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Abstract—Automatic classification of electrocardiogram (ECG)
signals is important for diagnosing heart arrhythmias. A big
challenge in automatic ECG classification is the variation in the
waveforms and characteristics of ECG signals among different
patients. To address this issue, this paper proposes adapting
a patient-independent deep neural network (DNN) using the
information in the patient-dependent identity vectors (i-vectors).
The adapted networks, namely i-vector adapted patient-specific
DNNs (iAP-DNNs), are tuned towards the ECG characteristics
of individual patients. For each patient, his/her ECG waveforms
are compressed into an i-vector using a factor analysis model.
Then, this i-vector is injected into the middle hidden layer of
the patient-independent DNN. Stochastic gradient descent is then
applied to fine-tune the whole network to form a patient-specific
classifier. As a result, the adaptation makes use of not only
the raw ECG waveforms from the specific patient but also the
compact representation of his/her ECG characteristics through
the i-vector. Analysis on the hidden-layer activations shows that
by leveraging the information in the i-vectors, the iAP-DNNs
are more capable of discriminating normal heartbeats against
arrhythmic heartbeats than the networks that use the patient-
specific ECG only for the adaptation. Experimental results
based on the MIT-BIH database suggest that the iAP-DNNs
perform better than existing patient-specific classifiers in terms
of various performance measures. In particular, the sensitivity
and specificity of the existing methods are all under the receiver
operating characteristic curves of the iAP-DNNs.

Index Terms—ECG classification; Arrhythmias; Deep neural
networks; i-vectors; DNN adaptation.

I. INTRODUCTION

HEart arrhythmias or arrhythmias refer to the irregular
heartbeats of patients. Not all arrhythmias are serious

or life threatening but some types (e.g., atrial fibrillation,
ventricular escape and ventricular fibrillation) may be a sign
of heart diseases or even cause sudden cardiac death if prompt
treatments are not received.

Arrhythmias can be detected through electrocardiography
(ECG), which is a process of recording the electrical activities
of the heart. The standard ECG uses a 12-lead configuration
in which a number of electrodes are attached to the skin
of a patient, and measurements can only be made for a
couple of minutes. The conventional 12-lead ECG is therefore
not practical for long-term monitoring. Unfortunately, some
intermittent arrhythmias can only be detected by long-term
monitoring because they can be easily missed in ordinary
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recording sessions. To overcome this problem, the 2-lead
configuration commonly used in the Holter monitor [1] can
be used for heart monitoring for up to 48 hours. In this work,
we focus on the long-term continuous cardiac monitoring.
Therefore, we used the MIT-BIH arrhythmia database [2] for
performance evaluation, which comprises a standard set of
Holter recordings for evaluating arrhythmia detectors.

With the increasing use of personal portable devices to
acquire ECG data, a large number of ECG recordings can
be collected. However, it is impossible to read and analyze
all of these data manually by medical professionals. It is
better to use machines to classify heartbeats automatically
so as to assist clinicians in diagnosing arrhythmias. One of
the biggest challenges in automatic heartbeat classification is
the variations in ECG characteristics among different patients,
which is known as inter-patient variations. Patient-independent
classifiers that are trained on the ECG of a large number
of patients may not perform well on unseen patients [3].
While a patient-specific classifier can be trained using patient-
specific data only, the performance will not be good. This is
because patient-specific data are usually very limited, which
either leads to overfitting in complex classifiers or insufficient
capability for simple classifiers. This is why most of the
studies (e.g., [4]–[9]) used a small amount of patient-specific
data together with some patient-independent data to train
patient-specific classifiers.

To address the patient-dependent variability in the ECG
signals, we have developed a deep neural network (DNN)
based heartbeat classifier [10] that is adaptive to the ECG char-
acteristics of individual patients. The adaptation is achieved by
using the i-vector representation [11] of patient-specific ECG
as auxiliary information to adjust the weights in the DNN. This
paper is an extension of our earlier work in [10]. It provides
additional analyses to explain why the i-vectors can help adapt
the patient-independent DNN. In particular, new experiments
have been performed to investigate the best layer for injecting
the i-vectors. Visualizations of the network activities during the
course of adaptation are provided to demonstrate the effective-
ness of i-vector adaptation. Through these investigations, we
are able to explain why this i-vector adaptation can lead to
patient-specific classifiers that outperform other state-of-the-
art patient-specific classifiers.

This paper is organized as follows. Section II provides
a survey of previous patient-specific heartbeat classification
methods. Section III explains the concept of i-vectors and
presents the details of the proposed i-vector adapted DNNs
(iAP-DNNs). Section IV outlines the ECG dataset used in
this study and the experimental setting. Section V investigates
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TABLE I: Summary of the existing studies [4]–[9] and the proposed
method. All of these methods (patient-specific classifiers) follow the
ANSI/AAMI EC57 standard, adopt the beat-by-beat analysis strategy
and the subject-oriented evaluation scheme.

Ref. Feature Classifier
Jiang et al.
(2007) [4]

Hermite transform
coefficients BbNN

Ince et al.
(2009) [5]

Morphological
features MD PSO

Kiranyaz et al.
(2016) [6]

Raw ECG
downsampling and FFT CNN

Ye et al.
(2016) [7]

Morphological and
dynamic features

SVM based on
multiview learning

Zhai et al.
(2018) [8]

Dual heartbeat
coupling matrix CNN

Li et al.
(2018) [9] Raw ECG TDCNN

Proposed Raw ECG and
i-vectors DNN

which hidden layer of the DNN is more appropriate for receiv-
ing the i-vector injection. It also compares the performance of
the proposed iAP-DNNs against the existing patient-specific
classifiers using some standard performance metrics. Finally,
Section VI draws conclusions and suggests directions for
future work.

II. RELATED WORK

In the recent past, there have been much efforts [4]–
[9], [12]–[15] in classifying heartbeats automatically. Many
of these studies [4]–[9], [12] used the MIT-BIH arrhythmia
database for performance evaluation and followed the standard
prepared by the Association for the Advancement of Medical
Instrumentation (ANSI/AAMI EC57:1998) [16] for testing
and reporting performance. They adopted a “subject-oriented”
evaluation scheme [12] and used five minutes of patient-
specific ECG data for constructing patient-specific classifiers.
Under this scheme, data are divided according to patients
instead of heartbeats, which ensures that the training set
and the test set comprise different patients. As a result, the
performance reported in [4]–[9] is more realistic and is closer
to the practical situations. A summary of these studies [4]–[9]
as well as our proposed method is shown in Table I.

A. Patient-Specific Models for Heartbeat Classification

Jiang et al. [4] proposed using Hermite transform coeffi-
cients to approximate the QRS complexes of heartbeats. The
coefficients and R-R intervals were used as heartbeat features
for classification by an evolvable block-based neural network
(BbNN) [17]. In the training stage, both common (totally 142
beats from 20 patients) and patient-specific data (5-minute
ECG from each patient) were used for evolving the patient-
specific BbNNs. The results suggest that high accuracies
can be achieved by using personalized ECG classification.
However, lots of critical parameters or thresholds needed to
be set empirically in this approach.

In [5], wavelet transform and principal component analysis
(PCA) were applied to extract morphological features. The

low dimensional morphological feature vectors were combined
with temporal features to form the final feature vectors. A
multi-dimensional particle swarm optimization (MD PSO)
method was proposed, which optimizes neural network based
classifiers according to 245 common training beats and a
variable number of patient-specific beats. Overall, this method
achieves performance that is comparable with the BbNN-based
personalized ECG classifier in [4].

In [6], the raw data of each beat were downsampled to
64 or 128 time-points centered on the R-peak, and FFT
representations were used as the input to a patient-specific
1-D convolutional neural network (CNN). Each CNN was
trained by using 245 representative beats that are common to
all patients and 5-minute patient-specific beats. Results show
that the CNNs outperform any existing arrhythmia classifiers
under the same evaluation protocol.

Ye et al. [7] utilized wavelet transform and independent
component analysis (ICA) to extract morphological features
from segmented heartbeats. Unlike other patient-specific clas-
sifiers, the classifiers in [7] can be trained on unlabeled
patient-specific data, meaning that no manual intervention is
required during training. Specifically, a general classifier was
trained on the data extracted from the patients who are similar
to the target patient. Then, a patient-specific classifier was
trained on a small amount of patient-specific ECG with high-
confident labels hypothesized by a multi-view model. The
final result was obtained by combining the two classifiers
probabilistically. Results shown that the customized models
together with automatic adaptation can improve classification
performance.

In [8], the beats were transformed into dual-beat coupling
matrices, which are used as 2-D inputs to a CNN classifier.
The matrices captured both beat morphology and beat-to-beat
correlation in ECG. A heartbeat selection procedure was also
proposed to select the most representative beats. For each
patient, a classifier was trained based on these representative
beats and the patient-specific ECG. Results demonstrated that
the 2-D CNN-based classifiers were superior to several state-
of-the-art detectors.

In [9], a generic convolutional neural network (GCNN) was
trained based on the ECG of a general population. The GCNN
was then fine-tuned to form a tuned dedicated CNN (TDCNN)
using patient-specific ECG. Raw ECG signals were used as the
input of the CNN classifiers and the heartbeat segmentation
procedure was the same as [6]. To explore the influence of the
amount of training samples on the performance of TDCNN, 2-
, 3-, 4- and 5-minute patient-specific ECG were used to adapt
the GCNN. The results show that more training samples help
the TDCNN to achieve higher classification accuracy and the
performance was comparable with the existing patient-specific
classifiers.

B. Comparison of Adaptation Methods

In general, the amount of ECG data from the general
population is much larger than that from individual patients
for adapting the classifiers. Therefore, the adapted patient-
specific classifiers may be biased towards the patterns in the
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general population. To overcome this issue, in [4]–[6], [8],
the patient-specific classifiers were trained based on common
and patient-specific beats. Specifically, the common heartbeats
were randomly sampled from the corresponding classes of
the general population in [4]–[6] while an automatic selection
method was proposed to select the most representative beats
in different classes in [8]. After all, the number of selected
common beats was limited to a few hundred only. In [7],
[9], instead of using the ECG of the entire population, a
subset was selected for training the general classifier. However,
reducing the amount of data from the general population is not
a desirable way to address the issue because it throws away
lots of useful information in the ECG data. Also, the common
training data are useful when the patient-specific beats contain
a few arrhythmia patterns only [2].

In our adaptation method, all of the ECG data from the
general population are used for training a patient-independent
DNN as shown in Fig. 3(a). Then, for each patient, an i-
vector is extracted from his/her 5-minute ECG data. As shown
in Fig. 3(b), to form a patient-specific classifier, the i-vector
is used as another input to the middle layer of the patient-
independent DNN and the whole network is fine-tuned by
backpropagation. The patient-independent and patient-specific
DNNs represent general population knowledge and specific
personal knowledge, respectively [7]. The advantage of the
method is that it can leverage all of the ECG data in the general
population but still be able to adapt to the ECG characteristics
of individual patients through the patient-specific ECG and the
patients’ i-vectors.

III. METHODOLOGY

This section first outline the i-vector extraction process and
explain why i-vectors can be used for representing patient-
specific information. Then, we present the proposed iAP-
DNNs, specifically, showing the architecture of a patient-
independent DNN and describing how to migrate it to a
patient-specific DNN. In the patient-specific DNN, we not
only make use of patient-specific data but also i-vectors of
the patient for patient adaption. Thus, we also introduce the
procedure to extract an i-vector from a particular patient and
describe how to embed the i-vector into the adaption. Finally,
we discuss the advantages of the iAP-DNNs.

A. I-vector Extraction

The idea of i-vectors is based on the factor analysis method
that compresses speaker and channel information into a low-
dimensional subspace [18]. Inspired by the success of i-vectors
in representing speaker information, we applied i-vectors to
represent patient-specific information in ECG signals.

Fig. 1 illustrates the procedure of training an i-vector
extractor given a set of ECG data from a general population;
it also shows the process of extracting an i-vector from an
ECG record. First, PCA whitening is applied to reduce the
correlation among the time-points in the ECG vectors [19].
Then, the whitened ECG vectors from the general population
are used to train a Gaussian mixture model, which we referred
to as the universal background model (UBM). The ECG data
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Fig. 1: Training of i-vector extractor and i-vector extraction process.

are then aligned with the UBM to compute the 0th- and 1st-
order sufficient statistics (Baum-Welch statistics), from which
a total variability matrix (T-matrix) is trained. To extract an
i-vector, the same processing pipeline is applied (see the lower
branch of Fig. 1) to an ECG record to compute the sufficient
statistics. Given the T-matrix and the sufficient statistics, an i-
vector representing the whole ECG record can be obtained. In
the sequel, we outline the formulae for training an i-vector
extractor and the i-vector extraction process. For detailed
derivations, readers may refer to [20].

Given the i-th ECG record from a general population,
we extract the D-dimensional heartbeat vectors Xi =
{xi1, . . . ,xiTi} from the record, where Ti is the number of
complete heartbeats in the record.1 We assume that the ECG
vectors from this record are generated by a C-mixture GMM
with parameters Λi = {πc,µic,Σc}Cc=1, i.e.,

p(xit) =

C∑
c=1

π(b)
c N (xit|µic,Σ

(b)
c ), t = 1, . . . , Ti. (1)

In Eq. 1, we assume that π(b)
c and Σ(b)

c are tied across all ECG
records and are equal to the mixture weights and covariance
matrices of the UBM, respectively.

In the i-vector framework [11], the mean vectors {µic}Cc=1

are stacked to form a GMM-supervector [18] µi =
[µT

i1 . . . µT
iC ]T, which is assumed to be generated by the

following factor analysis model [21]:

µi = µ(b) + Twi, (2)

where µ(b) is obtained by stacking the mean vectors of the
UBM, T is a CD×R low-rank total variability matrix mod-
eling all sort of variability in the ECG vectors, and wi ∈ <R

comprises the latent (total) factors. Eq. 2 suggests that the
generated supervectors µi’s have mean µ(b) and covariance
matrix TT T. Eq. 2 can also be written in a component-wise
form:

µic = µ(b)
c + Tcwi, c = 1, . . . , C (3)

where µic ∈ <D is the c-th sub-vector of µi (similarly for
µ

(b)
c ) and Tc is a D ×R sub-matrix of T .

1See [19] for the definition of complete heartbeats.
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Fig. 2: The i-vectors of five patients projected onto a 2-D t-SNE
embedded space. Each patient is represented by one marker and each
point represents an i-vector. Patient-dependent clusters are apparent.

In the i-vector framework, every ECG record is assumed
to be obtained from a different patient. As a result, the ECG
vectors of Record i aligning to mixture c have mean µic and
covariance matrix Σ(b)

c . This matrix measures the deviation of
the ECG vectors associated with the c-th mixture from µic. In
practice, µ(b)

c and Σ(b)
c are the mean vectors and covariance

matrices of the UBM. As a result, we only need to estimate
the T-matrix T from a set of training ECG vectors.

Assume that there are P ECG recordings from the general
population. The T-matrix can be estimated according to the
expectation-maximization (EM) algorithm as follows [20]:

• E-step:

〈wi|Xi〉 = L−1
i

C∑
c=1

T T
c (Σ(b)

c )−1f̃ic, (4)

〈wiw
T
i |Xi〉 = L−1

i + 〈wi|Xi〉〈wi|Xi〉T, (5)

Li = I +

C∑
c=1

NicT
T
c (Σ(b)

c )−1Tc; (6)

• M-step:

Tc =
[∑

i
f̃ic〈wi|Xi〉T

] [∑
i
Nic〈wiw

T
i |Xi〉

]−1

,

(7)
where i = 1, . . . , P , 〈·|·〉 is the conditional expectation and
Tc is the c-th partition of T . The 0th-order and the 1st-
order Baum-Welch statistics in Eq. 4, Eq. 6 and Eq. 7 can
be computed as follows:

Nic =
∑

t
γc(xit),

f̃ic =
∑

t
γc(xit)(xit − µ(b)

c ),
(8)

where γc(xit) is the posterior probability of mixture c.
The i-vector ii ≡ 〈wi|Xi〉 representing the i-th ECG

recording can be computed according to Eq. 4.

B. I-vector an ECG Representation

Fig. 2 demonstrates why i-vectors are good for representing

patient-dependent information, which makes them ideal for
adapting ECG classifiers. In the figure, each marker corre-
sponds to one patient and each point of the same marker
corresponds to an i-vector extracted from an ECG record
of that patient. Totally, there are five patients, each has five
ECG records. For ease of visualization, the i-vectors were
projected onto an embedding space created by the t-SNE (t-
distributed stochastic neighbor embedding) software [22]. T-
SNE is a nonlinear dimension reduction method for visualizing
high-dimensional data on a two- or three-dimensional space.
Apparently, the i-vectors of the same patient are close to each
other, i.e., forming patient-specific clusters in the t-SNE space.
This clustering phenomenon suggests that the i-vectors can
capture patient-specific information, which is very useful for
adapting ECG classifiers.

C. Patient-Independent DNN (General Classifier)

Fig. 3(a) shows the architecture a patient-independent ECG
classifier. It is essentially a DNN with fixed-length ECG
waveforms as the input and heartbeat types as the output. The
fixed-length waveforms can be obtained by the segmentation
and alignment process described in [19].2

To apply DNNs for M -class classification, we can construct
a DNN with L − 1 hidden layers and a softmax output
layer with M output nodes. Specifically, denote a(L)

m as the
activation of the m-th neuron in the softmax layer, where
m = 1, . . . ,M , the softmax function gives the outputs:

ym =
exp

{
a
(L)
m

}
∑M

j=1 exp
{
a
(L)
j

} , m = 1, . . . ,M. (9)

With the softmax function, the outputs can be considered as
the posterior probabilities of individual classes given an input
vector x, i.e., ym ≡ P (Class = m|x). The activation a

(L)
m is

the linear weighted sum of the hidden nodes’ output at the
(L− 1)-th hidden layer.

The patient-independent DNN is trained by the backpropa-
gation algorithm using the ECG data of a number of patients
in the general population.

D. Patient-Specific DNN

To create a patient-specific classifier, the weights in the
lower part of the general classifier in Fig. 3(a) are retained
and the weights in the upper part are randomized. Then, for
each patient, five minutes of his/her ECG data are presented
to the input and an i-vector extracted from these 5-minute
ECG data is injected into the middle layer of the patient-
independent DNN, as shown in Fig. 3(b). The whole network
is then fine-tuned by backpropagation. The backpropagation
algorithm will encourage the upper layers to represent patient-
dependent ECG information at a more abstract level. This
results in the output layer being tuned to the characteristics
of the corresponding patient. The i-vector extracted from the

2A GitHub page (https://github.com/seanssx) has been created for other
researchers to download the implementation the procedure.
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Fig. 3: I-vector adapted patient-specific DNNs (iAP-DNNs). (a) General classier. (b) Patient-specific classifier.

training ECG of a patient is applied to adapt the patient-
independent DNN to a patient-dependent DNN. The same i-
vector will also be used as an auxiliary input to the adapted
DNN (Fig. 3(b)) during testing. This means that the identity
of the patient is assumed to be known during testing. But this
assumption is reasonable in clinical settings.

The i-vector is presented to the second hidden layer instead
of the first hidden layer because it is well known that the
feature representation becomes increasingly abstract when
moving up the network [23]. For example, in DNN-based
speech recognition, the bottom layers can capture low-level
acoustic features that vary significantly across different speak-
ers and the upper layers can capture high-level features that
are less speaker dependent [24]. This suggests that the upper
layer can implicitly normalize the features across speakers.
By the same token, the upper layers of the DNN in Fig. 3(a)
will produce patient-invariant features, which is not good for
patient-specific classification. This explains why it is necessary
to use the patient-dependent i-vector to adapt the network. To
check the correctness of the above justification, the patient’s i-
vector was injected into different hidden layers of the network
and the results will be shown in Section V-A.

Each patient has a number of heartbeat vectors. Specifically,
for the r-th patient, his/her heartbeat vectors are denoted as
Xr = {xr1, . . . ,xrTr}, where Tr is the number of heartbeats
from this patient.3 On the other hand, each patient has one i-
vector only, which is extracted from Xr using Eq. 4, i.e., ir =
〈wr|Xr〉. The backpropagation algorithm, however, requires
one input vector for every output vector. To overcome this
imbalance in the number of input vectors, we repeated the
same i-vector for each ECG vector, as shown in Fig. 4.

Once the DNN has been adapted, it can be used for

3In Section III-A, the subscript i refers to ECG recordings. Here, the
subscript r refers to patients.
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Fig. 4: Repetition of an i-vector to match the number of ECG vectors
for each patient. Vectors in top row will be injected into the middle
layer of the DNN. Vectors in the bottom row are the input of the
DNN.

classifying the ECG of the corresponding patient in a beat-
by-beat basis. Specifically, given a test ECG waveform of the
patient, its heartbeats are segmented and aligned to form 417-
dimensional heartbeat vectors [19]. The heartbeat vectors are
presented to the input of the DNN. Meanwhile, the i-vector
of this patient is retrieved from the i-vector repository (see
Fig. 3(b)). For each heartbeat vector, the i-vector is replicated
and presented to the middle layer of the DNN. The outputs of
the DNN are then averaged over all of the heartbeat vectors to
obtain the posterior probability of individual heartbeat classes.

E. Advantages of iAP-DNNs

To deal with inter-patient variability in ECG signals, exist-
ing methods typically use three approaches: (1) pooling the
patient-specific and patient-independent data together to train
a patient-specific classifier [4]–[6], [8], (2) combining the pre-
dictions made by a patient-independent classifier and a patient-
specific classifier [7], and (3) fine-tuning a patient-independent
classifier using patient-specific data [9]. The major problem
of these approaches is that they fail to take advantage of the
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vast amount of ECG signals from the general population. In
particular, to prevent the limited amount of patient-dependent
data from being overshadowed by the patient-independent
data, only a small fraction of the patient-independent data
will be used in the first and second approaches. While fine-
tuning is a reasonable approach, the information learned from
the general population could be easily lost or forgotten if the
degree of fine-tuning is substantial.

The iAP-DNNs are designed to overcome the problems in
the three approaches mentioned above. The key ideas are (1)
to leverage the ECG data of a general population to create a
patient-independent DNN and (2) to focus the adaptation on
the upper layers of the DNN using patient-specific information
to make it patient-dependent. To avoid being overshadowed
by the data in the general population, the weights in the
upper layers are re-initialized before adaptation begins. To
avoid forgetting the learned information from the general
population, the bottom layers of the network will only be
adapted by a small amount of patient-specific data, i.e., the
extent of adaptation in the lower layers will not be substantial.
These strategies are superior to the data pooling approach in
that it is not necessary to ensure a good balance between
the patient-independent and patient-specific data. To gear the
adaptation of the upper layers to specific patient, the i-vector
that characterizes an individual patient is injected into the
middle layer of the network. Results in Section V and Fig. 6
suggest that this step has great impact on the DNN to classify
the ECG of individual patients.

Some recent studies [6], [9], [13], [15] applied convolutional
neural networks (CNNs) to classify raw ECG signals into
different arrhythmia types, primarily because of the intrinsic
capability of CNNs in dealing with phase shift variability. In
fact, it has been found in speech recognition research that
applying max-pooling in time could produce representations
that are less sensitive to phase shifts [25]. Our proposed
method uses heartbeat segmentation and heartbeat alignment
[19] to minimize the phase shift variation, which enables
us to use DNN instead of CNN to classify the heartbeats.
The question is “Which is a better way to deal with phase
shifts: max-pooling or heartbeat alignment?”. The answer lies
in whether we can detect the R peaks accurately. If we can,
heartbeat alignment is a better choice. On the other hand, if
aligning the heartbeats is difficult, CNN is a better choice.
For the MIT-BIH arrhythmia dataset, heartbeat alignment is
a better choice because the R peaks in this dataset can be
predicted at an accuracy of over 99% by using the Pan-
Tompkins algorithm [26]. In fact, the results in Section V-
C also suggest that heartbeat alignment together with the
proposed DNN adaptation outperform state-of-the-art CNNs
in this dataset.

Another advantage of heartbeat alignment is that DNNs are
more amenable to adaptation by i-vectors than CNNs. This
is because for ECG classification, the convolutional layers
and max-pooling layers of a CNN have the concept of time,
which are not compatible with the static information encoded
in the i-vectors. Because the hidden layers in a DNN are static,
injecting an i-vector into its hidden layers can be considered
as shifting the activations of the hidden layers, where the shift

TABLE II: Mapping from MIT-BIH heartbeat types to AAMI heart-
beat classes.

AAMI class MIT-BIH class code No. of beats
N NOR, LBBB, RBBB, AE, NE 90042
S AP, aAP, NP, SP 2779
V PVC, VE 7007
F fVN 802
Q P, fPN, U 15

accounts for the patient-specific information.

IV. EXPERIMENTAL SETTING

This section first introduces the data set and evaluation
protocol in our experiments. Then, we describe some issues
concerning the implementation (i.e., DNN structure and DNN
training).

A. Data Set

The MIT-BIH arrhythmia database [2] was used for perfor-
mance evaluation. The database contains 48 half-hour excerpts
of two-channel ambulatory ECG recordings of 47 patients.
Each record contains a continuous recording of raw ECG
signals, which were digitized at 360 samples per second
per channel with 11-bit resolution over a 10 mV range.
The database provides annotation for both beat-by-beat class
information and corresponding time series information (e.g.,
positions of R peaks) that were verified by two or more
cardiologists independently. The total number of labelled
heartbeats is 108,655 and these heartbeats are classified into 15
different types. According to the American National Standard
prepared by the Association for the Advancement of Medical
Instrumentation (ANSI/AAMI EC57:1998), we combined the
15 heartbeat types into five classes (see Table II). They
are normal sinus beats (N), supraventricular ectopic beats
(S), ventricular ectopic beats (V), fusion of a normal and a
ventricular ectopic beat (F) and unknown beat type (Q).

B. Evaluation Protocol

As suggested by the ANSI/AAMI EC57 standard [16], we
focused on evaluating the classification performance of two
majority arrhythmia classes (Class S and Class V). Besides,
four ECG recordings (Record IDs 102, 104, 107 and 217),
which contain paced beats, were excluded. As a result, a total
of 44 recordings were used for performance evaluation.

We have conducted two experiments (Exp. 1 and Exp. 2) to
compare the performance of the iAP-DNNs with six state-of-
the-art patient-specific classifiers [4]–[9]. For fair comparisons,
we followed the experimental protocols described in these
studies. The purposes of these two experiments and how they
use the MIT-BIH database are detailed as follows:

• Exp. 1: The first experiment aims to evaluate the perfor-
mance of iAP-DNNs for classifying both Class S and
Class V at the same time. To this end, we used 20
recordings (Record ID starting with Digit 1) for training
the patient-independent DNN and another 24 recordings
(Record ID starting with Digit 2) for adaptation and
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testing. This means that we have 24 test patients and
24 patient-specific DNNs, each was adapted (either fine-
tuning only or fine-tuning plus i-vector adaptation) by
using the initial 5 minutes of his/her ECG recording. The
remaining 25 minutes in the 24 recordings were used for
performance evaluation.

• Exp. 2: The second experiment aims to evaluate the
performance of iAP-DNNs in detecting S beats and V
beats separately. To this end, we used 14 recordings
(Record IDs 200, 202, 210, 212, 213, 214, 219, 221, 222,
228, 231, 232, 233 and 234) for adaptation and testing
of S-beat detection and 11 recordings (Record IDs 200,
202, 210, 213, 214, 219, 221, 228, 231, 233 and 234)
for adaptation and testing of V-beat detection. As for the
training, we used the remaining 30 recordings. Similar
to Exp. 1, only the initial 5 minutes of these recordings
were used for adaptation and the remaining were used
for performance evaluation.

There are other studies [13]–[15] that use CNNs for ECG
classification. We did not compare our results with the results
in these studies for two reasons. First, [13]–[15] did not follow
the AAMI standard, whereas all the methods to which we
compared follow this standard. Second, [13] and [15] consider
ECG classification as a binary classification problem, whereas
we consider it as a multi-class classification problem.

Same as [4]–[9], the classification performance on each
heartbeat class was measured by using four standard met-
rics, namely, classification accuracy (Acc), sensitivity (Sen),
specificity (Spe) and positive predictive value (Ppv), which
are calculated based on the number of true positives (TP),
true negatives (TN), false positives (FP) and false nega-
tives (FN), as follows. Accuracy is the fraction of the total
number of instances that is correctly identified, i.e., Acc =
(TP+TN)/(TP+TN+FP+FN); sensitivity is the proportion of
positives that are correctly identified, i.e., Sen = TP/(TP+FN);
specificity is the proportion of negatives that are correctly
identified, i.e., Spe = TN/(TN+FP); positive predictive value
is the fraction of the positive predictions that are actually
positive, i.e., Ppv = TP/(TP+FP). Details on how to interpret
these four metrics can be found in [27]–[29].

Matthews correlation coefficient (MCC) [30], [31] was also
calculated to measure the performance of different classifiers.
MCC can reflect the performance of classifiers under severe
data-imbalance scenarios. Receiver operating characteristics
(ROCs) [32] were used to show the tradeoff between the
performance measures (i.e., Sen vs. Spe) of a binary classifier
when the decision threshold varies. Because the threshold
typically has a wide range, ROC curves can provide more
comprehensive information on performance.

C. DNN Structure and DNN Training

The general classifier has three hidden layers with a struc-
ture 417–100–100–100–5. The Glorot uniform initializer [33]
was used to initialize the weights of the patient-independent
DNN and the upper layers of the patient-specific DNNs. We
used the rectified linear unit (ReLU) in the hidden layers.
The Adam optimizer [34] with default parameters was used

TABLE III: Performance of iAP-DNNs, with the i-vector being
injected into different hidden layers of the network (Fig. 3(b)).
“Correctly Classified” represents the number of correctly classified
beats.

AAMI class Bottom H Middle H Top H

N Correctly classified 1178 1165 1109
Ground truth 1193

S Correctly classified 25 41 37
Ground truth 126

V Correctly classified 0 167 0
Ground truth 198

F Correctly classified 0 0 0
Ground truth 2

Q Correctly classified 0 0 0
Ground truth 0

Accuracy(%) 79.2 90.4 75.4

for stochastic mini-batch (batch size of 128) gradient descent.
Batch normalization and dropout were employed to train the
DNNs. A dropout layer was added between the input and the
first hidden layer, and the dropout rate was set to 20%. In
addition, 30% of the training set was reserved for validating
the performance of the network after every epoch, so that
early stopping can be applied to prevent overfitting. The early
stopping strategy provides guidance on how many iterations
should be run before the model begins to overfit the training
data. The maximum number of epochs used for both patient-
independent training and patient-specific training was set to
50. To train the i-vector extractor, we investigated different
numbers of mixture components in the UBM (e.g., 16 and
20) and different i-vector dimensions (e.g., 32, 64 and 128),
and the optimal combination was found to be 20 and 64 for
the number of mixtures and i-vector dimension, respectively.

V. PERFORMANCE INVESTIGATION

This section first investigates the best layer for injecting the
i-vectors. Next, we demonstrate the effectiveness of i-vector
adaptation. Finally, we compare the classification performance
of iAP-DNNs with that of existing patient-specific classifiers.
A. Inject I-vector into Different Hidden Layers

Table III provides the classification accuracies of the iAP-
DNNs. The results show that the performance was the best
when the i-vector was injected into the middle hidden layer.
Therefore, our justification in Section III-D is supported and
this settings was applied to subsequent experiments.

B. Effect of I-vector Adaptation

To show the effect of i-vector adaptation, we created a
patient-specific DNN by applying backpropagation fine-tuning
on the patient-independent DNN (Fig. 3(a)) using 5 minutes
of heartbeat vectors from a patient (e.g., Record ID 221).
We also created a patient-specific iAP-DNN by applying
backpropagation fine-tuning on the DNN in Fig. 3(b), not only
using the 5 minutes of heartbeat vectors but also an i-vector
extracted from the 5-minute heartbeats. Then, we presented
ten minutes of ECG, including the normal and arrhythmic
heartbeats of this patient, to both DNNs. Note that the five
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Fig. 6: t-SNE plots of the neuron activations at different hidden layers: (a)–(c) with patient’s 5-minute ECG adaptation; (d)–(f) with patient’s
5-minute ECG and i-vector adaptation. It is clear that with i-vector adaptation, the number of clusters is smaller and the A and N classes
are well separated in (d)–(f).
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Fig. 5: t-SNE plot of 417-dimensional feature vectors. Squares
(in blue) and crosses (in red) refer to normal heartbeats (N) and
arrhythmias (A) of a patient, respectively.

minutes of ECG recordings comprise a majority of (but not
necessarily all) ECG types of that patient. As different patients
have different health conditions, the numbers of heartbeats for
individual classes are also different.

The t-SNE plot of 417-dimensional feature vectors is shown
in Fig. 5, where � and × represent the normal (N) and arrhyth-
mic (A) heartbeats, respectively. We can see that there is no ob-
vious clusters in Fig. 5. We progressively moved up the hidden

layers and projected the activations (before the ReLU) at the
first, second and third hidden layers onto two-dimensional t-
SNE spaces. The projected activations are shown in Fig. 6. Ob-
viously, without i-vector adaptation Fig. 6(a)–(c), the projected
vectors of both heartbeat types scatter in different regions
of the t-SNE space and form multiple clusters, which makes
classification more difficult. On the other hand, with i-vector
adaptation (Fig. 6(d)–(f)), the two heartbeat types are well
separated, which makes classification by the softmax layer
easy. Moreover, from Fig. 6(d) to Fig. 6(f), we can see that
each class has fewer clusters and the clusters of the two classes
become more separate. This means that from the bottom to
the top layers, the representation becomes more and more
discriminative.

C. Classification Performance
1) Experiment 1 (Exp. 1): The first experiment was con-

ducted to evaluate the proposed method based on 24 ECG
recordings. Table IV shows the confusion matrix of iAP-
DNNs. We can see that the performance is better if patients’
i-vectors were used for adaptation. Specifically, the numbers
of true positives for Class S and Class V have been increased.
Besides, the performance of the iAP-DNNs and that of [4]–
[6], [8], [9] are shown in Table V. Except for the Ppv of Class
S and the Sen of Class V in [9], the overall performance of
the proposed method for Class S and Class V is significantly
better than that in [4]–[6], [8], [9] for all evaluation measures.

Using the confusion matrix in Table IV, the MCC perfor-
mance of Classes N, S, V, F and Q can be calculated. Table
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TABLE VII: Performance of the patient-specific classifiers in [4], [5], [7]–[9] and our iAP-DNNs (Exp. 2)
Method [4] [5] [7] Method I [7] Method II [8] [9] iAP-DNNs

Class
S

Acc 97.5 96.1 99.1 98.3 97.3 98.6 99.1
Sen 74.9 81.8 76.5 61.4 85.3 77.2 78.4
Spe 98.8 98.5 99.9 99.8 98.0 99.8 99.9
Ppv 78.8 63.4 99.1 90.7 71.8 96.6 98.7

Class
V

Acc 98.8 97.9 99.7 99.4 99.1 98.7 99.7
Sen 94.3 90.3 97.1 91.8 96.4 97.2 97.4
Spe 99.4 98.8 99.9 99.9 99.5 98.9 99.9
Ppv 95.8 92.2 98.5 98.0 96.4 92.1 97.8

TABLE IV: Confusion matrix of iAP-DNNs in Exp. 1. The values
in parentheses correspond to fine-tuning the DNN without i-vector
injection.

N S V F Q

N 41600
(41630)

78
(77)

92
(56)

47
(29)

4
(29)

S 439
(523)

1829
(1749)

63
(50)

4
(12)

2
(3)

V 225
(305)

69
(349)

4473
(4097)

39
(47)

1
(9)

F 64
(86)

2
(1)

49
(43)

496
(481)

0
(0)

Q 5
(5)

0
(1)

2
(1)

1
(1)

0
(0)

TABLE V: Performance of the patient-specific classifiers in [4]–[6],
[8], [9] and the proposed iAP-DNNs (Exp. 1)

Method [4] [5] [6] [8] [9] iAP-DNNs

Class
S

Acc 96.6 96.1 96.4 97.5 98.3 98.7
Sen 50.6 62.1 64.6 76.8 68.7 78.3
Spe 98.8 98.5 98.6 98.7 99.8 99.8
Ppv 67.9 56.7 62.1 74.0 94.7 92.5

Class
V

Acc 98.1 97.6 98.6 98.6 98.8 98.9
Sen 86.6 83.4 95.0 93.8 95.5 93.1
Spe 99.3 98.1 98.1 99.2 99.1 99.5
Ppv 93.3 87.4 89.5 92.4 92.2 95.6

VI shows the performance comparison between the proposed
iAP-DNNs and the existing patient-specific classifiers in [4]–
[6], [8], [9]. Note that OMCC refers to overall MCC of the
five classes. We can see that the MCC of the iAP-DNNs is
much higher than the other three classifiers. The promising
performance is not only found in the individual class, but also
in the overall.

Fig. 7 shows the ROC curves of the proposed method for
Class S and Class V. In the ROC curves, perfect classification
(Spe = 1.0 and Sen = 1.0) corresponds to the upper right corner
of the graph. A sensitivity-specificity operating point is good
if it is close to the upper-right corner. In Fig. 7, the operating
points of the best performing classifiers in [4]–[6], [8], [9] are
also shown by the markers +, ×, ◦, �, and •, respectively.
The figures clearly show that the sensitivity-specificity points
in [4]–[6], [8], [9] are below the red curve. This means that,
within a certain range of decision thresholds, the iAP-DNN
achieves better performance in term of both sensitivity and
specificity than the classifiers in [4]–[6], [8], [9].

2) Experiment 2 (Exp. 2): In the second experiment, for
Class S and Class V, the evaluations were based on 14 and 11

TABLE VI: Performance comparison in terms of MCCs (Exp. 1)
Method [4] [5] [6] [8] [9] iAP-DNNs

Class

N 0.83 0.81 0.84 0.88 0.90 0.93
S 0.57 0.57 0.62 0.74 0.80 0.84
V 0.87 0.83 0.91 0.92 0.93 0.94
F 0.55 0.67 0.78 0.70 0.78 0.83
Q 0.00 0.00 0.00 0.00 0.00 0.00

OMCC 0.93 0.92 0.94 0.95 0.96 0.97

test recordings, respectively. Table VII shows the Acc, Sen,
Spe and Ppv of the iAP-DNNs and that of [4], [5], [7]–[9].
Note that in Method I of [7], five minutes of labeled ECG
signals of a patient was used to adapt the patient-specific
classifier. In Method II, the hypothesized labels were used
instead of the manual labeling process. In Table VII, for Class
V, the Sen of the iAP-DNNs is the highest among all methods
and a high Spe (99.9%) is achieved. For Class S, although the
Sen of the iAP-DNNs is lower than that in [8], its Spe and
Ppv are higher.

The performance of iAP-DNNs is similar to that of Method
I in [7]. In [7], a subset was selected for training the general
classifier based on the similarity among patients. The simi-
larity is determined by calculating the dynamic time warping
(DTW) distance, and the value of DTW threshold needs to be
optimized by trial and error. However, in the proposed method,
the ECG data of the general population can be used directly to
train a general classifier before patient adaptation. Therefore,
there is no need to throw away any ECG data from the general
population nor do we need to optimize additional parameters.
That is definitely an advantage.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce an adaptive patient-specific
heartbeat classification model (i.e., iAP-DNNs) for diagnosing
heart arrhythmias, which leverages the DNNs for both feature
extraction and classification based on the raw ECG signals. A
general classifier was first trained on the general population.
Then, the weights in the lower part of the general classifier
were retained and the weights in the upper part were ran-
domized. To create a patient-specific classifier, and not only
patient-specific ECG but also patient-dependent i-vectors are
used for adaptation. Two experiments based on the MIT-BIH
arrthymia database have been conducted. The results show
that the proposed iAP-DNNs achieve better performance than
existing patient-specific heartbeat classification systems.
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Fig. 7: ROC curves (Sen vs. Spe) of iAP-DNNs in Exp. 1. Black
markers correspond to the best performance in [4]–[6], [8], [9]. AUC:
Area under the ROC curve [35].

To the best of our knowledge, this is the first study that
uses i-vectors to characterize the ECG of individual patients
and applies the i-vectors to adapt a DNN for patient-specific
ECG classification. The key contribution is that by injecting
the i-vectors into a middle layer of the DNN during backprop-
agation fine-tuning, we can make the upper layers of the DNN
more patient-dependent. Without the i-vectors as an auxiliary
input to the middle layer, it is much harder to ensure such
patient dependence.

A limitation of iAP-DNNs is that the method requires some
patient-specific ECG data that have been manually labelled
by medical doctors to adapt the patient-independent DNN. As
long as the amount of adaptation data is small, this requirement
will not pose a serious burden on the medical doctors nor
the patients. However, for those patients without the access
to medical services, the method is not applicable or they will
need to fall back to using the patient-independent classifier. To
relax such limitation, we can use an unsupervised adaptation
approach as follows. For each patient, we use the patient-
independent classifier to identify some highly discriminative

heartbeats and hypothesize their labels. Then, we use these
labels as the target outputs of the backpropagation algorithm
to fine-tune the patient-independent classifier. As long as the
patient-independent classifier is reliable enough, most of the
hypothesized labels will be correct. This will be an interesting
direction to pursuit in future work.

While the MIT-BIH arrhythmia dataset has been popular
among the research community, it is also important to validate
the accuracy using a larger dataset, e.g., the European ST-T
Database [36]. This dataset consists of ninety two-hour ECG
recordings with beats, rhythms, and signal quality annotation.
We believe that the large amount of ECG data in this dataset
is beneficial to the proposed method because it can leverage
the data to train a better patient-independent classifier, which
could lead to better patient-specific classifiers after i-vector
adaptation.
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