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ABSTRACT
Adapting speaker verification (SV) systems to a new environ-
ment is a very challenging task. Current adaptation methods
in SV mainly focus on the backend, i.e, adaptation is carried
out after the speaker embeddings have been created. In this
paper, we present a DNN-based adaptation method using
maximum mean discrepancy (MMD). Our method exploits
two important aspects neglected by previous research. First,
instead of minimizing domain discrepancy at utterance-level
alone, our method minimizes domain discrepancy at both
frame-level and utterance-level, which we believe will make
the adaptation more robust to the duration discrepancy be-
tween training data and test data. Second, we introduce a
consistency regularization for unlabelled target-domain data.
The consistency regularization encourages the target speaker
embeddings robust to adverse perturbations. Experiments on
NIST SRE 2016 and 2018 show that our DNN adaptation
works significantly better than the previously proposed DNN
adaptation methods. What’s more, our method works well
with backend adaptation. By combining the proposed method
with backend adaptation, we achieve a 9% improvement over
backend adaptation in SRE18.

Index Terms— Speaker verification;domain adapta-
tion;data augmentation;maximum mean discrepancy;transfer
learning;

1. INTRODUCTION

A fundamental assumption of machine learning is that train-
ing data and test data are sampled from the same underlying
distribution [1, 2]. In practice, a lot of factors can undermine
this assumption. This is especially the case when we want to
deploy a model to a new environment, where the data have
different properties than the training data. For speaker ver-
ification, this could happen when the new environment has
some specific noise and channel conditions or involves speak-
ers speaking different languages than the training speakers.
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Directly using models in these situations could result in poor
performance. Fortunately, it is often possible to collect a
small amount of data from the new environment. These data
are typically referred to as target-domain data in the litera-
ture [3]. The other data are referred to as source-domain data.
The process of adapting a model to the production environ-
ment is referred to as domain adaptation (DA).

The domain mismatch investigated in this paper is lan-
guage mismatch. In NIST speaker recognition evaluation
(SRE) 2016 [4], the language mismatch problem was brought
to SV researchers for the first time.

State-of-art SV systems are comprised of a deep neural
network and a backend model [5]. DA is typically carried
out in the backend. In Kaldi’s SRE16 recipe, adaptation is
carried out in the PLDA model’s mean and covariance ma-
trix. It has been shown to be very effective and adopted by
many researchers [6, 7]. Another very popular DA method
in the backend is correlation alignment (CORAL), which es-
sentially whitens the source-domain data and recolors them
with a whitening matrix estimated from target-domain data
[8]. In [9], the author proposed a hybrid method combin-
ing PLDA model adaptation and CORAL and showed that it
is superior to the individual methods. A more complicated
backend adaptation were proposed in [10, 11]. The authors
proposed to used an auto-encoder to minimize the maximum
mean discrepancy between source-domain data and target-
domain data. The method can also address multi-source do-
main mismatch.

DNN adaptation is relatively new in SV. Because DNN
provides a larger parameter space to explore, it is potentially
more powerful than backend adaptation. In [12], the authors
proposed to use adversarial learning to adapt the speaker
embeddings. Specifically, Wasserstein GANs were used to
minimize the discrepancy between the source-domain and
the target-domain speaker embeddings. The authors also ex-
plored using other information like language labels and phone
numbers and found that they are beneficial. However, their
method requires speaker labels to perform well, which limits
the method’s applicability. In [13], several GAN variants
based on the similar idea [12] were proposed. Both adapta-
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tion and verification were carried out end-to-end. However,
the performance of the system is not as good as the x-vector
system with PLDA adaptation in Kaldi.

2. MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy is a distance measure on the
space of probability [14]. Given two sets of samples X =
{xi}Mi=1 and Y = {yj}Nj=1 from distributions Px and Py ,
MMD measures the similarity of Px and Py by computing
the mean squared difference of the statistics of the samples:
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When φ(.) is the identity function, the MMD computes the
mean squared distance between the sample sets. Eq. 1 can be
expanded as:
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The dot product terms can be replaced with kernel functions
k(·, ·):
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Another popular kernel is the radial basis function (RBF)
kernel:

k(x,y) = exp
(
− 1

2σ2
‖x− y‖2

)
, (4)

where σ is the width parameter. With the RBF kernel, the fea-
ture space is of infinite dimension and contains all moments
of data. Minimizing MMD using the RBF kernel is equivalent
to matching all moments of two distributions [15].

3. DNN DOMAIN ADAPTATION

3.1. Network Architecture

We modify Kaldi’s x-vector architecture by replacing TDNN
with CNN and add two convolutional layers with a stride 2
and a kernel size of 2. The statistics pooling layer and the
last two fully-connected layers are the same as the x-vectors
network [5, 16]. Table 1 summarizes the architecture of our
network.

Table 1. Summary of our neural network architecture. The
kernel is specified as kernel size, stride, and dilation

Layer Kernel Channel in × Channel out

Conv1 5,1,1 23 × 512
Conv2 3,1,2 512 × 512
Conv3 3,1,3 512 × 512
Conv4 1,1,1 512 × 512
Conv5 1,1,1 512 × 1536

Statistics pooling 1536 × 3072
FC6 – 3072 × 512
FC7 – 512 × 512

AM-softmax – 512 × N

.
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Fig. 1. The architecture of our proposed method. The net-
work is trained to minimize the classification loss and the do-
main loss with consistency regularization (see Eq. 9). For
target-domain data, no label is required. The dotted lines in-
dicate weight-sharing within individual layers.

3.2. Multi-level Adaptation

Assume that we have a labeled dataset {(xs
i , y

s
i )}Ii=1 from the

source-domain and let Θ = {Wl,bl}Ll=1 denotes the set of
all network parameters. The objective function of the network
can be written as:

min
Θ
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where J is the cross-entropy function and pΘ(y|xs
i ) is the

conditional probability that the network assigns xs
i to class y.

Minimizing this objective alone will not guarantee the gener-
alization to the target-domain. To make generalization to the
target-domain possible, we need to reduce the divergence be-
tween the marginal distribution of the source-domain and the
target domain. In neural networks, we typically reduce the
divergence in the hidden activations. Let Hl

∗ = {hl
i} denotes



the l-th layer hidden activations for source or target data. The
cross-entropy loss together with MMD distance is

min
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where λ is a constant controlling the trade-off between the
two objectives.

As mentioned in [17], deeper layers typically have larger
domain discrepancy gaps. Therefore, it is very common to
minimize the divergence at the network’s last layer. In our
case, it is the 7-th layer, i.e., l = 7. However, the current
DNN training scheme typically uses very short speech seg-
ments (200 frames to 400 frames) for training and relies on
the backend to compensate for the duration discrepancy. The
embedding distribution may shift with speech duration, which
may result in an inaccurate divergence estimate. Adapting
frame-level activations, on the other hand, has no such prob-
lem. Therefore, we argue that it is important to adapt frame-
level features as well. Here we choose the last convolutional
layer before statistics pooling, i.e., l = 5 for adaptation:
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3.3. Consistency Training

Data augmentation is the most important part of x-vector’s
success. However, how to use data augmentation on unla-
belled data have not been explored in SV. Consistency train-
ing has been successfully explored in semi-supervised learn-
ing [18]. The idea is to enforce or regularize a network such
that the network predictions are consistent even if the net-
work’s input is subject to noise perturbation. In [18], the
regularization is achieved by minimizing the following KL
divergence:

E
q(x̂|x)

[KL(pΘ(y|x)||pΘ(y|x̂))], (8)

where x denotes the original data, x̂ denotes the augmented
data, and q(x̂|x) is a data augmentation transformation defin-
ing the noise added process. Note that Eq 8 requires labels
or hypothesized labels. We propose another form of consis-
tency penalty. First, instead of minimizing the KL divergence
between the predictions conditioned on original data and pre-
dictions conditioned on augmented data. We propose mini-
mizing the discrepancy between the embedding produced by
the original data and embedding produced by the augmented
data. The motivation is that DNN embedding should be robust
to input perturbation. After all, the goal of DNN is to create
speaker embedding instead of prediction. Secondly, instead
of using KL divergence, we use MMD to measure consis-
tency. Let H7

t and Ĥ7
t denotes the set of original data em-

beddings and augmented data embeddings, respectively. The

consistency regularization using MMD can be written as:
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By combining the consistency regularization with Eq. 8 we
have the total loss function:
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Figure 1 summarizes the architecture and objective functions.

4. EXPERIMENTS

4.1. Data Preparation

The training data include NIST SRE 2004–2010 (SRE04-10
in short) and all of the Switchboard data. We follow the data
augmentation strategy in Kaldi SRE16 receipt. The training
data were augmented by adding noise, music, reverb, and
babble to the original speech files in the datasets. After fil-
tering out utterances shorter than 500 frames and speakers
with less than 8 utterances, we are left with 4808 speakers.
23-dimensional Mel-frequency cepstral coefficients (MFCC)
were computed from 8kHz speech files. Mean normalization
was applied to the MFCC using a 3-second sliding window.
Non-speech frames were removed using Kaldi’s energy-based
voice activity detector.

4.2. DNN and Backend Training

The value of λ, β and α were all set to 1. For the Gaus-
sian bandwidth σ, we followed the median heuristics and es-
timated median pairwise distance σm from the training data
[14]. A total of 19 Gaussian kernels were used with varying
bandwidth σ between 2−8σm and 28σm with a multiplicative
step-size of 20.5. All DNNs were trained using a batch size
of 32 and were optimized by the Adam optimizer [19] with
a learning rate of 0.001. The networks were implemented in
Pytorch [20]. We used correlation alignment [8] for domain
adaptation in the PLDA backend.

4.3. Evaluation

All systems were evaluated on the evaluation set of SRE 2016
and 2018. The SRE16 evaluation set is composed of Tagalog
and Cantonese telephone conversations. For SRE18, we only
conducted the evaluation on the CMN2 portion, which con-
sists of Tunisian Arabic conversations. We report results in



terms of equal error rate (EER) and minimum cost function
(DCF). Both metrics were obtained using the scoring tools
provided by NIST.

5. RESULTS

Table 2. Comparison with other DNN adaptation methods.
Sup. WGAN [12] used the labels of SRE16 and SRE18 de-
velopment data. There is no backend adaptation in all of the
systems.

SRE16 SRE18

Adapt Method EER (%) minDCF EER(%) minDCF

WGAN [12] 13.25 0.899 9.59 0.652
Sup. WGAN [12] 9.59 0.746 8.88 0.619
LSGAN [21] 11.74 - - -
Our DNN Adapt. 9.03 0.585 8.33 0.520

Table 3. The Performances of CORAL, PLDA adaptation and
the proposed method.

SRE16 SRE18

Adapt Method EER(%) minDCF EER(%) minDCF

Our DNN Adapt. 9.03 0.585 8.33 0.520
CORAL Adapt. 8.49 0.560 8.74 0.553
PLDA Adapt. 8.55 0.556 8.88 0.563
Ours+CORAL Adapt. 8.28 0.541 8.13 0.519
Ours+PLDA Adapt. 8.29 0.546 8.09 0.521

Table 4. Ablation study of multi-level adaptation and consis-
tency regularization in the proposed method.

SRE16 SRE18

Layer 7 Layer 6 Consis. EER(%) DCF EER(%) DCF
× × × 12.02 0.990 11.59 0.72
X × × 9.79 0.621 9.08 0.580
X X × 9.63 0.606 8.77 0.555
X X X 9.03 0.585 8.33 0.520

5.1. Comparison with Other DNN Adaptations

In this section, we compare the proposed method with the
previously proposed DNN adaptation methods. The latter
includes Wasserstein GAN (WGAN) adaptation, supervised
WGAN adaptation in [12] and least square GAN (LSGAN)
in [21]. The results are presented in Table 2. All the results in
Table 2 are without additional backend adaptation. It is clear
from the table that our method performs significantly better

than the previously proposed methods. It is worth noting that
our method even performs better than the supervised adapta-
tion in [12].

5.2. Comparison with Backend Adaptations

In this section, we compare the proposed method with two
popular backend adaptation methods, namely, CORAL [8]
and Kaldi’s PLDA adaptation [5]. The potential of combining
the proposed method and backend adaptation is also investi-
gated. The results are presented in Table 3. As can be seen
from Table 3, in SRE16, CORAL is the most effective adap-
tation method. However, in SRE18, our method has a clear
advantage over the backend adaptations. This, we believe, is
due to the fact that SRE18 has more data for adaptation (over
4000 utterances compared with only 2340). Besides, it seems
that the proposed method works well with backend adapta-
tion, as combining them improves performance.

5.3. Ablation Study

To investigate whether multi-level adaptation and consistency
regularization are effective, we also carried out an ablation
study. The results are presented in Table 4. We can see that
adapting the 7-th layer alone already gives great improvement
over no adaptation. Adapting the 6-th layer gives a small per-
formance gain for both. Consistency regularization also im-
proves the performance in both SRE16 and SRE18.

6. CONCLUSIONS

In this paper, we proposed a DNN domain adaptation us-
ing maximum mean discrepancy and consistency regulariza-
tion. The proposed method significantly outperforms the pre-
viously proposed DNN adaptation and works well with back-
end adaptations. However, we only investigate the language
induced domain difference. It would be interesting to com-
pare other factors such as noise and channel induced domain
differences in the future.
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