description.

Metrics Equation Description
Recall Re = T P

T P+F N Foreground accuracy
Specificity Sp = T N

T N+F P Background accuracy
False positive rate FPR = F P

T N+F P Foreground error rate
False negative rate FNR = F N

T P+F N Background error rate
Overall error rate PWC =

100∗(F N+F P )
T P+F N+F P+T N Overall error rate

Precision Pr = T P
T P+F P Overall accuracy measure

F-Measure FM = 2∗Pr ∗Re
Pr +Re Overall accuracy measure

computed by (6). If Di < δ3, the superpixel is judged as a
ghost superpixel. The background model of superpixel is then
initiated again to eliminate the ghost.

Similarly, the subsequent frames (l = 3, · · · ) are proceed
with the steps as described in Sections III-A-III-C.

IV. EXPERIMENTAL RESULTS

A. Experimental data and set-up

The performance of the proposed sub-superpixel-based ap-
proach for background subtraction, denoted as SBS, is evalu-
ated on three datasets, i.e., the 2012 IEEE Change Detection
Workshop (CDW-2012) [30], the SBI dataset [31], and the
Carnegie Mellon Test Images Sequences (CMTIS) [32].

Given True Positive (TP), False Positive (FP), False Neg-
ative (FN), and True Negative (TN), Table II shows the
definition of seven performance metrics and the corresponding
descriptions [30], which are adopted in our experiments to
evaluate the background-subtraction performance of various
algorithms.

For the proposed method, one problem is how to determine
the weighting coefficient λ1, and the threshold parameters
δ1, δ2, and δ3. As there is no a separated training proce-
dure, traditional parameter-selection methods, such as cross
validation, cannot be used to choose the optimal parameters.
Generally, most background-subtraction algorithms attempt to
find the optimal parameter values by trial and error. Our
experiments have shown that a satisfactory performance can
generally be achieved when λ1, δ2, δ3, K, and M are set as
0.6, 0.8, 15, 10, and 30, respectively. The parameter δ1 is set
as 20, according to the suggested value of Vibe [10].

Take the performance metric F-Measure for example, Fig.
2 shows the experimental results when the parameters are
set at different values. Except for δ2, it can be seen that
the performances are relatively good when the parameters are
varied within some intervals. Figure 3 shows the performance
metric F-Measure and the runtime when the parameter δ2 is
set at different values. Considering both the accuracy and the
runtime, the parameter λ2 is set at 0.8 for all videos.

B. Experimental comparisons

1) Experimental comparisons on the CDW-2012 dataset:
The CDW-2012 dataset contains several challenging situations
for background subtraction, such as dynamic background,
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Fig. 2. The experimental results based on the performance
metric F-Measure, when the parameters λ1, δ2, δ3, K, and
M , are set at different values.
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Fig. 3. The performance metric F-Measure and the runtime
when the parameter δ2 is set at different values.

Fig. 4. Some typical frames, with the challenging situations,
in the CDW-2012 dataset.
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TABLE III
The experimental comparisons of the various algorithms for

all categories of the CDW-2012 dataset.

Methods Re Sp FPR FNR PWC Pr FM
SBS 0.6741 0.9883 0.0115 0.3258 3.0241 0.8343 0.7197
SuperBE 0.4515 0.9925 0.0064 0.5484 5.1092 0.8425 0.5356
Vibe 0.6821 0.9829 0.0170 0.3178 3.1177 0.7357 0.6683
GMM 0.7375 0.9690 0.0310 0.2624 4.0680 0.6858 0.6748
CP3 0.7611 0.9633 0.0366 0.2388 4.0041 0.6464 0.6678
Multiscale Model 0.6714 0.9773 0.0226 0.3285 3.5174 0.6818 0.6165
Euclidean distance 0.7048 0.9691 0.0308 0.2951 4.3458 0.6223 0.6111
KDE 0.6575 0.9909 0.0090 0.3424 3.0022 0.7341 0.6437

camera jitter, intermittent object motion, shadow and thermal
signature, etc. Figure 4 shows some typical frames with the
challenging situations in the dataset. There are 6 video cate-
gories in the CDW-2012 dataset, and each category includes
4 to 6 video sequences.

To evaluate the performance of the proposed method, we
compare it with seven other background-subtraction algo-
rithms, including Euclidean distance [5], GMM [7], KDE [9],
Vibe [10], Multiscale Model [12], CP3 [13], and SuperBE
[29]. All simulations were conducted in the C++ environment,
running on an ordinary personal computer with double 3.0-
GHz CPU and 4-GB memory.

Table III shows the experimental comparisons of the various
algorithms for all categories of the CDW-2012 dataset. It can
be seen that the proposed method is competitive with other
algorithms in general. Furthermore, for the comprehensive
metric FM, the performance of the proposed method outper-
forms all the other algorithms.

For SuperBE, the RGB mean and the colour covariance
matrix of the superpixels are used as the discriminative fea-
tures. SuperBE tends to have fewer false positives (FP) at
the cost of more false negatives (FN) [29]. Thus, in terms
of the metrics Sp, FPR, and Pr, the performance of SuperBE
is better than Vibe, GMM, CP3, Multiscale Model, Euclidean
distance, and KDE. For SuperBE, a highly accurate detection
of true negative is achieved in background detection by using
a relative high threshold value, and the RGB mean and the
colour covariance matrix of the whole superpixel. Usually, the
difference between the background and the current superpixel
caused by the tiny object is not larger than the given threshold
value. As a result, the tiny object cannot be detected. If the
threshold value is decreased significantly, the whole superpixel
is judged as the foreground when the tiny object is detected.
As a result, SuperBE tends to have much more false negatives.

Besides the statistical features, some finer details are uti-
lized, by using k-means clustering, in SBS. From (6), we
can see that the number of foreground points ni is used
as one component of the weighting metric. When the tiny
object enters into the superpixel, the feature ni will increase
significantly. As a result, the tiny object can be detected
sensitively. Nevertheless, since both the whole representation
and the local feature are considered in SBS, there are no
much false negatives when the tiny object is detected. The
performance indices Re and FNR are obviously improved with
the increasing of TP. On the other hand, the performance

Fig. 5. Results produced by different methods: (a) The original
image, (b) the ground truth, (c) CP3, (d) Vibe, (e) GMM,
(f) Euclidean distance, (g) Multiscale Model, (h) KDE, (i)
SuperBE, and (j) SBS.

TABLE IV
The average runtimes (TC in sec.) per frame and frames per

second (FPS) of the various methods.

Methods TC FPS
SBS 8.59 116
SuperBE 13.31 75
GMM 27.02 37
Vibe 7.41 135
CP3 50 20
Multiscale Model 100 10
Euclidean distance 9.10 110
KDE 40 25

index Pr of SBS is only slightly lower than that of SuperBE.
Moreover, the Pr of SBS and SuperBE are obviously higher
than that of other methods. Therefore, the comprehensive
metric FM of SBS is higher than that of SuperBE and other
methods, as shown in Table III.

As shown in Fig. 5(b), the foreground is a small object
in the original image. We can see from Fig. 5 that, different
from other algorithms, there is no noise in the detection results
based on SuperBE and SBS. Nevertheless, the small object is
successfully detected by SBS, while it is missed by SuperBE.

Table IV shows the average runtimes (TC in sec.) per
frame and frames per second (FPS) of the various methods.
Moreover, Table V shows the average runtime ratio between
the other methods and the proposed method. It can be seen
from Table V that the computation time of SBS is obviously

TABLE V
The average runtime ratio between the other methods and

the proposed method.

Methods TC FPS
SBS 1 1
SuperBE 1.5495 0.6466
GMM 3.1455 0.3190
Vibe 0.8626 1.1638
CP3 5.8201 0.1724
Multiscale Model 11.6414 0.0861
Euclidean distance 1.0594 0.9483
KDE 4.6566 0.2155
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TABLE VI
The experimental comparisons of the various algorithms for

the SBI dataset.

Methods Re Sp FPR FNR PWC Pr FM
SBS 0.7931 0.9264 0.0735 0.1440 11.203 0.6650 0.7018
SuperBE 0.5306 0.9392 0.0607 0.3112 15.4491 0.7597 0.6023
Vibe 0.6112 0.9398 0.0601 0.2234 13.4579 0.7033 0.6267
GMM 0.6097 0.9215 0.0784 0.2348 15.4094 0.6606 0.5909
Euclidean distance 0.6694 0.9318 0.0681 0.1539 11.5857 0.5449 0.5603
KDE 0.8545 0.8708 0.1291 0.0831 12.8741 0.4820 0.5527

lower than that of GMM, CP3, Multiscale Model, KDE. As a
similar method, the computation time of SuperBE is about 1.5
times that of SBS. The computation times of Vibe Euclidean
distance, SBS are close each other. Compared to Vibe and
Euclidean distance, it can be seen from Table III that SBS has
a relative good comprehensive performance index FM.

Fig. 6. Some typical frames in the SBI dataset.

2) Experimental comparisons on the SBI dataset: The SBI
dataset includes 14 sequences with some negative influence
factors, e.g. shadow, occlusion, camera jitter, waving leave,
etc. Figure 6 shows some typical frames in the SBI dataset.
Both the complete SBI dataset and the ground truth reference
background images were made publicly available through the
SBMI2015 website [31].

Table VI shows the experimental comparisons of the various
algorithms for the SBI dataset. Nevertheless, some unclear
errors are encountered when CP3 and Multiscale Model are
used to process these two datasets. Thus, the experimental
comparisons are only presented for six methods in Table VI.
We can see that the performance metric FM of SBS is higher
than that of other methods. Thus, SBS has a relative good
comprehensive performance.

Figure 7 shows an example of the processed results by
different methods. It can be seen that, compared to other
methods, SBS can effectively deal with ghost artifacts and
can detect the pedestrian completely.

3) Experimental comparisons on the CMTIS dataset: Com-
pared to other two datasets, CMTIS is a relative small size
dataset. There are only 500 raw TIF image and the corre-
sponding manually segmented binary masks in the CMTIS
dataset. The video sequences are mainly with two negative
influence factors, i.e. camera jitter and waving leave. Table

Fig. 7. Results produced by different methods: (a) The original
image, (b) The ground truth, (c) Vibe, (d) GMM , (e) Euclidean
distance , (f) KDE, (g) SuperBE and (h) SBS

TABLE VII
The experimental comparisons of the various algorithms for

the CMTIS dataset.

Methods Re Sp FPR FNR PWC Pr FM
SBS 0.9170 0.9975 0.0024 0.0014 0.3862 0.8672 0.8914
SuperBE 0.5343 0.9994 0.0005 0.0105 1.0844 0.9552 0.6852
Vibe 0.8950 0.9939 0.0060 0.0018 0.7804 0.7209 0.7986
GMM 0.8684 0.9891 0.0108 0.0026 1.3192 0.6156 0.7205
Euclidean distance 0.7631 0.9911 0.0088 0.0041 1.2748 0.6039 0.6743
KDE 0.8754 0.9929 0.0070 0.0022 0.9128 0.6945 0.7745

VII shows experimental comparisons of the various algorithms
for the CMTIS dataset. Similar to other two datasets, we
can see that the performance indices Sp, FPR, and Pr of
SuperBE are higher than that of other methods by achieving
a highly detection accuracy of true negatives. Nevertheless, it
can be seen from Table VII that SBS still has a relative good
comprehensive performance compared to other methods.

C. Related discussions
The morphological operation is a commonly used approach

to fill the holes inside the moving objects. Take a frame
(Fig. 8(a)) of the video “pedestrians” for example, Figs. 8(c)
and 8(d) show the results without and with morphological
operations, respectively. Compared to the ground truth shown
in Fig. 8(b), it can be seen that the morphological operations

TABLE VIII
The experimental comparison when the morphological

operation is used or not used (denoted as SBS-NMO) in the
proposed method.

Datasets Methods Re Sp FPR FNR PWC Pr FM
CDW-2012 SBS 0.6741 0.9883 0.0115 0.3258 3.0241 0.8343 0.7197

SBS-NMO 0.6483 0.9907 0.0092 0.3516 1.9420 0.7513 0.6744
SBMI SBS 0.7931 0.9264 0.0735 0.1440 11.203 0.6650 0.7018

SBS-NMO 0.6277 0.9700 0.0299 0.1928 10.1634 0.7462 0.6603
CMTIS SBS 0.9170 0.9975 0.0024 0.0014 0.3862 0.8672 0.8914

SBS-NMO 0.7458 0.9979 0.0020 0.0044 0.6437 0.8632 0.8002
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Fig. 8. A comparison of the detection results, with and without
using morphological operations: (a) The original image, (b)
the ground truth, (c) without morphological operations, and
(d) with morphological operation.

Fig. 9. A comparison of the foreground intrusion for different
algorithms: (a) The original image, (b) The ground truth, (c)
CP3,(d) Vibe, (e) GMM, (f) Euclidean distance, (g) Multiscale
Model, (h) KDE, (i) SuperBE, and (j) SBS

can effectively eliminate noise and fill the hole inside the
moving object. Moreover, Table VIII shows the experimental
comparison when the morphological operation is used or
not used (denoted as SBS-NMO) in the proposed method.
We can see that the morphological operation indeed has an
obvious effect on the background substraction performance.
As a commonly used approach, the morphological operation
is also used in other background subtraction approaches, e.g.,
Multiscale model, SuperBE, Euclidean distance, etc.

When there is no obvious difference between the foreground
and the background, the foreground may intrude in the back-
ground in most algorithms. For SBS, the updating strategy
for the background model is based on two levels, i.e. the
superpixel level and the pixel level. Therefore, the foreground
intrusion can be effectively alleviated. Take a frame of the
category “thermal” for example, Fig. 9 shows the results of the
various algorithms. It can be seen that there is no foreground
intrusion for SBS.

Denote R, Q, and S as the average pixel number of one
superpixel, the pixel number and superpixel number of one
frame, respectively. The variables w and h are the parameters
of the morphological operation. The operation number of four
basic operations is about 24Q + (120 ∼ 1800) ∗ Q/R + 4 ∗
w ∗ h ∗Q for SuperBE. Denote p1 and p2 as the probabilities
caused by the judgment conditions of (5) and (6), the operation
number of SBS is about (3 ∼ 30)Q + 4 ∗ p1 ∗ Q + (17 ∼
44) ∗ p1 ∗ p2 ∗ Q + 21Q/R + 5p1 ∗ Q/R + 4 ∗ w ∗ h ∗ Q.
Compared to SuperBE, the computational complexity of SBS
is decreased by the judgment conditions. As shown in Table
V, the computation time of SuperBE is about 1.5 times that
of SBS.
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Fig. 10. The performance metric F-Measure and the runtime
when different numbers of pixels in superpixel are set for
SuperBE, and when different numbers of clusters are set for
SBS.

Figure 10 shows the performance metric F-Measure and the
runtime when different numbers of pixels in superpixel are set
for SuperBE, and when different numbers of clusters are set for
SBS. For SuperBE, we can see from Fig. 10 (a) and (b) that,
the runtime obviously increases when the number of pixels in
superpixel is smaller than 50. Nevertheless, we can see from
Fig. 10 (c) and (d) that, the runtime only varies slightly when
different numbers of clusters are set for SBS.

V. CONCLUSION

In this paper, a more effective background-subtraction ap-
proach is proposed, based on the sub-superpixel model. A
one-order statistic-based representation is proposed for the
sub-superpixel model. The proposed sub-superpixel represen-
tation was more effective and more robust to scene noise.
Moreover, tiny objects can be detected successfully with our
proposed method. The proposed background updating strategy
can alleviate foreground intrusion. As a post-processing step,
morphological operations have been verified to be able to
effectively eliminate noise and fill the holes inside moving
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objects. Experimental results have demonstrated the effective-
ness of the proposed method.
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