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Abstract—The Screen Content Coding (SCC) extension of High 
Efficiency Video Coding (HEVC) improves coding gain for screen 
content videos by introducing two new coding modes, intra block 
copy (IBC) and palette (PLT) modes. However, the coding gain is 
achieved at the increased cost of computational complexity. In this 
paper, we propose a decision tree based framework for fast intra 
mode decision by investigating various features in training sets. To 
avoid the exhaustive mode searching process, a sequential 
arrangement of decision trees is proposed to check each mode 
separately by inserting a classifier before checking a mode. As 
compared with the previous approaches that both IBC and PLT 
modes are checked for screen content blocks (SCBs), the proposed 
coding framework is more flexible which facilitates either IBC or 
PLT mode to be checked for SCBs such that computational 
complexity is further reduced. To enhance the accuracy of decision 
trees, dynamic features are introduced which reveal the unique 
intermediate coding information of a coding unit (CU). Then, if all 
modes are decided to be skipped for a CU at the last depth level, 
at least one possible mode is assigned by a CU type decision tree. 
Furthermore, a decision tree constraint technique is developed to 
reduce the rate-distortion performance loss. Compared with the 
HEVC-SCC reference software SCM-8.3, the proposed algorithm 
reduces computational complexity by 47.62% on average with a 
negligible Bjøntegaard delta bitrate (BDBR) increase of 1.42% 
under all-intra (AI) configuration, which outperforms all state-of-
the-art algorithms in the literature. 

Index Terms—Screen Content Coding (SCC), High Efficiency 
Video Coding (HEVC), fast algorithm, machine learning, decision 
tree. 

I. INTRODUCTION

CREEN content video is an emerging video type due to the 
fast development of the Internet and wireless 

communication, and it has been applied to many applications, 
such as online education, remote desktop, and web conferencing 
[1]. Screen content videos often show a mixed content with both 
nature image blocks (NIBs) and computer-generated screen 
content blocks (SCBs) in a single frame, as shown in Fig. 1. 

Compared with NIBs, SCBs exhibit different characteristics, 
including no sensor noise, large flat areas with a single color, 
repeated patterns and limited colors. While NIBs can be well 
compressed by the conventional intra (Intra) mode in High 
Efficiency Video Coding (HEVC) [2], new techniques are 
necessary for SCBs. Therefore, the Joint Collaborative Team 
on Video Coding (JCT-VC) has developed Screen Content 
Coding (SCC) extension [3] on top of HEVC to explore new 
encoding tools for screen content videos since January 2014, 
and it was finalized in 2016. 

In SCC, two new intra coding tools, intra block copy (IBC) 
mode [4] and palette (PLT) mode [5], [6] are particularly 
effective in addressing the blocks with repeated patterns and 
limited colors, respectively. However, they bring significant 
burden to a SCC encoder, which take up over 50% encoding 
time of the mode searching process.  

To simplify the encoding process of HEVC, a fast CU 
partitioning algorithm was proposed in [7] by using Bayesian 
decision rule. CU partitioning process is early terminated by 
using joint online and offline learning. In [8], a fast mode 
decision algorithm was proposed to predict the RD cost and bit 
cost of a CU based on the statistical analysis. Then unnecessary 
modes are skipped according to the prediction. In [9], both the 
mode searching process and the CU partitioning process are 
terminated adaptively by analyzing the RD cost of the current 
CU. Although they work well for computational complexity 
reduction of HEVC, they are not suitable for SCC in which new 
coding modes such as IBC and PLT have been adopted.  

To reduce the computational complexity of SCC, fast mode 
searching algorithms were designed in [10]–[12], and fast CU 
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size decision algorithms were suggested in [13]–[15]. Then, 
various algorithms were integrated to make both fast mode 
decision and CU size decision in [16]–[18]. In [10], a new mode 
was proposed to fill a noiseless smooth CU by its boundary 
samples. In [11], a hash value is calculated to adaptively skip 
the local search process in IBC mode. In [12], IBC mode is 
skipped for zero activity CUs and low gradient CUs. In [13], a 
neural network based fast algorithm was proposed to make fast 
CU size decision by utilizing features that describe CU statistics 
and sub-CU homogeneity. However, high RD performance loss 
is induced by this approach. In [14], for static regions, 
collocated CU depth and mode information is utilized to predict 
the current CU size. Besides, an approach with adaptive 
searching step was proposed to simplify the block matching 
process of IBC mode. However, this algorithm is not suitable 
for screen content videos with many dynamic regions. In [15], 
a fast CU size decision algorithm based on entropy was 
proposed. Some rules are firstly set based on entropy to make 
CU partitioning decision, and then the coding bits are used to 
improve the decision accuracy. The algorithms in [16]–[18] are 
mainly based on the assumption that NIBs select Intra mode 
while SCBs select IBC and PLT modes. They then classify CUs 
into NIBs and SCBs to make fast mode decision. In [16], a 
decision tree based classifier was firstly designed to classify 
CUs into NIBs and SCBs, so that NIBs only check Intra mode 
while SCBs check IBC and PLT modes. Besides, to speed up 
the encoding of NIBs, two classifiers were designed to predict 
the Intra mode direction from 35 prediction modes and early 
terminate the partitions of NIBs, respectively. In [17], a CU 
type classification is performed by CU content analysis. While 
IBC and PLT modes are skipped for some smooth NIBs, all 
modes are checked for SCBs and non-smooth NIBs. Then the 
depth information of temporal and spatial neighbor CUs as well 
as coding bits are utilized to make fast CU size decision. In [18], 
Intra mode is firstly checked for all CUs with 2N×2N prediction 
units (PUs), and then an early CU partitioning decision is made. 
If a CU is classified as a partitioning CU, it directly goes to the 
next depth level. Otherwise, it is further classified as a SCB or 
NIB. If it is a SCB, both IBC and PLT modes are checked. If it 
is a NIB, only Intra mode for N×N PUs in the depth level of 3 
is tested. Although the methods in [16]–[18] provide better 
performance compared with the previous works, they mainly 
focus on the fast encoding of NIBs. For SCBs, either both IBC 
and PLT modes or all modes need to be checked. Therefore, it 
is desired that mode candidates can be further reduced for SCBs. 

In this paper, we propose a machine learning based fast intra 
mode decision algorithm for SCC. By extracting some features 
from the original encoding process, fast mode decision is 

modeled as a data classification problem which is applied to 
predict whether a certain mode is checked or not. The 
classification is efficiently solved by using decision tree based 
classifiers. Specifically, decision tree based classifiers were 
also adopted in [16] and [18]. However, they treat the decisions 
for IBC and PLT modes the same, and they simply designed CU 
type classifiers rather than mode classifiers. As a result, a SCB 
needs to check both IBC and PLT modes by using the classifiers 
in [16] and [18], although a SCB is finally encoded by either 
IBC mode or PLT mode. To address this problem, we propose 
a more flexible coding framework by inserting a classifier 
before checking a mode in a CU that is completely different 
from [16] and [18]. The flexible coding framework makes mode 
decision for various modes sequentially, so that many SCBs can 
check only one mode from IBC mode or PLT mode. This new 
coding framework considers all modes one by one which has 
the following two advantages. (1) The previous fast mode 
decision approaches in [16]–[18] only classify CUs into SCBs 
and NIBs, so that IBC and PLT modes are always checked 
together for SCBs. On the contrary, the coding framework 
proposed in this paper performs mode decision one by one, and 
it allows the case that only one mode is checked for SCBs such 
that computational complexity can be further reduced; (2) The 
proposed coding framework facilitates the use of the dynamic 
features newly suggested in this paper, while only static 
features describing CU content are used in [16]–[18]. These 
dynamic features vary as a CU goes through different classifiers, 
which provides more precise intermediate coding information 
of a CU to the classifiers, resulting in accurate mode decision 
in SCC. Intermediate coding information is referred to as the 
best mode or the best RD cost so far of the current CU before 
checking a target mode. Besides, a feature subset selection 
approach is applied to allow classifiers to select feature subsets 
for different tasks adaptively, such as for different modes in 
different depth levels. Therefore, the impact of irrelevant or 
redundant features is removed, and a valuable insight into 
feature importance is provided for different tasks. 

The rest of this paper is organized as follows. Section II 
presents the overview and analysis of intra mode decision in 
SCC. Section III presents the proposed fast mode decision 
techniques for SCC. The experimental results are presented in 
Section IV to verify the performance of the proposed work. 
Finally, Section V concludes the paper.  

II. OVERVIEW AND ANALYSIS OF INTRA MODE DECISION IN 
SCC  

SCC inherits the quadtree-based block partitioning scheme 
from HEVC and the intra mode decision process is performed 
for CUs with different sizes recursively. An example of a CTU 
partition and its corresponding partitioning structure is shown in 
Fig. 2. In SCC, a frame is divided into non-overlapping CTUs of 
64×64 pixels (depth level of 0). Then a CTU is further divided 
into 4 CUs of 32×32 pixels (depth level of 1), and this 
partitioning process continues until CUs of 8×8 pixels (depth 
level of 3) are reached. To efficiently encode a CU, two 
additional modes, IBC mode and PLT mode, are introduced. 
IBC mode is a block matching based intraframe approach, and 
it is also referred to as motion compensation in the same picture 
in the international coding standard.  For the sake of simplicity, 

Fig. 2. A CTU partition and its corresponding partitioning structure. 
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its short form “IBC” is used in this paper. IBC mode searches in 
the reconstructed regions of the current frame to find the best 
reference block for the current CU.  It includes three steps – IBC 
predictor, IBC merge & skip and IBC search. IBC predictor 
simply checks a set of block vectors (BVs) from the two last 
encoded CUs and the neighbor CUs of left, above, collocated, 
below left, above right and above left. IBC merge & skip is the 
intra version of the merge and skip mode for inter prediction in 
HEVC, where IBC merge signals residues to a SCC decoder but 
IBC skip does not. IBC search finds the best matched block in 
the reconstructed region of the current frame for 16×16 CUs 
and 8×8 CUs, and it provides different searching strategies for 
different CU and PU sizes. The searching strategies include the 
full vertical and horizontal searches, local vertical and 
horizontal 1D searches, and 2D pre-defined area search. For a 
16×16 CU, only the 2N×2N PU with full vertical and horizontal 
searches are performed. It is due to the fact that a large CU size 
tends to have fewer repeated patterns within the same frame. 
For an 8×8 CU, additional PU sizes are allowed to find more 
repeated patterns. If it is a N×2N PU, only full vertical and 
horizontal searches are carried out. If it is a 2N×N or 2N×2N 
PU, local vertical and horizontal 1D searches, and 2D pre-
defined area search within the current CTU and left CTU are 
performed.  Besides, a hash value based fast searching method 
is implemented for 8×8 CUs with 2N×2N PUs, where only 
blocks having the same hash value as the current CU are 
searched. Therefore, IBC search comes with the highest 
computational complexity among the three steps. A detailed 
technical overview of IBC can be found in [4]. PLT mode is 
designed to improve the encoding efficiency for CUs with 
limited colors. Several representative colors in a CU are selected 
to form a palette table. Then an index map is generated to 
indicate the index of the representative color for each pixel 
location. In the encoding process of a CU, Intra mode, IBC mode 
and PLT mode are exhaustively checked, and the encoding 
procedure implemented in the HEVC-SCC reference software, 
Screen Content Model (SCM), is shown in Fig. 3. At the 
beginning, IBC predictor is checked for CUs with sizes from 
32×32 down to 8×8, If the distortion is zero after checking IBC 
predictor, Intra mode inherited from HEVC is skipped. 
Otherwise, Intra mode is checked, which includes 33 directional 
modes, plus planar and DC modes. Then it is followed by 
checking BV predictors of IBC skip & merge for all CUs. If IBC 

skip is selected as the best mode among IBC predictor, Intra, and 
IBC skip & merge, further mode searching is terminated. 
Otherwise, if the best mode is IBC predictor, Intra or IBC merge, 
the following IBC search and PLT modes are checked. 
Specifically, only CUs with sizes of 16×16 and 8×8 need to 
check IBC search. Finally, PLT mode is checked for CUs with 
sizes from 32×32 down to 8×8. In the mode searching process, 
the coding performance of each mode is evaluated by calculating 
a Lagrange RD cost function, 퐽 , as 

퐽 = 퐷 + 휆 × 푅                         (1) 
where 퐷  denotes the sum of the squared error between the 
current CU and its reconstructed CU, 휆 is a Lagrange multiplier 
and 푅  is the actual encoding bits for signaling the mode and 
the residues. The mode with the smallest RD cost is selected as 
the best mode of the CU. All CU partitions in a CTU need to go 
through this mode searching process, and the final partitioning 
structure of a CTU is selected as the one with the smallest RD 
cost, and it is involved in the final encoding bitstream.  

To have a better understanding of the intra mode decision 
process in SCC, several experiments were performed. First, to 
analyze the computational complexity distribution in SCC, we 
encoded SCC test sequences by SCM of version 8.3, SCM-8.3 
[19]. The test sequences are shown in Table I, which were 
selected by the experts in the JCT-VC group. They are classified 
into 4 categories according to their video content, where TGM 
represents text and graphics with motion, M represents mixed 
content, A represents animation and CC represents camera-
captured content. While sequences in TGM and M are typical 
screen content videos that contain both NIBs and SCBs, the 
sequence in A is similar to the camera-captured content video. 
Therefore, sequences in A and CC are grouped together for the 
analyses in the following sections. Sequences marked with T are 
used for extracting training frames, and sequences marked with 

Table II 
ENCODING TIME DESTRIBUTION OF EACH MODE 

CU size Intra (%) 
IBC 

PLT (%) Predictor (%) Merge & Skip 
(%) 

Search (%) 

64×64 5.07  3.37   
32×32 4.82 0.24 5.14  5.56 
16×16 7.43 0.54 7.04 6.30 4.65 
8×8 23.10 0.46 3.79 17.91 4.58 

Total 40.42 1.24 19.34 24.21 14.79  44.78  

 
Fig. 3. Encoding procedure implemented in SCM. 

TABLE I 
SCC TEST SEQUENCES IN 4 CATEGORIES 

Categories Sequences Resolution No. of Frame Frame 
Rate (Hz)

TGM ChineseEditing (T) 1920×1080 0-599 60 
Console (NT) 1920×1080 0-599 60 
Desktop (NT) 1920×1080 0-599 60 

FlyingGraphics (T) 1920×1080 0-299 60 
Map (T) 1280×720 0-599 60 

Programming (NT) 1280×720 0-599 60 
SlideShow (T) 1280×720 0-499 20 

WebBrowsing (NT) 1280×720 0-299 30 
M BasketballScreen (T) 2560×1440 322-621 60 

MissionControlClip2 (T) 2560×1440 120-419 60 
MissionControlClip3 (NT) 1920×1080 0-599 60 

A Robot (T) 1280×720 0-299 30 
CC EBURainFruits (T) 1920×1080 0-249 50 

Kimono1(NT) 1920×1080 0-119 24 
T: Training; NT: unseen sequences to the trained decision trees.  
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NT are unseen sequences to the trained decision trees. They will 
be explained in Section III. A. All test sequences were encoded 
with quantization parameters (QPs) of 22, 27, 32, and 37 using 
SCM-8.3 under All Intra (AI) configuration and the common 
test conditions (CTC) [20]. The test platform used for 
simulations was a HP EliteDesk 800 G1 computer with a 64-bit 
Microsoft Windows 10 OS running on an Intel Core i7-4790 
CPU of 3.6 GHz and 32.0 GB RAM. Table II shows the 
distribution of encoding time for each mode. We can see from 
the table that Intra mode and IBC mode are the two modes with 
very high computational complexity, which take up 40.42% and 
44.78% of the total encoding time, respectively. Among the 
three steps of IBC mode, IBC predictor has negligible 
computational complexity while IBC merge & skip and IBC 
search bring high computational burden to the SCC encoder. It 
is also interesting to analyze the impact on quality of omitting 
certain mode candidate in SCC. Experiments were performed by 
disabling IBC mode, PLT mode, IBC+PLT modes and Intra 
mode, respectively. Table III shows the Bjøntegaard delta 
bitrate [21] and the change in encoding time brought by 
disabling different modes compared with the original SCM-8.3, 
which are denoted by BDBR and ΔTime, respectively. It should 
be noted that a negative value of BDBR or ΔTime denotes 
decrement in percentage as compared with SCM-8.3. We can 
see from the table that the smallest BDBR increase is obtained 

with 14.78% on average if Intra mode is disabled, but encoding 
time is only reduced by 13.92%, which is not enough 
considering the high computational complexity of SCC. 
Besides, disabling IBC mode achieves the largest encoding time 
reduction by 29.47% on average, but it brings a very high 
increase in BDBR of 38.96%. However, it can be observed that 
for sequences in A and CC, encoding time is reduced by 46.99% 
while BDBR is increased by only 0.81% on average if PLT 
mode and IBC mode are both disabled. For a sequence with 
almost pure SCBs, such as “ChineseEditing”, “Console” or 
“Desktop”, disabling Intra mode leads to about 30% encoding 
time reduction while less than 1.5% increase in BDBR is 
observed. This observation proves that NIBs usually select Intra 
mode while SCBs usually select IBC mode or PLT mode. It 
should be noted that for the sequences with almost pure SCBs, 
the results of disabling Intra mode are the upper limit of the fast 
mode decision methods [16]–[18] which only classify CUs into 
NIBs and SCBs. To break the limit, it is desired the further 
classifications are made inside IBC and PLT modes for SCBs. 

III. PROPOSED DECISION TREE BASED FRAMEWORK FOR FAST 
INTRA MODE DECISION  

The previous fast SCC encoding algorithms are mainly 
focused on fast CU size decision and fast mode decision made 
by CU type classification, as shown in Fig. 4(a) and (b), 

TABLE III 
BDBR AND ENCODING TIME INCREASE BROUGHT BY DISABLING DIFFERENT MODES COMPARED WITH ORIGINAL SCC 

Sequences Disable IBC Disable PLT Disable PLT+IBC Disable Intra 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing 21.41 -35.98 50.86 -14.16 142.21 -51.61 0.88 -30.85 
Console 40.20 -26.67 42.87 6.63 239.62 -36.02 0.69 -31.58 
Desktop 115.02 -29.37 39.91 3.25 451.92 -41.04 1.49 -30.26 

FlyingGraphics 72.25 -20.78 24.30 -2.24 191.38 -48.03 2.67 -26.60 
Map 9.46 -42.78 19.03 -13.64 49.19 -49.98 11.67 -20.30 

Programming 29.94 -23.32 16.43 -11.58 101.47 -43.70 9.32 -28.00 
SlideShow 13.49 -20.77 8.00 -20.89 33.12 -35.84 15.65 -34.24 

WebBrowsing 130.36 -27.71 34.80 -4.60 469.80 -40.96 6.95 -24.11 
BasketballScreen 40.16 -28.10 15.69 8.10 109.88 -47.77 15.54 -17.74 

MissionControlClip2 26.18 -29.49 7.78 -17.69 55.68 -50.40 17.56 -19.41 
MissionControlClip3 45.38 -28.38 13.01 -11.03 121.55 -46.94 16.32 -20.10 

Robot 1.37 -33.02 0.84 -20.33 2.35 -52.63 32.86 6.87 
EBURainFruits 0.15 -36.42 -0.04 -13.33 0.10 -47.86 32.02 36.60 

Kimono1 0.02 -29.79 -0.02 -13.70 -0.02 -40.47 43.29 44.90 
Average (TGM+M) 49.44 -28.49 24.79 -7.08 178.71 -44.75 8.98 -25.74 

Average (A+CC) 0.51 -33.08 0.26 -15.7 0.81 -46.99 36.06 29.46 
Average (ALL) 38.96 -29.47 19.53 -8.94 140.59 -45.23 14.78 -13.92 

 

      
                                                               (a)                                                            (b)                                                          (c)     
Fig. 4. CU encoding flowcharts of various fast SCC encoding algorithms. (a) Typical fast CU size decision algorithm [13]–[15], (b) typical fast mode decision 
algorithm by CU type classification [16]–[18], and (c) proposed fast mode decision algorithm.  
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respectively. However, these frameworks are not flexible and 
are difficult to achieve a good tradeoff between the 
computational complexity and coding efficiency. For fast CU 
size decision approaches [13-15], all modes are either checked 
or skipped together in a CU as shown in Fig. 4(a). For fast mode 
decision approaches [16-18] using CU type classification in Fig. 
4(b), the screen content modes, IBC mode and PLT mode, are 
either checked or skipped together. In screen content videos, 
some CUs are very difficult to be decided whether they are 
SCBs or NIBs even by human beings, and the CU type 
classification approaches are not efficient for these CUs. On the 
contrary, our proposed framework provides larger flexibility by 
inserting a classifier before checking a mode in a CU, as shown 
in Fig. 4(c). By deriving the dynamic features right before 
checking a mode, more accurate decision is made. On the one 
hand, encoding time can be further reduced by allowing the case 
that only one mode is checked for a SCB. On the other hand, 
RD performance can be improved by allowing PLT mode to be 
checked for a SCB even if IBC mode is wrongly skipped. It is 
also noted that the values of the dynamic features newly defined 
in this paper are changing as a CU goes through different 
classifiers, and only our framework in Fig. 4(c) can adopt these 
dynamic features proposed in this work. Since there are 
numerous mode candidates in different CU sizes, it is difficult 
to manually select the optimal features and classification 
criterions to build accurate mathematical models. To solve this 
problem, 11 features, which are related to the mode decision, 
are proposed to train various decision tree based classifiers from 
off-line learning. Therefore, the optimal features and 
classification criterions are reasonably selected based on the 
training data. In the test phase, the trained classifiers are 
implemented in SCM to make fast mode decision.  

A. Description of the Classifier Using Decision Tree  
Decision tree is one of the most popular machine learning 

algorithms. In this paper, we utilize a decision tree as the 
classifier, because it comes with low complexity in the testing 
phase and can be easily implemented into a SCC encoder as a 
set of “if-then-else” conditions. A decision tree based classifier 
is a flowchart like tree structure, as shown in Fig. 5. It is 
composed of a root node, internal nodes and leaf nodes. For 
each non-leaf node, i.e., a root node or an internal node, it 
denotes a test on a feature of the incoming sample. Each branch 
after a non-leaf node denotes the outcome of the test, and each 
leaf node denotes a class label. In the specific case of the mode 
selection problem in a CU, the class label of 1 or 0 represent 
whether the target mode is checked or not.  

The classifiers based on decision trees are trained by the C4.5 
algorithm [23] in the Waikato Environment for Knowledge 
Analysis (WEKA) [24] version 3.8 in this paper. To generate 
training frames which reflect the characteristic of SCC 

sequences, 8 frame-skipped sequences are formed by extracting 
the first frame of each second from the sequences marked with 
T in Table I. Training frames from different sequences were 
encoded by the original SCM-8.3 encoder with QPs at 22, 27, 
32, and 37 using AI configuration to generate training data.  

If a node of a decision tree only contains samples from one 
class, it is defined to have pure samples. Otherwise, the 
impurity is calculated to represent how impure the samples in 
the node are. To reduce the impurity of the node, a feature 퐴 
with a classification threshold 푇퐻  is selected to further 
classify the samples into two child nodes, and the impurity 
reduction is calculated by comparing the impurities of two child 
nodes and the parent node. In the training process of a decision 
tree, the impurity reduction by splitting a parent node to two 
child nodes is calculated iteratively for each feature 퐴 with a 
classification threshold 푇퐻 . The larger the impurity reduction 
is, the better the feature and the classification threshold are. In 
the C4.5 algorithm, the impurity is calculated by entropy. Then 
the impurity reduction with 퐴 and 푇퐻  is measured by the gain 
ratio 퐺푎푖푛푅푎푡푖표(퐴, 푇퐻 ) 

퐺푎푖푛푅푎푡푖표(퐴, 푇퐻 ) = ( , )
( , )

                (2) 

where 퐼푛푓표퐺푎푖푛(퐴, 푇퐻 ) is the information gain by splitting a 
node 푡  into its child nodes 푡 ,  푡  using a feature 퐴  with a 
threshold 푇퐻 . It is calculated by the entropy reduction after 
splitting as 

퐼푛푓표퐺푎푖푛(퐴, 푇퐻 ) = 퐸푛(푡 ) − ∑ 퐸푛(푡 )         (3) 

where 푁  and 푁  represent the number of samples in the node 
푡  and child nodes 푡 , 푖 ∈ {퐿, 푅}. Let 푝(휔 ) be the probability 
of training samples belonging to the class 휔  in a node 푡, 푗 ∈
{0,1}. The entropy 퐸푛(푡) in the node 푡 is calculated as 

퐸푛(푡) = − ∑ 푝(휔 )푙표푔 푝(휔 ).                   (4) 

The normalization term 푆푝푙푖푡퐼푛푓표(퐴, 푇퐻 ) is defined by  

푆푝푙푖푡퐼푛푓표(퐴, 푇퐻 ) = − ∑ 푙표푔 .               (5) 

The best feature and the threshold are selected as the ones with 
maximum gain ratio to split a node. A decision tree is trained 
node by node, and the splitting of a node is terminated if the 
number of training samples arrived the node is less than or equal 
to 1% of the total training samples. Then a reduced error 
pruning process [25] is performed to prune the decision tree 
backward to avoid overfitting. After generating a decision tree, 
the classification accuracy of the tree is given by a 10-fold 
cross-validation process [26], which calculates the percentage 
of correctly classified samples in the total training samples.  

B. Proposed Dynamic Features and Their Advantages  
In general, the precision of SCC mode decision in a 

classification task is highly dependent on the feature space used 
to train the model. In most of the machine learning algorithms 
adopted in mode decision of video coding, the features 
extracted from a CU is always determined by its static content, 
such as background color number, gradient, etc. These features 
are called as static features in this paper. 

 
Fig. 5. General structure of a decision tree based classifier. 
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In contrast, we find that the probability of selecting IBC 
mode as the optimal one depends on the spatial location of the 
current CU, as shown in Fig. 6. Assume that CUA and CUB in 
the example of Fig. 6 have the same static content.  Even though 
the static features extracted from CUA and CUB are the same, 
the mode decision of these two CUs may be different. For 
example, CUA may select PLT mode while CUB with the same 
content is likely to select IBC mode because the search window 
of CUB is larger resulting in a higher chance to find a good 
repeated pattern with very low RD cost by using IBC mode.  By 
taking this specific characteristic of screen content videos into 
account, we propose to extract the IBC mode flag of the current 
CU before checking the target mode, 퐹푙푎푔 , (Feature 1) as 
dynamic information. If the best mode so far of the current CU 
before checking the target mode is a sub-mode (i.e. IBC 
predictor, IBC merge & skip, or IBC search) of IBC mode, 
퐹푙푎푔  is set to 1. Otherwise, 퐹푙푎푔  is set to 0. It is noted 
that, for CUB in Fig. 6, the chance of 퐹푙푎푔  equal to 1 is 
higher as compared with that of CUA even though they have 
same content. Therefore, this feature may vary according to the 
spatial location, and it is considered as a dynamic feature. 

In addition, the dynamic RD cost of the best mode so far in 
the current CU before checking the target mode, 퐽  
(Feature 2) is another dynamic feature proposed in this paper 
for fast mode decision. Similarly, 퐽  of CUB in Fig. 6 is 
likely to become smaller since it is easier to get a good repeated 
pattern in the reconstructed area. Besides, 퐽  is not only 
related to the spatial location but varies during the encoding 
process. For instance, 퐽  to Classifier 2 in Fig. 4(c) may be 
different from 퐽 to Classifier 3 since 퐽  has already gone 
through Intra mode and IBC mode while only intra mode is 
tested for computing 퐽 . The variation property is well 
suited for our proposed framework in Fig. 4(c) in which the 
values of this dynamic feature entered to various decision trees 
are different.  This new arrangement is of great importance to 
SCC mode decision process using classification, which will be 
verified in the following sections. 퐽  reveals the unique 
intermediate coding information of a CU, and its value varies 
as the CU goes through different decision trees. By 
implementing decision trees right before the target mode, the 
most updated values of these dynamic features (Feature 1 and 
Feature 2) are obtained for different trees to improve the 
decision accuracy. 

By using the proposed framework with decision trees prior 
to checking a mode in a CU, the new dynamic features with the 
following nine static features are then selected based on our 
prior knowledge for the training of decision trees in Fig. 4(c).   

Feature 3: Background color number BCN. The background 
color in a CU is defined as the color with the highest occurrence 

frequency within the CU, and BCN is calculated by counting the 
number of the background color pixels.  

Feature 4: Distinct color number DCN. DCN is calculated by 
counting the pixels in a CU with different sample values.  

For BCN and DCN, all three components of a pixel (Y, U, V 
in YVV 4:4:4 or R, G, B in RGB 4:4:4) are stacked to form a 
24-bit sample value. For sequences in YUV 4:2:0 format, only 
the luminance component is utilized as an 8-bit sample value. 

Features 5–8: High gradient pixel number 퐻퐺푁 , 퐻퐺푁 , 
 퐻퐺푁 , 퐻퐺푁 . The high gradient pixel is utilized to detect sharp 
edges in a CU. A pixel is defined as a high gradient pixel [27] 
if the luminance difference of the current pixel 푌 ,  and one of 
the neighbor pixels 푌± ,  and 푌 , ±  located at 0, 90, 180  and 
270 is larger than a threshold 푇퐻  

푌 , − 푌 ± , > 푇퐻   or  푌 , − 푌 , ± > 푇퐻           (6) 
where 푖 and 푗 denote the row and column indices of the pixel. 
푇퐻  is a threshold controlling the sharpness of the edges for 
detection, which is set to 32 in [27]. To detect edges with 
different sharpness in our proposed algorithm, we set another 
three values to 푇퐻 . Totally 4 different high gradient pixel 
numbers, 퐻퐺푁 , 퐻퐺푁 , 퐻퐺푁 , and 퐻퐺푁 , are calculated by 
counting high gradient pixels with 푇퐻  at 4, 8, 16, and 32, 
respectively. Considering that the proposed algorithm is a 
machine learning based approach, it lets the decision tree select 
the features to be used based on the off-line training.  It implies 
to select which value(s) of 푇퐻  to be used in each decision tree. 
Therefore, we do not need to manually select which particular 
value(s) of 푇퐻  in the final decision trees.  

It is noted that sequences in RGB 4:4:4 format are converted 
to YUV 4:4:4 format to get the luminance component.  

Features 9–10: CU horizontal and vertical activities HorAct 
and VerAct. They have been used for skipping IBC mode 
adaptively in the original SCM-8.3 and defined as 

퐻표푟퐴푐푡 = ∑ ∑ |푌 , − 푌 , |             (7) 
푉푒푟퐴푐푡 = ∑ ∑ |푌 , − 푌 , |.            (8) 

Feature 11: CU variance Var. Var can well represent the 
smoothness of a CU, which is defined as  

푉푎푟 =
×  

∑ ∑ (푌 , − 푌)             (9) 

where Y is the average luminance value over the current CU.  
Features 3–11 are static features which have fixed values in 

a CU. Therefore, they are obtained once for a CU and shared 
among different decision trees. 

C. Fast Mode Decision Design 
To make fast mode decision in SCC, the selection of Intra 

mode, IBC mode, and PLT mode is investigated by adopting 
different decision trees in our new coding framework. Then, a 
decision tree for performing CU type classification is trained at 
the last depth level to avoid the situation that all modes are 
skipped for a CTU. In this sub-section, the detailed design of 
the new coding framework is discussed. 
1) Feature Analysis 

Among the three coding modes in SCC, Intra mode is the 
only mode inherited directly from HEVC. While Intra mode is 
very efficient for NIBs, IBC mode and PLT mode are both 
specially designed for SCBs. To perform fast mode decision, a 

 
Fig. 6. Two CUs with same content in a frame. 
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common idea is to classify CUs into NIBs and SCBs by 
analyzing their content characteristics. Then IBC and PLT 
modes are checked for SCBs while Intra mode is checked for 
NIBs. However, such approach is not optimal since IBC and 
PLT modes are always checked together for SCBs.  

To understand the distributions of Intra, IBC and PLT modes 
over different features, we randomly selected 300,000 16×16 
CUs from the training samples, and the number of the CUs with 
each mode is 100,000. First, the mode distributions over the 
dynamic features obtained right before the target mode were 
investigated. Fig. 7 shows the percentages of CUs selecting the 
target mode and other modes in terms of 퐹푙푎푔  (Fig. 7(a)-(c)) 
and 퐽  (Fig. 7(d)-(e)). If 퐹푙푎푔  before checking the target 
mode is 1, the CU is more likely to be a SCB, otherwise, it more 
likely to be a NIB. Therefore, it is observed in Fig. 7(a) that the 
percentage of Intra mode is very low if 퐹푙푎푔  before 
checking Intra mode is 1. On the contrary, the percentages of 
IBC mode and PLT mode are low if 퐹푙푎푔  before checking 
the target mode is 0, as shown in Fig. 7(b) and Fig. 7(c), 
respectively. Before checking Intra mode, 퐽  is highly 
correlated to 퐹푙푎푔 . If IBC predictor does not provide a valid 
BV for a CU, 퐹푙푎푔  would be 0 and the value of 퐽  
becomes very large. Otherwise, the value of 퐽  is relatively 
small if 퐹푙푎푔  is 1. Therefore, the percentage of CUs 
selecting Intra mode is very low if the value of 퐽  is small, 
as shown in Fig. 7(d). It is also observed in Fig. 7(e) that if 퐽  
before checking IBC mode is very large, the percentage of IBC 
mode would be low. The reason is that for CUs with very large 
values of 퐽 , they usually have complex texture, and it is 
difficult to find repeated patterns for the complex texture CUs 
by IBC mode. Besides, Fig. 7(f) shows that the percentage of 
PLT mode is low for CUs with small value of 퐽 . The reason 
is that the CU with small value of 퐽  before checking PLT 
mode may have been efficiently encoded and the checking of 
PLT mode becomes unnecessary. The discrepancy between Fig. 
7(e) and Fig. 7(f) verifies that PLT mode and IBC mode have 
different characteristics and should not use the same classifier 
when the dynamic features are adopted.  

Then the mode distributions of the static features shared 
among different decision trees were also investigated. Fig. 8 
shows the mode distributions in terms of 5 representative 
features: (a) DCN, (b) BCN (c) 퐻퐺푁 , (d) HorAct and (e) Var. 
It is observed that the percentage of Intra mode increases as 
DCN gets larger, or BCN, 퐻퐺푁 , HorAct, and Var get smaller. 
The reason is that Intra mode is designed for NIBs, and they 
tend to have larger DCN, smaller BCN and be smoother. 
Besides, it is also observed that the percentage of PLT mode is 
much higher than IBC mode when CUs get more complex, such 
as CUs with larger values of 퐻퐺푁 , HorAct and Var. It further 
implies that PLT mode and IBC mode should not share the same 
classifier for SCC intra mode selection that is always adopted 
in the algorithms proposed in the literature [16]–[18].  

Based on these observations, we trained decision trees in the 
proposed coding framework to adaptively check Intra mode, 
IBC mode and PLT mode separately. 
2) Decision Tree Training 

As described before, IBC mode contains three steps, which 
are IBC predictor, IBC merge & skip and IBC search. While the 
step of the IBC predictor only checks several BV predictors and 
our experiment shows that it takes up only 1.24% of the total 
encoding time, and the computational complexities of IBC 
merge & skip and IBC search are relatively high. Therefore, by 
collecting the most updated features, two sets of decision trees 
are generated inside IBC mode to adaptively check IBC merge 
& skip and IBC search. After generating the decision trees for 
all modes, they are implemented in the SCM-8.3 encoder to 
perform fast mode decision. Before checking a mode, the 
incoming CU goes through the decision tree for the mode to 
decide whether it should be tested. If the outcome or the class 
label of the decision tree is 1, it is involved in the mode 
searching process. Otherwise, the current CU does not check 
the target mode so that the computational complexity brought 
by this mode is reduced. However, there is a case that all modes 
are decided to be skipped for a CTU when all mode decision 
trees are implemented, and finally the CTU cannot be encoded. 
To solve this problem, a CU type decision tree is also trained at 

 
                                                  (a)                                                                             (b)                                                                           (c)     

 
                                                    (d)                                                                          (e)                                                                           (f) 
Fig. 7. The percentages of the target mode and other modes in terms of 퐹푙푎푔  (a)–(c) and 퐽  (d)–(e) for 16×16 CUs. 
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the last depth level, and at least one possible mode is assigned to 
the CU if all modes are skipped for it. The CU type decision tree 
can classify incoming CUs into NIBs and SCBs. If the outcome 
for a CU is a NIB, i.e., 1, Intra mode is checked for it. Otherwise, 
IBC and PLT modes are both checked for it.  

As SCC supports CU sizes of 64×64, 32×32, 16×16, and 8×8, 
4 decision trees are trained for CUs with different sizes. To 
avoid the data imbalance problem caused by more training 
samples in one class than in the other [28], we let 50% of the 
training samples come from CUs with the target mode as their 
optimal modes, and they are treated as the positive data. The 
other 50% of training samples come from the CUs which are 
not encoded by the target mode, and they are treated as the 
negative data. Besides, for the training of the CU type decision 
tree at the last depth level, the positive training data are from 
NIBs, i.e. CUs encoded by Intra mode, while the negative data 
are from SCBs, i.e. CUs encoded by IBC or PLT mode. 

The training data number and the depth of each decision tree 
are shown in Table IV and V, respectively. Since a frame can be 
partitioned into more CUs with a small size than CUs with a 
large size, more training data are obtained as the CU size gets 
smaller. Besides, we can see that the largest depth of the trained 
decision trees is 14, which means the decision for a mode is 
made after going through at most 14 “if-then-else” conditions. 
Therefore, the computational complexity brought by those 
decision trees is negligible. As an example, the decision tree 
based IBC merge & skip mode classifier for 32×32 CUs is 

shown in Fig. 9, and other trained classifiers can be found in 
our website [22].  
3) Feature Subset Selection 

When training classifiers for different tasks, the valid 
features are quite different, and the performance of a classifier 
is very sensitive to the features utilized to train the classifier. 
Therefore, to eliminate the impact of irrelevant or redundant 
features and provide a better understanding of the valid features 
for each mode decision, a feature subset selection [29] approach 
is applied in our paper.  

We implemented the feature subset selection in WEKA using 
the wrapper evaluation with a greedy search strategy, which is 
computationally advantageous and robust against overfitting. 
The feature subset selection consists of the following steps: 

Step 1: Initialize the feature subset set F =∅ at 푘=0. 
Step 2: Find the best remaining feature 푓 which provides the 

largest accuracy increase when added to F . 
Step 3: 푘++ and F =F ∪{푓}. 
Step 4: Iterate step 2 and step 3 until the classifier accuracy 

is no longer improved.  
Table VI shows the valid features of each decision tree, and 

the importance of each valid feature is also shown in this table 
by measuring its gain ratio. It is observed that the proposed 
dynamic features, 퐹푙푎푔  and 퐽  obtained right before the 

 
(a)                                                                  (b) 

 
                                                             (c)                                                                 (d)                                                               (e) 
Fig. 8. Intra, IBC and PLT mode distributions in terms of (a) Distinct color number DCN, (b) high gradient pixel number 퐻퐺푁 , (c) horizontal activity HorAct, 
and (d) CU variance Var for 16×16 CUs. 

TABLE IV 
TRAINING DATA NUMBER FOR EACH DECISION TREE 

CU Size Intra IBC PLT CU Type Merge & Skip Search 
64×64 28452 14224    
32×32 216072 111980  80804  
16×16 715548 573848 168736 219192  

8×8 3166280 2724108 1522712 453080 906164 
 TABLE V 

DEPTH OF EACH DECISION TREE 

CU Size Intra IBC PLT CU Type Merge & Skip Search 
64×64 14 13    
32×32 7 4  6  
16×16 8 1 10 6  
8×8 9 9 6 7 7 

 
Fig. 9. IBC merge & skip mode decision tree for 32×32 CUs. 
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target mode, are quite important for most decision trees, with 
the gain ratio up to 0.669 and 0.102, respectively. This verifies 
that the dynamic features play a critical role in the decision 
process with the introduction of the new coding framework. By 
adopting the feature subset selection approach, the number of 
features fed into a decision tree is reduced to 1–8, and 6.07 on 
average. Compared with the original feature set with 11 features, 
the feature number is reduced by 44.92%, and the impact of the 
feature subset selection approach in terms of coding 
performance will be discussed in Section IV.  
4) Accuracy of Decision Trees  

The decision accuracy for each decision tree is shown in 
Table VII. We can see from the table that the accuracies of those 
decision trees vary from 75.44% to 94.51%, where the decision 
accuracies for 64×64 CUs are relatively low. The reason is that 
there are many CUs with pure horizontal edges, pure vertical 
edges or a single color in the training data set of 64×64 CUs, 
and they are difficult for classification. However, this kind of 
CUs can be encoded efficiently by all modes with very low 
computational complexity. Therefore, the low decision 
accuracy of 64×64 CUs will not lead to large computational 
complexity or coding efficiency degradation.  

There are two kinds of false classifications for each mode 
decision tree. One is the missed detection, which is the case that 
the optimal mode of a CU is not a certain mode, but it is not 
detected, and the mode is checked for the CU redundantly. 
Although the missed detection leads to the increase in 
computational complexity, it does not bring RD performance 
loss. The other is the incorrect decision, which is the case that 
the optimal mode of a CU is a certain mode, but the mode is 
skipped for the CU incorrectly. The incorrect decision leads to 
RD performance loss because the optimal mode for a CU is 
skipped. The incorrect decision rate of each decision tree is 
shown in Table VIII, and we can see that only 3.12% to 13.14% 
of the mode decision lead to RD performance loss.  

D. Decision Tree Constraint 
To reduce the RD performance loss caused by skipping the 

optimal mode for a CU incorrectly, a decision tree constraint 

technique based on the spatial content correlation is derived for 
CUs with the size of 8×8 in this sub-section.  

There is usually strong spatial content correlation in screen 
content videos. A CU with the neighbor of NIBs is very likely 
to be a NIB while a CU with the neighbor of SCBs is very likely 
to be a SCB. To prove the strong spatial correlation, we encoded 
the frame-skipped sequences with QPs at 22, 27, 32, and 37 by 
using the original SCM-8.3 encoder. For each CU, the optimal 
modes of its top and left neighbor CUs were recorded. We treat 
a CU selecting Intra mode as a NIB, and a CU selecting IBC 
mode or PLT mode as a SCB. If a top or left neighbor CU has 
the same type of content as the current CU, we call it a same 
content neighbor CU. Table IX shows spatial content 
correlation of 8×8 CUs by giving the distributions of the same 
content neighbor CU number. We can see from the table that 
over 90% CUs have one or two same content neighbor CUs. 
Only 7.58% of SCBs and 4.28% of NIBs have no same content 
neighbor CU. Therefore, when encoding an 8×8 CU, if one of 
its neighbor CUs from the top and left selects Intra mode, 
i.e. 퐹푙푎푔 =1, we additionally check Intra mode for it based 
on the outcomes of decision trees, and if one of its neighbor CUs 
from the top and left selects PLT or IBC mode, i.e. 퐹푙푎푔 =1, 
we additionally check IBC mode and PLT mode for it based on 
the outcomes of decision trees. Although there is also strong 
spatial correction of optimal modes for large CU sizes, it is 
unnecessary to check more mode candidates for them in order 
to achieve higher encoding reduction. For a large CU, if 
decision trees assign an incorrect mode to it, it still has a chance 
to select good modes when partitioned into 8×8 CUs by using 
the decision tree constraint technique, so that the RD 
performance loss brought by the incorrect decision of large CU 
is decreased.  The impact of the decision tree constraint 
technique will be discussed in Section IV.  

TABLE VI 
THE GAIN RATIO OF EACH FEATURE FOR EACH DECISION TREE 

Decision Tree 퐹푙푎푔  퐽  BCN DCN 퐻퐺푁  퐻퐺푁  퐻퐺푁  퐻퐺푁  HorAct VerAct Var 

Intra 

64×64   0.044 0.029  0.071 0.094  0.074 0.065 0.054 
32×32 0.179  0.043 0.022    0.084 0.045 0.046  
16×16  0.102 0.035 0.029     0.029 0.025 0.027 
8×8 0.180  0.051 0.046   0.005  0.020 0.019 0.025 

IBC Merge 
& Skip 

64×64  0.065 0.099  0.084     0.097 0.100 
32×32 0.669     0.045   0.070  0.066 
16×16 0.431           
8×8 0.178 0.014 0.032 0.019   0.024  0.017 0.018 0.025 

IBC Search 16×16 0.275 0.007 0.028 0.030   0.019 0.023 0.010 0.016 0.022 
8×8 0.281  0.039 0.027   0.061 0.067 0.035 0.036  

PLT 
32×32 0.001 0.048 0.064 0.041  0.026   0.035   
16×16 0.166 0.038 0.035 0.025 0.009  0.034  0.031   
8×8 0.105 0.027 0.029 0.021   0.031 0.039 0.027 0.023  

CU Type 8×8   0.058 0.045     0.031 0.028  
 TABLE VII 

DECICIOSN ACCURACY FOR EACH DECISION TREE 

CU Size Intra (%) IBC PLT (%) CU Type (%) Merge & Skip (%) Search (%) 
64×64 75.44 82.31    
32×32 87.95 94.51  82.27  
16×16 83.34 84.57 81.89 82.48  
8×8 78.23 83.13 85.66 79.83 83.17 

TABLE VIII 
INCORRECT DECISION FOR EACH DECISION TREE 

CU Size Intra (%) IBC PLT (%) Merge & Skip (%) Search (%) 
64×64 3.81 5.00   
32×32 2.88 3.77  5.33 
16×16 4.07 13.14 8.73 5.06 
8×8 9.95 6.07 6.75 6.60 

 Table IX 
SAME CONTENT NEIGHBOR CU NUMBER DISTRIBUTIONS FOR 8×8 CUS  

CU content 0 (%) 1 (%) 2 (%) 
NIB 7.58 18.12 74.30 
SCB 4.28 15.08 80.64 
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All proposed techniques are treated as additional mode 
checking conditions based on the original encoding process 
when they are implemented in SCM-8.3. As a summary, the 
flowchart of the proposed fast mode decision algorithm is 
shown in Fig. 10, where 퐹푙푎푔 , and 퐹푙푎푔  are used to 
denote the outcome of the decision tree constrain technique, and 
DT_Intra, DT_IBC_S&M, DT_IBC_Search, and DT_PLT are 
used to denote the outcomes of the decision trees for Intra, IBC 
merge & skip, IBC search, and PLT modes, respectively. For 
simplicity, the original mode checking conditions in SCM-8.3 
are not shown in this figure. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS  
To evaluate the performance of the proposed fast mode 

decision framework, the coding efficiency and computational 
complexity of the proposed algorithm were compared with 
those of the original SCM-8.3 and they are measured by BDBR 
and encoding time increase in percentage (%), ΔTime under AI 
configuration defined in CTC. Four sets of experiments have 
been conducted to analyze the performance of the proposed 
work from different aspects. First, a study on different number 

of training sequences is discussed.  Second, the performance of 
the proposed framework is evaluated by comparing it with 
existing fast SCC encoding algorithms. Third, the contribution 
of each individual mode decision algorithm is analyzed. At last, 
the efficiency of the feature subset selection and decision tree 
constraint techniques is validated.  

A. Study on Different Training Set 
To understand the impact of the training sequences to the 

performance of the proposed algorithm, we gradually reduce 
the number of the training sequences and then compare their 
performances. Fig. 11 shows the simulation results with two, 
five, eight training sequences, respectively. It is observed that 
the proposed algorithm can provide relatively good 
performance even though two training sequences are used, 
where 48.72% encoding time is reduced with 1.97% increase in 
BDBR. Besides, it is observed that using more training 
sequences helps to reduce the increase in BDBR. When training 
sequences are increased from two to eight, the increase in 
BDBR is reduced from 1.97% to 1.42%. 

B. Performance of the Decision Tree Based Framework  
Table X shows the performance of the proposed framework 

using 8 training sequences in Fig. 11 and four state-of-the-art 
SCC fast intra prediction algorithms [15]–[18] in terms of 
BDBR and ΔTime, where the largest value of ΔTime in each 
sequence is marked in boldface. It is noted that they were 
implemented in different reference software from ours in their 
original publications. Zhang et al.’s method [15] was simulated 
using HM-12.1+RExt-5.1 rather than SCM, while Duanmu et 
al.’s method [16], Lei et al.’s method [17] and Yang et al.’s 
method [18] were simulated using SCM-4.0, SCM-2.0 and 
SCM-5.0, respectively. There are numerous enhancements, 
speed-up techniques and codes clean-up in SCM-8.3 compared 

Proposed techniques: 1. The decision tree constraint, 2. Intra mode decision tree, 3. IBC merge & skip decision tree, 4. IBC search mode decision tree, 5. PLT 
mode decision tree, and 6. CU type decision tree. 
Fig. 10. Flowchart of the proposed fast mode decision algorithm in a CTU.  

 Fig. 11. Simulation results with two, five, eight training sequences. 
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with the older versions. In the older versions, the BV signal in 
IBC mode was not unified with the inter mode which only has 
left and above BVs as predictors with no skip and merge modes. 
Consequently, incoming CUs always need to check the time-
consuming IBC search and PLT modes without early 
termination. Moreover, N×N IBC search was done after 2N×N 
search while it is eliminated in SCM-8.3. In addition, the older 
versions enable PLT mode in the depth level of 0 while it is 
disabled in SCM-8.3 because of the occasional use. Due to 
those differences, we re-implemented them into SCM-8.3 for 
fair comparisons. It is observed that our proposed framework 
shows the best performance compared with other SCC fast intra 
prediction algorithms [15]–[18], and it provides the largest 
encoding time reduction for 10 sequences out of 14 sequences. 
Compared with the anchor SCM-8.3, our proposed framework 
achieves up to 62.34% encoding time reduction on the “Desktop” 
sequence. On average, 47.62% encoding time reduction is 
obtained with a negligible increase in BDBR of 1.42%. Zhang 
et al.’s method [15] adopts the fast CU size decision framework 
shown in Fig 4(a), and it is observed in Table X that it only 
reduces the encoding time by 14.53% on average. Compared 
with Duanmu et al.’s method [16], Lei et al.’s method [17] and 
Yang et al.’s method [18] which adopt the hybrid method by 
combining the frameworks in Fig. 4(a) and (b) for fast CU size 
decision and fast mode decision based on CU type classification, 
the proposed framework substantially outperforms them in both 
coding efficiency and computation complexity. Duanmu et al.’s 
method [16] provides 26.89% encoding time reduction while 
BDBR is increased by 1.70% on average. When compared with 
the anchor SCM-8.3, our proposed framework shows 22.60% 
larger encoding time reduction with 0.21% smaller increase in 
BDBR than Duanmu et al.’s method [16] for sequences in TGM 
and M. For sequences in A and CC, the proposed framework 
shows 13.87% larger encoding time reduction with 0.53% 
smaller increase in BDBR than Duanmu et al.’s method [16]. 
Lei et al.’s method [17] achieves 33.20% encoding time 
reduction while BDBR is increased by 2.36% on average. 
Although Lei et al.’s method [17] shows larger encoding time 
reduction than the proposed framework for sequences in A and 
CC, the increase in BDBR is about 4 times higher than the 

proposed framework. For the sequences in TGM and M, Lei et 
al.’s method [17] also shows a very high increase in BDBR 
while the encoding time is only reduced by 26.71%. Yang et 
al.’s method [18] shows 35.36% encoding time reduction with 
a very high increase in BDBR of 3.50% on average. Since it 
always checks Intra mode for 2N×2N PUs, it brings only 0.30% 
increase in BDBR to the sequences in A and CC. However, the 
BDBR of the sequences in TGM and M is increased by 4.37% 
due to the low decision accuracy for SCBs.  

It should be noted that our proposed decision trees were 
trained by the sequences marked with T, where the first frame 
of each second from these sequences is extracted to generate 
training data, while the sequences were not used for training are 
marked with NT.  It is observed in Table X that our proposed 
framework provides similar performance for the training 
sequences and the unseen sequences. Besides, the best 
performance of our proposed framework is not achieved for the 
training sequences but for the unseen “Desktop” sequence 
where 62.34% encoding time is reduced with 1.03% negligible 
increase in BDBR. Specifically, the average performances of the 
NT sequences are also shown in Table X. The NT sequences 
show 51.97% encoding time reduction with 1.09% increase in 
BDBR, which outperforms algorithms in [15]–[18]. This shows 
that the proposed framework is generalizable to the unseen 
sequences. It is noted that the 14 sequences in CTC [20] are 
carefully selected to be representatives for other screen content 
sequences, and all existing fast SCC encoding algorithms 
always utilize some sequences from CTC [20] for both training 
and testing. To further show the generalization of the proposed 
algorithm to other screen content sequences, ten more test 
sequences [30]–[34] that are not included in CTC [20] were 
evaluated. The results are shown in Table XI with comparison 
to the existing fast SCC encoding algorithms [15]–[18], where 
the largest value of ΔTime in each sequence is marked in 
boldface. It is observed that the proposed algorithm again 
outperforms the fast SCC encoding algorithms [15]–[18], and it 
provides the largest encoding time reduction for seven 
sequences out of the ten test sequences. Although Lei et al.’s 
method [17] shows larger encoding time reduction in other 
three sequences, the increase in BDBR is remarkably higher 

Table X 
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 UNDER CTC FOR YVU 4:4:4 SEQUENCES 

Sequences Zhang et al. [15] Duanmu et al. [16] Lei et al. [17] Yang et al. [18] Proposed Framework 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing (T) 0.14 -3.40 1.10 -17.47 0.99 -18.96 4.30 -34.16 0.60 -53.06 
Console (NT) 2.64 -8.23 1.87 -28.12 2.87 -23.40 7.38 -42.83 0.60 -54.14 
Desktop (NT) 0.67 -4.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.03 -62.34 

FlyingGraphics (T) 0.54 -3.24 0.98 -20.13 1.72 -18.13 5.47 -31.19 1.56 -52.13 
Map (T) 0.97 -10.66 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.36 -31.89 

Programming (NT) 0.44 -11.76 1.89 -22.16 2.50 -22.92 4.71 -27.38 2.20 -48.94 
SlideShow (T) 0.36 -46.92 2.82 -52.47 2.32 -55.58 3.69 -34.45 3.76 -35.67 

WebBrowsing (NT) 0.79 -6.99 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.98 -57.23 
BasketballScreen (T) 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.87 -48.60 

MissionControlClip2 (T) 0.40 -20.5 2.86 -33.9 1.71 -25.49 2.51 -38.54 2.51 -47.30 
MissionControlClip3 (NT) 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.68 -52.21 

Robot (T) 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.51 -47.19 
EBURainFruits (T) 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.16 -39.07 

Kimono1(NT) 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.05 -36.93 
Average (NT) 0.84 -11.65 1.85 -25.84 2.76 -34.38 4.40 -38.24 1.09 -51.97 

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.65 -49.41 
Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.57 -41.06 
Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.42 -47.62 

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained decision trees. 
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than the proposed framework. On average, the fast SCC 
encoding algorithms [15]–[18] reduce 11.78%–36.80% 
encoding time with 0.94%–4.29% increase in BDBR. 
Comparatively, the proposed algorithm reduces 51.34% 
encoding time with only 0.98% increase in BDBR. Again, this 
confirms the generalization ability of the proposed algorithm.  

The proposed algorithm includes additional processes of 
feature extraction and decision determination for making fast 
mode decision, and these computational overheads are further 
analyzed and summarized in Table XII. It is observed that the 
average computational overhead proportions of feature 
extraction and decision determination are only 1.32% and 
0.01%, respectively. It is noted that these computational 
overheads have been counted in Table X to calculate the 
encoding time reduction. 

We also extend our work to support sequences in YUV 4:2:0 
and RGB 4:4:4 formats based on the same methodology, and 
their performances are summarized in Table XIII. It is observed 
that for sequences in YUV 4:2:0 and RGB 4:4:4 formats, 
encoding time of 41.68% and 49.98% is reduced with 1.68% and 
1.41% increase in BDBR on average, respectively. The results 
are very similar to that of YUV 4:4:4 sequences, which 
demonstrates the proposed framework is generalizable to other 
color formats.  Since the fast SCC encoding algorithms [15]–[18] 
only investigated the fast prediction for YUV 4:4:4 sequences, 
we cannot make comparisons for sequences in YUV 4:2:0 and 
RGB 4:4:4 formats. 

Since Intra-prediction is also needed in inter frame coding, 
Fig. 12 also shows the impact of the proposed algorithm on inter 
frame coding under Low Delay (LD) configuration. BDBR and 
ΔTime  of five typical sequences in YUV 4:4:4 format are 
shown in Fig. 12, and similar results are observed for other 
sequences. It is observed that the proposed algorithm reduces 
6.52%–8.44% encoding time with negligible increase in BDBR, 
which implies the proposed algorithm also benefits to inter 
frame coding.  

C. Performance of the Individual Mode Decision Algorithm 
To further investigate the contribution of each mode decision 

algorithm, additional experiments were performed by 
implementing decision trees for IBC mode, PLT mode, 
IBC+PLT modes, Intra mode, respectively, and the results are 
shown in Table XIV. We can see from the table that IBC mode 
decision trees provide the largest encoding time reduction, 
followed by Intra mode and PLT mode, which are 23.84%, 
16.26% and 7.15%, respectively. When the decision trees of IBC 
mode and PLT mode are both implemented, sequences in A and 
CC show 39.55% encoding time reduction, which is nearly the 
same as the results of the overall framework with all decision 
trees enabled. It is because nearly all CUs in A and CC 
sequences are encoded by Intra mode, and it shows that the IBC 
and PLT decision trees can efficiently skip these CUs. Smaller 
encoding time is saved for sequences in TGM and M because 
they contain many SCBs, so that fewer IBC mode and PLT mode 
are skipped. In contrast, only 0.13% encoding time reduction is 
observed for sequences in A and CC when only the Intra mode 
decision trees are implemented. For sequences with almost pure 
SCBs, such as “ChineseEditing”, “Console” and “Desktop”, 
over 27% encoding time is saved by using Intra mode decision 
trees. The reason is that almost all CUs in these sequences can 
skip Intra mode and large encoding time reduction is achieved. 
Furthermore, Table XIV shows that the overall framework 
provides 23.52%–34.60% larger encoding time reduction for 
“ChineseEditing”, “Console” and “Desktop”, as compared with 
the results that only intra mode decision trees are enabled. The 
reason is that besides the Intra mode which is not suitable for 
encoding SCBs, the overall framework considers PLT mode 
and IBC mode separately and then further skips unnecessary 
PLT mode and IBC mode for SCBs. To support this statement, 
we investigated the mode decision of the proposed overall 
framework by encoding all sequences with QPs of 22, 27, 32, 
37, and the average distribution of mode decision is shown in 

Table XI 
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 FOR SEQUENCES NOT IN CTC FOR YVU 4:4:4 SEQUENCES 

Sequences Zhang et al. [15] Duanmu et al. [16] Lei et al. [17] Yang et al. [18] Proposed Framework 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

BigBuckBunnyStudio 0.64 -20.44 1.90 -31.34 2.58 -44.83 1.98 -35.08 1.78 -41.94 
ClearTypeSpreadsheet 0.54 -1.14 1.81 -22.83 0.72 -20.86 7.67 -41.76 0.71 -62.56 
EBULupoCandlelight 0.33 -36.23 1.18 -41.42 3.41 -66.49 0.43 -43.05 0.13 -38.35 

CadWaveform 1.22 -6.19 6.40 -33.64 4.66 -19.97 4.85 -36.16 0.50 -58.40 
PcbLayout 0.96 -10.77 2.58 -36.07 3.08 -27.30 4.95 -38.08 1.67 -48.82 
PptDocXls 1.35 -4.31 1.47 -24.01 1.29 -17.38 4.16 -32.72 0.74 -55.70 

RealTimeData 3.32 -6.19 1.55 -26.15 2.11 -22.43 7.11 -34.65 0.82 -50.62 
VideoConferencingDocSharing 0.37 -3.60 1.57 -24.57 3.63 -19.93 7.06 -34.76 0.55 -58.27 

Viking 0.33 -18.66 1.00 -30.41 5.00 -65.84 0.47 -29.61 1.36 -45.02 
WordEditing 0.36 -10.30 0.97 -23.17 1.24 -24.42 4.21 -42.10 1.57 -53.71 

Average (ALL) 0.94 -11.78 2.04 -29.36 2.78 -32.95 4.29 -36.80 0.98 -51.34 
 Table XII 

AVERAGE COMPUTATIONAL OVERHEARDS OF THE PROPOSED ALGORITHM 

Computational Overhead 
Proportion (%) 

Feature Extraction Decision Determination 
1.32 0.01 

 Table XIII 
∆Time and BDBR OF THE PROPOSED ALGORITHM FOR YUV 4:2:0 AND RGB 

4:4:4 SEUQNECES UNDER CTC   

Sequence Categories YUV 4:2:0 RGB 4:4:4 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Average (TGM+M) 1.66 -37.92 1.58 -48.98 
Average (A+CC) 1.79 -59.82 0.80 -55.30 
Average (ALL) 1.68 -41.29 1.41 -49.98  

Fig. 12. BDBR and ΔTime of the proposed algorithm under LD configuration. 
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Table XV. It is observed that in the depth level of 3, IBC or PLT 
mode is always checked with other modes because of the 
decision tree constrain technique. However, the proposed 
overall framework is very efficient for larger CU sizes. In the 
depth level of 0, 56.84% CUs directly go to the next depth level 
because only Intra mode and IBC mode exist. In the depth levels 
of 1 and 2, 42.67% and 28.20% CUs select either IBC mode or 
PLT mode, respectively. By further reducing the mode 
candidates for SCBs in the proposed overall framework, it 
provides 20.48%–38.49% larger encoding time reduction for 
“ChineseEditing”, “Console” and “Desktop” compared with 
[16]–[18], as shown in Table X. Furthermore, by considering 
IBC mode and PLT mode individually, our proposed 
framework can also break the upper limit of the fast mode 
decision methods which only use Intra mode for NIBs and test 
both IBC mode and PLT mode for SCBs, as illustrated in Table 
III. This observation shows the advantage of the sequential 
arrangement of mode decision compared with the fast mode 
decision frameworks in [16]–[18], which only perform CU type 
classifications. In the practical application of real video services, 
parallelizing is an effective way to speed up the encoding 
process. One concern of the proposed algorithm can be the 
difficulties in the mode decision parallelizing due to the 
sequential arrangement of mode decision. However, the 
proposed algorithm can be integrated with other parallel coding 
techniques which encode several regions in a frame in parallel 
to solve this problem, such as the existing tile structures and 
wavefront parallel processing (WPP) in SCM.  

D. Evaluation of the Feature Subset Selection and the 
Decision Tree Constraint Techniques  

To validate the efficiency of the feature subset selection and 
the decision tree constraint techniques, experiments were 
performed by implementing the overall framework without the 
feature subset selection and decision tree constraint techniques, 

and the results are shown in table XVI. Compared with the case 
without performing feature subset selection, the proposed 
overall framework in Table XIV provides 3.97% larger 
encoding time reduction with 0.13% decrease in BDBR. 
Therefore, better performance is provided by adopting the 
feature subset selection technique, because the impact of 
irrelevant or redundant features is removed. Besides, it is 
observed that the decision tree constraint technique helps to 
reduce BDBR increase of the proposed framework at the cost of 
less encoding time reduction. On average, the encoding time 
saving of the proposed framework is slightly reduced from 
52.90% to 47.62% while the increase in BDBR is reduced from 
3.07% to 1.42% by implementing the decision tree constraint 
technique. Specifically, we can see that the performance 
improvement for sequences in A and CC is limited, but 
sequences in TGM and M gain large benefits from the decision 

Table XIV 
PERFORMANCE OF EACH INDIVIDUAL MODE DECISION ALGORITHM AND THEIR COMBINATIONS FOR YVU 4:4:4 SEQUENCES 

Sequences IBC Mode Decision PLT Mode Decision PLT+IBC Mode Decision Intra Mode Decision Overall Framework 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing (T) 0.35 -21.79 0.27 -1.37 0.62 -23.08 0.17 -29.54 0.60 -53.06 
Console (NT) 0.15 -26.56 0.12 -2.12 0.25 -27.68 0.37 -27.81 0.60 -54.14 
Desktop (NT) 0.45 -33.40 0.37 -1.58 0.65 -34.64 0.33 -27.74 1.03 -62.34 

FlyingGraphics (T) 0.31 -26.52 0.11 -2.01 0.45 -27.40 1.21 -24.14 1.56 -52.13 
Map (T) 0.34 -13.97 0.06 -4.24 0.57 -17.97 0.85 -14.56 1.36 -31.89 

Programming (NT) 0.87 -21.64 0.93 -6.17 1.88 -27.62 0.37 -20.84 2.20 -48.94 
SlideShow (T) 2.26 -16.23 0.41 -11.09 3.09 -28.26 0.71 -8.31 3.76 -35.67 

WebBrowsing (NT) 0.67 -31.58 0.11 -3.83 0.78 -34.83 0.25 -22.56 0.98 -57.23 
BasketballScreen (T) 1.05 -22.76 0.21 -8.98 1.31 -31.58 0.56 -17.85 1.87 -48.60 

MissionControlClip2 (T) 1.65 -21.72 0.58 -11.66 2.10 -33.55 0.74 -14.50 2.51 -47.30 
MissionControlClip3 (NT) 0.91 -24.09 0.30 -8.28 1.04 -31.53 0.67 -19.42 1.68 -52.21 

Robot (T) 0.57 -23.08 0.67 -17.97 1.38 -43.02 0.12 -3.11 1.51 -47.19 
EBURainFruits (T) 0.12 -26.12 0 -11.03 0.13 -38.15 0.02 0.22 0.16 -39.07 

Kimono1 (NT) 0.04 -24.28 0 -9.76 0.04 -37.48 0.04 2.51 0.05 -36.93 
Average (NT) 0.52 -26.93 0.31 -5.29 0.77 -32.30 0.34 -19.31 1.09 -51.97 

Average (TGM+M) 0.82 -23.66 0.32 -5.58 1.16 -28.92 0.57 -20.66 1.65 -49.41 
Average (A+CC) 0.24 -24.49 0.22 -12.92 0.52 -39.55 0.06 -0.13 0.57 -41.06 
Average (ALL) 0.70 -23.84 0.30 -7.15 1.02 -31.20 0.46 -16.26 1.42 -47.62 

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained decision trees. 
Table XV 

MODE DECISION DISTRIBUTION OF THE PROPOSED OVERALL ALGORITHM FOR YVU 4:4:4 SEQUENCES 
CU Size Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT No Mode 
64×64 27.60 6.70  8.86    56.84 
32×32 41.79 1.15 41.52 0.08 4.30 3.674 0.02 7.48 
16×16 53.23 3.89 24.31 1.49 3.06 12.18 1.03 0.82 
8×8 52.06 0 0 4.01 1.97 27.14 14.81 0 

 Table XVI 
PERFORMANCES OF THE PROPOSEED ALGORITHM WITH OTHER SETINGS FOR 

YVU 4:4:4 SEQUENCES 

Sequences 
Without Feature Subset 

Selection 
Without Decision Tree 

Constraint 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing 0.60 -48.06 1.77 -57.46 
Console 0.81 -48.06 1.75 -59.07 
Desktop 1.00 -58.62 3.06 -66.93 

FlyingGraphics 1.68 -42.28 3.35 -55.79 
Map 1.52 -28.83 3.38 -40.19 

Programming 2.17 -43.10 4.98 -55.51 
SlideShow 3.93 -33.84 6.94 -56.91 

WebBrowsing 1.25 -57.68 2.17 -60.75 
BasketballScreen 1.79 -43.58 4.72 -54.01 

MissionControlClip2 3.13 -42.57 4.85 -51.85 
MissionControlClip3 1.98 -45.97 3.52 -56.63 

Robot 1.61 -45.69 2.11 -48.76 
EBURainFruits 0.15 -37.16 0.29 -39.13 

Kimono1 0.05 -35.68 0.07 -37.64 
Average (TGM+M) 1.81 -44.78 3.68 -55.92 

Average (A+CC) 0.60 -39.51 0.82 -41.84 
Average (ALL) 1.55 -43.65 3.07 -52.90 
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tree constraint technique and the increase in BDBR is reduced 
by 2.03%. The reason is that IBC and PLT modes are very 
effective in 8×8 SCBs. Therefore, even small incorrect decision 
rate of IBC and PLT modes in 8×8 SCBs leads to large RD 
performance loss. By using the decision tree constraint 
technique, additional mode candidates are available at the last 
depth level (depth level of 3), and the RD performance loss 
brought by the incorrect decision is reduced effectively.  

V. CONCLUSION AND FUTURE WORK 
In this paper, a machine learning based fast mode decision 

framework is proposed for SCC. To avoid the exhaustive mode 
searching process, a flexible intra mode decision framework is 
proposed by utilizing a sequential arrangement of mode 
classifiers. Compared with the traditional methods that IBC and 
PLT modes are both checked for SCBs, we insert a decision tree 
before checking each mode with the help of new dynamic 
features, so that the decision of each mode is made separately, 
and it allows the case that only mode is checked for a SCB. 
Experiments results have shown that the proposed framework 
can provide an average computational complexity reduction of 
47.62% with a negligible increase in BDBR of 1.42%. Future 
works may include fast SCC encoding algorithms based on 
CNNs, which is a powerful tool in many classification problems 
Nevertheless, the drawback CNNs is the high computational 
complexity brought by convolutional operation in the test phase, 
and it might be solved by increasing the stride size and 
designing a multi-output CNN that makes predictions for 
multiple CUs in one test. However, this paper can be treated as 
the baseline for CNN approaches in the future. 
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