
Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the
IEEE by sending an email to pubs-permissions@ieee.org.

Abstract—The Screen Content Coding (SCC) extension of High
Efficiency Video Coding (HEVC) improves coding gain for screen
content videos by introducing two new coding modes, intra block
copy (IBC) and palette (PLT) modes. However, the coding gain is
achieved at the increased cost of computational complexity. In this
paper, we propose a decision tree based framework for fast intra
mode decision by investigating various features in training sets. To
avoid the exhaustive mode searching process, a sequential
arrangement of decision trees is proposed to check each mode
separately by inserting a classifier before checking a mode. As
compared with the previous approaches that both IBC and PLT
modes are checked for screen content blocks (SCBs), the proposed
coding framework is more flexible which facilitates either IBC or
PLT mode to be checked for SCBs such that computational
complexity is further reduced. To enhance the accuracy of decision
trees, dynamic features are introduced which reveal the unique
intermediate coding information of a coding unit (CU). Then, if all
modes are decided to be skipped for a CU at the last depth level,
at least one possible mode is assigned by a CU type decision tree.
Furthermore, a decision tree constraint technique is developed to
reduce the rate-distortion performance loss. Compared with the
HEVC-SCC reference software SCM-8.3, the proposed algorithm
reduces computational complexity by 47.62% on average with a
negligible Bjøntegaard delta bitrate (BDBR) increase of 1.42%
under all-intra (AI) configuration, which outperforms all state-of-
the-art algorithms in the literature.

Index Terms—Screen Content Coding (SCC), High Efficiency
Video Coding (HEVC), fast algorithm, machine learning, decision
tree.

I. INTRODUCTION

CREEN content video is an emerging video type due to the
fast development of the Internet and wireless

communication, and it has been applied to many applications,
such as online education, remote desktop, and web conferencing
[1]. Screen content videos often show a mixed content with both
nature image blocks (NIBs) and computer-generated screen
content blocks (SCBs) in a single frame, as shown in Fig. 1.

Compared with NIBs, SCBs exhibit different characteristics,
including no sensor noise, large flat areas with a single color,
repeated patterns and limited colors. While NIBs can be well
compressed by the conventional intra (Intra) mode in High
Efficiency Video Coding (HEVC) [2], new techniques are
necessary for SCBs. Therefore, the Joint Collaborative Team
on Video Coding (JCT-VC) has developed Screen Content
Coding (SCC) extension [3] on top of HEVC to explore new
encoding tools for screen content videos since January 2014,
and it was finalized in 2016.

In SCC, two new intra coding tools, intra block copy (IBC)
mode [4] and palette (PLT) mode [5], [6] are particularly
effective in addressing the blocks with repeated patterns and
limited colors, respectively. However, they bring significant
burden to a SCC encoder, which take up over 50% encoding
time of the mode searching process.

To simplify the encoding process of HEVC, a fast CU
partitioning algorithm was proposed in [7] by using Bayesian
decision rule. CU partitioning process is early terminated by
using joint online and offline learning. In [8], a fast mode
decision algorithm was proposed to predict the RD cost and bit
cost of a CU based on the statistical analysis. Then unnecessary
modes are skipped according to the prediction. In [9], both the
mode searching process and the CU partitioning process are
terminated adaptively by analyzing the RD cost of the current
CU. Although they work well for computational complexity
reduction of HEVC, they are not suitable for SCC in which new
coding modes such as IBC and PLT have been adopted.

To reduce the computational complexity of SCC, fast mode
searching algorithms were designed in [10]–[12], and fast CU

Machine Learning Based Fast Intra Mode
Decision for HEVC Screen Content Coding Via

Decision Trees
Wei Kuang, Student Member, IEEE, Yui-Lam Chan, Member, IEEE, Sik-Ho Tsang, Member, IEEE,

and Wan-Chi Siu, Life Fellow, IEEE

S

Fig 1. NIB and SCB in the first frame of “WebBrowsing”.

Manuscript received May 8, 2018; revised October 24, 2018; accepted
February 20, 2019. This work was supported by the Center for Signal
Processing, Department of Electronic and Information Engineering, The Hong
Kong Polytechnic University, the research studentship provided by the
University, and a grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (Grant No. PolyU 152112/17E).

The authors are with the Center for Signal Processing, Department of
Electronic and Information Engineering, The Hong Kong Polytechnic
University, Kowloon, Hong Kong (e-mail: wei.kuang@connect.polyu.hk;
enylchan@polyu.edu.hk;sik-ho.tsang@polyu.edu.hk;enwcsiu@polyu.edu.hk).

This is the Pre-Published Version.

The following publication W. Kuang, Y. -L. Chan, S. -H. Tsang and W. -C. Siu, "Machine Learning-Based Fast Intra Mode Decision for HEVC Screen
Content Coding via Decision Trees," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 5, pp. 1481-1496, May 2020 is
available at https://doi.org/10.1109/TCSVT.2019.2903547.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

size decision algorithms were suggested in [13]–[15]. Then,
various algorithms were integrated to make both fast mode
decision and CU size decision in [16]–[18]. In [10], a new mode
was proposed to fill a noiseless smooth CU by its boundary
samples. In [11], a hash value is calculated to adaptively skip
the local search process in IBC mode. In [12], IBC mode is
skipped for zero activity CUs and low gradient CUs. In [13], a
neural network based fast algorithm was proposed to make fast
CU size decision by utilizing features that describe CU statistics
and sub-CU homogeneity. However, high RD performance loss
is induced by this approach. In [14], for static regions,
collocated CU depth and mode information is utilized to predict
the current CU size. Besides, an approach with adaptive
searching step was proposed to simplify the block matching
process of IBC mode. However, this algorithm is not suitable
for screen content videos with many dynamic regions. In [15],
a fast CU size decision algorithm based on entropy was
proposed. Some rules are firstly set based on entropy to make
CU partitioning decision, and then the coding bits are used to
improve the decision accuracy. The algorithms in [16]–[18] are
mainly based on the assumption that NIBs select Intra mode
while SCBs select IBC and PLT modes. They then classify CUs
into NIBs and SCBs to make fast mode decision. In [16], a
decision tree based classifier was firstly designed to classify
CUs into NIBs and SCBs, so that NIBs only check Intra mode
while SCBs check IBC and PLT modes. Besides, to speed up
the encoding of NIBs, two classifiers were designed to predict
the Intra mode direction from 35 prediction modes and early
terminate the partitions of NIBs, respectively. In [17], a CU
type classification is performed by CU content analysis. While
IBC and PLT modes are skipped for some smooth NIBs, all
modes are checked for SCBs and non-smooth NIBs. Then the
depth information of temporal and spatial neighbor CUs as well
as coding bits are utilized to make fast CU size decision. In [18],
Intra mode is firstly checked for all CUs with 2N×2N prediction
units (PUs), and then an early CU partitioning decision is made.
If a CU is classified as a partitioning CU, it directly goes to the
next depth level. Otherwise, it is further classified as a SCB or
NIB. If it is a SCB, both IBC and PLT modes are checked. If it
is a NIB, only Intra mode for N×N PUs in the depth level of 3
is tested. Although the methods in [16]–[18] provide better
performance compared with the previous works, they mainly
focus on the fast encoding of NIBs. For SCBs, either both IBC
and PLT modes or all modes need to be checked. Therefore, it
is desired that mode candidates can be further reduced for SCBs.

In this paper, we propose a machine learning based fast intra
mode decision algorithm for SCC. By extracting some features
from the original encoding process, fast mode decision is

modeled as a data classification problem which is applied to
predict whether a certain mode is checked or not. The
classification is efficiently solved by using decision tree based
classifiers. Specifically, decision tree based classifiers were
also adopted in [16] and [18]. However, they treat the decisions
for IBC and PLT modes the same, and they simply designed CU
type classifiers rather than mode classifiers. As a result, a SCB
needs to check both IBC and PLT modes by using the classifiers
in [16] and [18], although a SCB is finally encoded by either
IBC mode or PLT mode. To address this problem, we propose
a more flexible coding framework by inserting a classifier
before checking a mode in a CU that is completely different
from [16] and [18]. The flexible coding framework makes mode
decision for various modes sequentially, so that many SCBs can
check only one mode from IBC mode or PLT mode. This new
coding framework considers all modes one by one which has
the following two advantages. (1) The previous fast mode
decision approaches in [16]–[18] only classify CUs into SCBs
and NIBs, so that IBC and PLT modes are always checked
together for SCBs. On the contrary, the coding framework
proposed in this paper performs mode decision one by one, and
it allows the case that only one mode is checked for SCBs such
that computational complexity can be further reduced; (2) The
proposed coding framework facilitates the use of the dynamic
features newly suggested in this paper, while only static
features describing CU content are used in [16]–[18]. These
dynamic features vary as a CU goes through different classifiers,
which provides more precise intermediate coding information
of a CU to the classifiers, resulting in accurate mode decision
in SCC. Intermediate coding information is referred to as the
best mode or the best RD cost so far of the current CU before
checking a target mode. Besides, a feature subset selection
approach is applied to allow classifiers to select feature subsets
for different tasks adaptively, such as for different modes in
different depth levels. Therefore, the impact of irrelevant or
redundant features is removed, and a valuable insight into
feature importance is provided for different tasks.

The rest of this paper is organized as follows. Section II
presents the overview and analysis of intra mode decision in
SCC. Section III presents the proposed fast mode decision
techniques for SCC. The experimental results are presented in
Section IV to verify the performance of the proposed work.
Finally, Section V concludes the paper.

II. OVERVIEW AND ANALYSIS OF INTRA MODE DECISION IN
SCC

SCC inherits the quadtree-based block partitioning scheme
from HEVC and the intra mode decision process is performed
for CUs with different sizes recursively. An example of a CTU
partition and its corresponding partitioning structure is shown in
Fig. 2. In SCC, a frame is divided into non-overlapping CTUs of
64×64 pixels (depth level of 0). Then a CTU is further divided
into 4 CUs of 32×32 pixels (depth level of 1), and this
partitioning process continues until CUs of 8×8 pixels (depth
level of 3) are reached. To efficiently encode a CU, two
additional modes, IBC mode and PLT mode, are introduced.
IBC mode is a block matching based intraframe approach, and
it is also referred to as motion compensation in the same picture
in the international coding standard. For the sake of simplicity,

Fig. 2. A CTU partition and its corresponding partitioning structure.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

its short form “IBC” is used in this paper. IBC mode searches in
the reconstructed regions of the current frame to find the best
reference block for the current CU. It includes three steps – IBC
predictor, IBC merge & skip and IBC search. IBC predictor
simply checks a set of block vectors (BVs) from the two last
encoded CUs and the neighbor CUs of left, above, collocated,
below left, above right and above left. IBC merge & skip is the
intra version of the merge and skip mode for inter prediction in
HEVC, where IBC merge signals residues to a SCC decoder but
IBC skip does not. IBC search finds the best matched block in
the reconstructed region of the current frame for 16×16 CUs
and 8×8 CUs, and it provides different searching strategies for
different CU and PU sizes. The searching strategies include the
full vertical and horizontal searches, local vertical and
horizontal 1D searches, and 2D pre-defined area search. For a
16×16 CU, only the 2N×2N PU with full vertical and horizontal
searches are performed. It is due to the fact that a large CU size
tends to have fewer repeated patterns within the same frame.
For an 8×8 CU, additional PU sizes are allowed to find more
repeated patterns. If it is a N×2N PU, only full vertical and
horizontal searches are carried out. If it is a 2N×N or 2N×2N
PU, local vertical and horizontal 1D searches, and 2D pre-
defined area search within the current CTU and left CTU are
performed. Besides, a hash value based fast searching method
is implemented for 8×8 CUs with 2N×2N PUs, where only
blocks having the same hash value as the current CU are
searched. Therefore, IBC search comes with the highest
computational complexity among the three steps. A detailed
technical overview of IBC can be found in [4]. PLT mode is
designed to improve the encoding efficiency for CUs with
limited colors. Several representative colors in a CU are selected
to form a palette table. Then an index map is generated to
indicate the index of the representative color for each pixel
location. In the encoding process of a CU, Intra mode, IBC mode
and PLT mode are exhaustively checked, and the encoding
procedure implemented in the HEVC-SCC reference software,
Screen Content Model (SCM), is shown in Fig. 3. At the
beginning, IBC predictor is checked for CUs with sizes from
32×32 down to 8×8, If the distortion is zero after checking IBC
predictor, Intra mode inherited from HEVC is skipped.
Otherwise, Intra mode is checked, which includes 33 directional
modes, plus planar and DC modes. Then it is followed by
checking BV predictors of IBC skip & merge for all CUs. If IBC

skip is selected as the best mode among IBC predictor, Intra, and
IBC skip & merge, further mode searching is terminated.
Otherwise, if the best mode is IBC predictor, Intra or IBC merge,
the following IBC search and PLT modes are checked.
Specifically, only CUs with sizes of 16×16 and 8×8 need to
check IBC search. Finally, PLT mode is checked for CUs with
sizes from 32×32 down to 8×8. In the mode searching process,
the coding performance of each mode is evaluated by calculating
a Lagrange RD cost function, 퐽 , as

퐽 = 퐷 + 휆 × 푅 (1)
where 퐷 denotes the sum of the squared error between the
current CU and its reconstructed CU, 휆 is a Lagrange multiplier
and 푅 is the actual encoding bits for signaling the mode and
the residues. The mode with the smallest RD cost is selected as
the best mode of the CU. All CU partitions in a CTU need to go
through this mode searching process, and the final partitioning
structure of a CTU is selected as the one with the smallest RD
cost, and it is involved in the final encoding bitstream.

To have a better understanding of the intra mode decision
process in SCC, several experiments were performed. First, to
analyze the computational complexity distribution in SCC, we
encoded SCC test sequences by SCM of version 8.3, SCM-8.3
[19]. The test sequences are shown in Table I, which were
selected by the experts in the JCT-VC group. They are classified
into 4 categories according to their video content, where TGM
represents text and graphics with motion, M represents mixed
content, A represents animation and CC represents camera-
captured content. While sequences in TGM and M are typical
screen content videos that contain both NIBs and SCBs, the
sequence in A is similar to the camera-captured content video.
Therefore, sequences in A and CC are grouped together for the
analyses in the following sections. Sequences marked with T are
used for extracting training frames, and sequences marked with

Table II
ENCODING TIME DESTRIBUTION OF EACH MODE

CU size Intra (%)
IBC

PLT (%) Predictor (%) Merge & Skip
(%)

Search (%)

64×64 5.07 3.37
32×32 4.82 0.24 5.14 5.56
16×16 7.43 0.54 7.04 6.30 4.65
8×8 23.10 0.46 3.79 17.91 4.58

Total 40.42 1.24 19.34 24.21 14.79 44.78

Fig. 3. Encoding procedure implemented in SCM.

TABLE I
SCC TEST SEQUENCES IN 4 CATEGORIES

Categories Sequences Resolution No. of Frame Frame
Rate (Hz)

TGM ChineseEditing (T) 1920×1080 0-599 60
Console (NT) 1920×1080 0-599 60
Desktop (NT) 1920×1080 0-599 60

FlyingGraphics (T) 1920×1080 0-299 60
Map (T) 1280×720 0-599 60

Programming (NT) 1280×720 0-599 60
SlideShow (T) 1280×720 0-499 20

WebBrowsing (NT) 1280×720 0-299 30
M BasketballScreen (T) 2560×1440 322-621 60

MissionControlClip2 (T) 2560×1440 120-419 60
MissionControlClip3 (NT) 1920×1080 0-599 60

A Robot (T) 1280×720 0-299 30
CC EBURainFruits (T) 1920×1080 0-249 50

Kimono1(NT) 1920×1080 0-119 24
T: Training; NT: unseen sequences to the trained decision trees.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

NT are unseen sequences to the trained decision trees. They will
be explained in Section III. A. All test sequences were encoded
with quantization parameters (QPs) of 22, 27, 32, and 37 using
SCM-8.3 under All Intra (AI) configuration and the common
test conditions (CTC) [20]. The test platform used for
simulations was a HP EliteDesk 800 G1 computer with a 64-bit
Microsoft Windows 10 OS running on an Intel Core i7-4790
CPU of 3.6 GHz and 32.0 GB RAM. Table II shows the
distribution of encoding time for each mode. We can see from
the table that Intra mode and IBC mode are the two modes with
very high computational complexity, which take up 40.42% and
44.78% of the total encoding time, respectively. Among the
three steps of IBC mode, IBC predictor has negligible
computational complexity while IBC merge & skip and IBC
search bring high computational burden to the SCC encoder. It
is also interesting to analyze the impact on quality of omitting
certain mode candidate in SCC. Experiments were performed by
disabling IBC mode, PLT mode, IBC+PLT modes and Intra
mode, respectively. Table III shows the Bjøntegaard delta
bitrate [21] and the change in encoding time brought by
disabling different modes compared with the original SCM-8.3,
which are denoted by BDBR and ΔTime, respectively. It should
be noted that a negative value of BDBR or ΔTime denotes
decrement in percentage as compared with SCM-8.3. We can
see from the table that the smallest BDBR increase is obtained

with 14.78% on average if Intra mode is disabled, but encoding
time is only reduced by 13.92%, which is not enough
considering the high computational complexity of SCC.
Besides, disabling IBC mode achieves the largest encoding time
reduction by 29.47% on average, but it brings a very high
increase in BDBR of 38.96%. However, it can be observed that
for sequences in A and CC, encoding time is reduced by 46.99%
while BDBR is increased by only 0.81% on average if PLT
mode and IBC mode are both disabled. For a sequence with
almost pure SCBs, such as “ChineseEditing”, “Console” or
“Desktop”, disabling Intra mode leads to about 30% encoding
time reduction while less than 1.5% increase in BDBR is
observed. This observation proves that NIBs usually select Intra
mode while SCBs usually select IBC mode or PLT mode. It
should be noted that for the sequences with almost pure SCBs,
the results of disabling Intra mode are the upper limit of the fast
mode decision methods [16]–[18] which only classify CUs into
NIBs and SCBs. To break the limit, it is desired the further
classifications are made inside IBC and PLT modes for SCBs.

III. PROPOSED DECISION TREE BASED FRAMEWORK FOR FAST
INTRA MODE DECISION

The previous fast SCC encoding algorithms are mainly
focused on fast CU size decision and fast mode decision made
by CU type classification, as shown in Fig. 4(a) and (b),

TABLE III
BDBR AND ENCODING TIME INCREASE BROUGHT BY DISABLING DIFFERENT MODES COMPARED WITH ORIGINAL SCC

Sequences Disable IBC Disable PLT Disable PLT+IBC Disable Intra
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing 21.41 -35.98 50.86 -14.16 142.21 -51.61 0.88 -30.85
Console 40.20 -26.67 42.87 6.63 239.62 -36.02 0.69 -31.58
Desktop 115.02 -29.37 39.91 3.25 451.92 -41.04 1.49 -30.26

FlyingGraphics 72.25 -20.78 24.30 -2.24 191.38 -48.03 2.67 -26.60
Map 9.46 -42.78 19.03 -13.64 49.19 -49.98 11.67 -20.30

Programming 29.94 -23.32 16.43 -11.58 101.47 -43.70 9.32 -28.00
SlideShow 13.49 -20.77 8.00 -20.89 33.12 -35.84 15.65 -34.24

WebBrowsing 130.36 -27.71 34.80 -4.60 469.80 -40.96 6.95 -24.11
BasketballScreen 40.16 -28.10 15.69 8.10 109.88 -47.77 15.54 -17.74

MissionControlClip2 26.18 -29.49 7.78 -17.69 55.68 -50.40 17.56 -19.41
MissionControlClip3 45.38 -28.38 13.01 -11.03 121.55 -46.94 16.32 -20.10

Robot 1.37 -33.02 0.84 -20.33 2.35 -52.63 32.86 6.87
EBURainFruits 0.15 -36.42 -0.04 -13.33 0.10 -47.86 32.02 36.60

Kimono1 0.02 -29.79 -0.02 -13.70 -0.02 -40.47 43.29 44.90
Average (TGM+M) 49.44 -28.49 24.79 -7.08 178.71 -44.75 8.98 -25.74

Average (A+CC) 0.51 -33.08 0.26 -15.7 0.81 -46.99 36.06 29.46
Average (ALL) 38.96 -29.47 19.53 -8.94 140.59 -45.23 14.78 -13.92

 (a) (b) (c)
Fig. 4. CU encoding flowcharts of various fast SCC encoding algorithms. (a) Typical fast CU size decision algorithm [13]–[15], (b) typical fast mode decision
algorithm by CU type classification [16]–[18], and (c) proposed fast mode decision algorithm.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

respectively. However, these frameworks are not flexible and
are difficult to achieve a good tradeoff between the
computational complexity and coding efficiency. For fast CU
size decision approaches [13-15], all modes are either checked
or skipped together in a CU as shown in Fig. 4(a). For fast mode
decision approaches [16-18] using CU type classification in Fig.
4(b), the screen content modes, IBC mode and PLT mode, are
either checked or skipped together. In screen content videos,
some CUs are very difficult to be decided whether they are
SCBs or NIBs even by human beings, and the CU type
classification approaches are not efficient for these CUs. On the
contrary, our proposed framework provides larger flexibility by
inserting a classifier before checking a mode in a CU, as shown
in Fig. 4(c). By deriving the dynamic features right before
checking a mode, more accurate decision is made. On the one
hand, encoding time can be further reduced by allowing the case
that only one mode is checked for a SCB. On the other hand,
RD performance can be improved by allowing PLT mode to be
checked for a SCB even if IBC mode is wrongly skipped. It is
also noted that the values of the dynamic features newly defined
in this paper are changing as a CU goes through different
classifiers, and only our framework in Fig. 4(c) can adopt these
dynamic features proposed in this work. Since there are
numerous mode candidates in different CU sizes, it is difficult
to manually select the optimal features and classification
criterions to build accurate mathematical models. To solve this
problem, 11 features, which are related to the mode decision,
are proposed to train various decision tree based classifiers from
off-line learning. Therefore, the optimal features and
classification criterions are reasonably selected based on the
training data. In the test phase, the trained classifiers are
implemented in SCM to make fast mode decision.

A. Description of the Classifier Using Decision Tree
Decision tree is one of the most popular machine learning

algorithms. In this paper, we utilize a decision tree as the
classifier, because it comes with low complexity in the testing
phase and can be easily implemented into a SCC encoder as a
set of “if-then-else” conditions. A decision tree based classifier
is a flowchart like tree structure, as shown in Fig. 5. It is
composed of a root node, internal nodes and leaf nodes. For
each non-leaf node, i.e., a root node or an internal node, it
denotes a test on a feature of the incoming sample. Each branch
after a non-leaf node denotes the outcome of the test, and each
leaf node denotes a class label. In the specific case of the mode
selection problem in a CU, the class label of 1 or 0 represent
whether the target mode is checked or not.

The classifiers based on decision trees are trained by the C4.5
algorithm [23] in the Waikato Environment for Knowledge
Analysis (WEKA) [24] version 3.8 in this paper. To generate
training frames which reflect the characteristic of SCC

sequences, 8 frame-skipped sequences are formed by extracting
the first frame of each second from the sequences marked with
T in Table I. Training frames from different sequences were
encoded by the original SCM-8.3 encoder with QPs at 22, 27,
32, and 37 using AI configuration to generate training data.

If a node of a decision tree only contains samples from one
class, it is defined to have pure samples. Otherwise, the
impurity is calculated to represent how impure the samples in
the node are. To reduce the impurity of the node, a feature 퐴
with a classification threshold 푇퐻 is selected to further
classify the samples into two child nodes, and the impurity
reduction is calculated by comparing the impurities of two child
nodes and the parent node. In the training process of a decision
tree, the impurity reduction by splitting a parent node to two
child nodes is calculated iteratively for each feature 퐴 with a
classification threshold 푇퐻 . The larger the impurity reduction
is, the better the feature and the classification threshold are. In
the C4.5 algorithm, the impurity is calculated by entropy. Then
the impurity reduction with 퐴 and 푇퐻 is measured by the gain
ratio 퐺푎푖푛푅푎푡푖표(퐴, 푇퐻)

퐺푎푖푛푅푎푡푖표(퐴, 푇퐻) = (,)
(,)

 (2)

where 퐼푛푓표퐺푎푖푛(퐴, 푇퐻) is the information gain by splitting a
node 푡 into its child nodes 푡 , 푡 using a feature 퐴 with a
threshold 푇퐻 . It is calculated by the entropy reduction after
splitting as

퐼푛푓표퐺푎푖푛(퐴, 푇퐻) = 퐸푛(푡) − ∑ 퐸푛(푡) (3)

where 푁 and 푁 represent the number of samples in the node
푡 and child nodes 푡 , 푖 ∈ {퐿, 푅}. Let 푝(휔) be the probability
of training samples belonging to the class 휔 in a node 푡, 푗 ∈
{0,1}. The entropy 퐸푛(푡) in the node 푡 is calculated as

퐸푛(푡) = − ∑ 푝(휔)푙표푔 푝(휔). (4)

The normalization term 푆푝푙푖푡퐼푛푓표(퐴, 푇퐻) is defined by

푆푝푙푖푡퐼푛푓표(퐴, 푇퐻) = − ∑ 푙표푔 . (5)

The best feature and the threshold are selected as the ones with
maximum gain ratio to split a node. A decision tree is trained
node by node, and the splitting of a node is terminated if the
number of training samples arrived the node is less than or equal
to 1% of the total training samples. Then a reduced error
pruning process [25] is performed to prune the decision tree
backward to avoid overfitting. After generating a decision tree,
the classification accuracy of the tree is given by a 10-fold
cross-validation process [26], which calculates the percentage
of correctly classified samples in the total training samples.

B. Proposed Dynamic Features and Their Advantages
In general, the precision of SCC mode decision in a

classification task is highly dependent on the feature space used
to train the model. In most of the machine learning algorithms
adopted in mode decision of video coding, the features
extracted from a CU is always determined by its static content,
such as background color number, gradient, etc. These features
are called as static features in this paper.

Fig. 5. General structure of a decision tree based classifier.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

In contrast, we find that the probability of selecting IBC
mode as the optimal one depends on the spatial location of the
current CU, as shown in Fig. 6. Assume that CUA and CUB in
the example of Fig. 6 have the same static content. Even though
the static features extracted from CUA and CUB are the same,
the mode decision of these two CUs may be different. For
example, CUA may select PLT mode while CUB with the same
content is likely to select IBC mode because the search window
of CUB is larger resulting in a higher chance to find a good
repeated pattern with very low RD cost by using IBC mode. By
taking this specific characteristic of screen content videos into
account, we propose to extract the IBC mode flag of the current
CU before checking the target mode, 퐹푙푎푔 , (Feature 1) as
dynamic information. If the best mode so far of the current CU
before checking the target mode is a sub-mode (i.e. IBC
predictor, IBC merge & skip, or IBC search) of IBC mode,
퐹푙푎푔 is set to 1. Otherwise, 퐹푙푎푔 is set to 0. It is noted
that, for CUB in Fig. 6, the chance of 퐹푙푎푔 equal to 1 is
higher as compared with that of CUA even though they have
same content. Therefore, this feature may vary according to the
spatial location, and it is considered as a dynamic feature.

In addition, the dynamic RD cost of the best mode so far in
the current CU before checking the target mode, 퐽
(Feature 2) is another dynamic feature proposed in this paper
for fast mode decision. Similarly, 퐽 of CUB in Fig. 6 is
likely to become smaller since it is easier to get a good repeated
pattern in the reconstructed area. Besides, 퐽 is not only
related to the spatial location but varies during the encoding
process. For instance, 퐽 to Classifier 2 in Fig. 4(c) may be
different from 퐽 to Classifier 3 since 퐽 has already gone
through Intra mode and IBC mode while only intra mode is
tested for computing 퐽 . The variation property is well
suited for our proposed framework in Fig. 4(c) in which the
values of this dynamic feature entered to various decision trees
are different. This new arrangement is of great importance to
SCC mode decision process using classification, which will be
verified in the following sections. 퐽 reveals the unique
intermediate coding information of a CU, and its value varies
as the CU goes through different decision trees. By
implementing decision trees right before the target mode, the
most updated values of these dynamic features (Feature 1 and
Feature 2) are obtained for different trees to improve the
decision accuracy.

By using the proposed framework with decision trees prior
to checking a mode in a CU, the new dynamic features with the
following nine static features are then selected based on our
prior knowledge for the training of decision trees in Fig. 4(c).

Feature 3: Background color number BCN. The background
color in a CU is defined as the color with the highest occurrence

frequency within the CU, and BCN is calculated by counting the
number of the background color pixels.

Feature 4: Distinct color number DCN. DCN is calculated by
counting the pixels in a CU with different sample values.

For BCN and DCN, all three components of a pixel (Y, U, V
in YVV 4:4:4 or R, G, B in RGB 4:4:4) are stacked to form a
24-bit sample value. For sequences in YUV 4:2:0 format, only
the luminance component is utilized as an 8-bit sample value.

Features 5–8: High gradient pixel number 퐻퐺푁 , 퐻퐺푁 ,
 퐻퐺푁 , 퐻퐺푁 . The high gradient pixel is utilized to detect sharp
edges in a CU. A pixel is defined as a high gradient pixel [27]
if the luminance difference of the current pixel 푌 , and one of
the neighbor pixels 푌± , and 푌 , ± located at 0, 90, 180 and
270 is larger than a threshold 푇퐻

푌 , − 푌 ± , > 푇퐻 or 푌 , − 푌 , ± > 푇퐻 (6)
where 푖 and 푗 denote the row and column indices of the pixel.
푇퐻 is a threshold controlling the sharpness of the edges for
detection, which is set to 32 in [27]. To detect edges with
different sharpness in our proposed algorithm, we set another
three values to 푇퐻 . Totally 4 different high gradient pixel
numbers, 퐻퐺푁 , 퐻퐺푁 , 퐻퐺푁 , and 퐻퐺푁 , are calculated by
counting high gradient pixels with 푇퐻 at 4, 8, 16, and 32,
respectively. Considering that the proposed algorithm is a
machine learning based approach, it lets the decision tree select
the features to be used based on the off-line training. It implies
to select which value(s) of 푇퐻 to be used in each decision tree.
Therefore, we do not need to manually select which particular
value(s) of 푇퐻 in the final decision trees.

It is noted that sequences in RGB 4:4:4 format are converted
to YUV 4:4:4 format to get the luminance component.

Features 9–10: CU horizontal and vertical activities HorAct
and VerAct. They have been used for skipping IBC mode
adaptively in the original SCM-8.3 and defined as

퐻표푟퐴푐푡 = ∑ ∑ |푌 , − 푌 , | (7)
푉푒푟퐴푐푡 = ∑ ∑ |푌 , − 푌 , |. (8)

Feature 11: CU variance Var. Var can well represent the
smoothness of a CU, which is defined as

푉푎푟 =
×

∑ ∑ (푌 , − 푌) (9)

where Y is the average luminance value over the current CU.
Features 3–11 are static features which have fixed values in

a CU. Therefore, they are obtained once for a CU and shared
among different decision trees.

C. Fast Mode Decision Design
To make fast mode decision in SCC, the selection of Intra

mode, IBC mode, and PLT mode is investigated by adopting
different decision trees in our new coding framework. Then, a
decision tree for performing CU type classification is trained at
the last depth level to avoid the situation that all modes are
skipped for a CTU. In this sub-section, the detailed design of
the new coding framework is discussed.
1) Feature Analysis

Among the three coding modes in SCC, Intra mode is the
only mode inherited directly from HEVC. While Intra mode is
very efficient for NIBs, IBC mode and PLT mode are both
specially designed for SCBs. To perform fast mode decision, a

Fig. 6. Two CUs with same content in a frame.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

common idea is to classify CUs into NIBs and SCBs by
analyzing their content characteristics. Then IBC and PLT
modes are checked for SCBs while Intra mode is checked for
NIBs. However, such approach is not optimal since IBC and
PLT modes are always checked together for SCBs.

To understand the distributions of Intra, IBC and PLT modes
over different features, we randomly selected 300,000 16×16
CUs from the training samples, and the number of the CUs with
each mode is 100,000. First, the mode distributions over the
dynamic features obtained right before the target mode were
investigated. Fig. 7 shows the percentages of CUs selecting the
target mode and other modes in terms of 퐹푙푎푔 (Fig. 7(a)-(c))
and 퐽 (Fig. 7(d)-(e)). If 퐹푙푎푔 before checking the target
mode is 1, the CU is more likely to be a SCB, otherwise, it more
likely to be a NIB. Therefore, it is observed in Fig. 7(a) that the
percentage of Intra mode is very low if 퐹푙푎푔 before
checking Intra mode is 1. On the contrary, the percentages of
IBC mode and PLT mode are low if 퐹푙푎푔 before checking
the target mode is 0, as shown in Fig. 7(b) and Fig. 7(c),
respectively. Before checking Intra mode, 퐽 is highly
correlated to 퐹푙푎푔 . If IBC predictor does not provide a valid
BV for a CU, 퐹푙푎푔 would be 0 and the value of 퐽
becomes very large. Otherwise, the value of 퐽 is relatively
small if 퐹푙푎푔 is 1. Therefore, the percentage of CUs
selecting Intra mode is very low if the value of 퐽 is small,
as shown in Fig. 7(d). It is also observed in Fig. 7(e) that if 퐽
before checking IBC mode is very large, the percentage of IBC
mode would be low. The reason is that for CUs with very large
values of 퐽 , they usually have complex texture, and it is
difficult to find repeated patterns for the complex texture CUs
by IBC mode. Besides, Fig. 7(f) shows that the percentage of
PLT mode is low for CUs with small value of 퐽 . The reason
is that the CU with small value of 퐽 before checking PLT
mode may have been efficiently encoded and the checking of
PLT mode becomes unnecessary. The discrepancy between Fig.
7(e) and Fig. 7(f) verifies that PLT mode and IBC mode have
different characteristics and should not use the same classifier
when the dynamic features are adopted.

Then the mode distributions of the static features shared
among different decision trees were also investigated. Fig. 8
shows the mode distributions in terms of 5 representative
features: (a) DCN, (b) BCN (c) 퐻퐺푁 , (d) HorAct and (e) Var.
It is observed that the percentage of Intra mode increases as
DCN gets larger, or BCN, 퐻퐺푁 , HorAct, and Var get smaller.
The reason is that Intra mode is designed for NIBs, and they
tend to have larger DCN, smaller BCN and be smoother.
Besides, it is also observed that the percentage of PLT mode is
much higher than IBC mode when CUs get more complex, such
as CUs with larger values of 퐻퐺푁 , HorAct and Var. It further
implies that PLT mode and IBC mode should not share the same
classifier for SCC intra mode selection that is always adopted
in the algorithms proposed in the literature [16]–[18].

Based on these observations, we trained decision trees in the
proposed coding framework to adaptively check Intra mode,
IBC mode and PLT mode separately.
2) Decision Tree Training

As described before, IBC mode contains three steps, which
are IBC predictor, IBC merge & skip and IBC search. While the
step of the IBC predictor only checks several BV predictors and
our experiment shows that it takes up only 1.24% of the total
encoding time, and the computational complexities of IBC
merge & skip and IBC search are relatively high. Therefore, by
collecting the most updated features, two sets of decision trees
are generated inside IBC mode to adaptively check IBC merge
& skip and IBC search. After generating the decision trees for
all modes, they are implemented in the SCM-8.3 encoder to
perform fast mode decision. Before checking a mode, the
incoming CU goes through the decision tree for the mode to
decide whether it should be tested. If the outcome or the class
label of the decision tree is 1, it is involved in the mode
searching process. Otherwise, the current CU does not check
the target mode so that the computational complexity brought
by this mode is reduced. However, there is a case that all modes
are decided to be skipped for a CTU when all mode decision
trees are implemented, and finally the CTU cannot be encoded.
To solve this problem, a CU type decision tree is also trained at

 (a) (b) (c)

 (d) (e) (f)
Fig. 7. The percentages of the target mode and other modes in terms of 퐹푙푎푔 (a)–(c) and 퐽 (d)–(e) for 16×16 CUs.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

the last depth level, and at least one possible mode is assigned to
the CU if all modes are skipped for it. The CU type decision tree
can classify incoming CUs into NIBs and SCBs. If the outcome
for a CU is a NIB, i.e., 1, Intra mode is checked for it. Otherwise,
IBC and PLT modes are both checked for it.

As SCC supports CU sizes of 64×64, 32×32, 16×16, and 8×8,
4 decision trees are trained for CUs with different sizes. To
avoid the data imbalance problem caused by more training
samples in one class than in the other [28], we let 50% of the
training samples come from CUs with the target mode as their
optimal modes, and they are treated as the positive data. The
other 50% of training samples come from the CUs which are
not encoded by the target mode, and they are treated as the
negative data. Besides, for the training of the CU type decision
tree at the last depth level, the positive training data are from
NIBs, i.e. CUs encoded by Intra mode, while the negative data
are from SCBs, i.e. CUs encoded by IBC or PLT mode.

The training data number and the depth of each decision tree
are shown in Table IV and V, respectively. Since a frame can be
partitioned into more CUs with a small size than CUs with a
large size, more training data are obtained as the CU size gets
smaller. Besides, we can see that the largest depth of the trained
decision trees is 14, which means the decision for a mode is
made after going through at most 14 “if-then-else” conditions.
Therefore, the computational complexity brought by those
decision trees is negligible. As an example, the decision tree
based IBC merge & skip mode classifier for 32×32 CUs is

shown in Fig. 9, and other trained classifiers can be found in
our website [22].
3) Feature Subset Selection

When training classifiers for different tasks, the valid
features are quite different, and the performance of a classifier
is very sensitive to the features utilized to train the classifier.
Therefore, to eliminate the impact of irrelevant or redundant
features and provide a better understanding of the valid features
for each mode decision, a feature subset selection [29] approach
is applied in our paper.

We implemented the feature subset selection in WEKA using
the wrapper evaluation with a greedy search strategy, which is
computationally advantageous and robust against overfitting.
The feature subset selection consists of the following steps:

Step 1: Initialize the feature subset set F =∅ at 푘=0.
Step 2: Find the best remaining feature 푓 which provides the

largest accuracy increase when added to F .
Step 3: 푘++ and F =F ∪{푓}.
Step 4: Iterate step 2 and step 3 until the classifier accuracy

is no longer improved.
Table VI shows the valid features of each decision tree, and

the importance of each valid feature is also shown in this table
by measuring its gain ratio. It is observed that the proposed
dynamic features, 퐹푙푎푔 and 퐽 obtained right before the

(a) (b)

 (c) (d) (e)
Fig. 8. Intra, IBC and PLT mode distributions in terms of (a) Distinct color number DCN, (b) high gradient pixel number 퐻퐺푁 , (c) horizontal activity HorAct,
and (d) CU variance Var for 16×16 CUs.

TABLE IV
TRAINING DATA NUMBER FOR EACH DECISION TREE

CU Size Intra IBC PLT CU Type Merge & Skip Search
64×64 28452 14224
32×32 216072 111980 80804
16×16 715548 573848 168736 219192

8×8 3166280 2724108 1522712 453080 906164
 TABLE V

DEPTH OF EACH DECISION TREE

CU Size Intra IBC PLT CU Type Merge & Skip Search
64×64 14 13
32×32 7 4 6
16×16 8 1 10 6
8×8 9 9 6 7 7

Fig. 9. IBC merge & skip mode decision tree for 32×32 CUs.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

target mode, are quite important for most decision trees, with
the gain ratio up to 0.669 and 0.102, respectively. This verifies
that the dynamic features play a critical role in the decision
process with the introduction of the new coding framework. By
adopting the feature subset selection approach, the number of
features fed into a decision tree is reduced to 1–8, and 6.07 on
average. Compared with the original feature set with 11 features,
the feature number is reduced by 44.92%, and the impact of the
feature subset selection approach in terms of coding
performance will be discussed in Section IV.
4) Accuracy of Decision Trees

The decision accuracy for each decision tree is shown in
Table VII. We can see from the table that the accuracies of those
decision trees vary from 75.44% to 94.51%, where the decision
accuracies for 64×64 CUs are relatively low. The reason is that
there are many CUs with pure horizontal edges, pure vertical
edges or a single color in the training data set of 64×64 CUs,
and they are difficult for classification. However, this kind of
CUs can be encoded efficiently by all modes with very low
computational complexity. Therefore, the low decision
accuracy of 64×64 CUs will not lead to large computational
complexity or coding efficiency degradation.

There are two kinds of false classifications for each mode
decision tree. One is the missed detection, which is the case that
the optimal mode of a CU is not a certain mode, but it is not
detected, and the mode is checked for the CU redundantly.
Although the missed detection leads to the increase in
computational complexity, it does not bring RD performance
loss. The other is the incorrect decision, which is the case that
the optimal mode of a CU is a certain mode, but the mode is
skipped for the CU incorrectly. The incorrect decision leads to
RD performance loss because the optimal mode for a CU is
skipped. The incorrect decision rate of each decision tree is
shown in Table VIII, and we can see that only 3.12% to 13.14%
of the mode decision lead to RD performance loss.

D. Decision Tree Constraint
To reduce the RD performance loss caused by skipping the

optimal mode for a CU incorrectly, a decision tree constraint

technique based on the spatial content correlation is derived for
CUs with the size of 8×8 in this sub-section.

There is usually strong spatial content correlation in screen
content videos. A CU with the neighbor of NIBs is very likely
to be a NIB while a CU with the neighbor of SCBs is very likely
to be a SCB. To prove the strong spatial correlation, we encoded
the frame-skipped sequences with QPs at 22, 27, 32, and 37 by
using the original SCM-8.3 encoder. For each CU, the optimal
modes of its top and left neighbor CUs were recorded. We treat
a CU selecting Intra mode as a NIB, and a CU selecting IBC
mode or PLT mode as a SCB. If a top or left neighbor CU has
the same type of content as the current CU, we call it a same
content neighbor CU. Table IX shows spatial content
correlation of 8×8 CUs by giving the distributions of the same
content neighbor CU number. We can see from the table that
over 90% CUs have one or two same content neighbor CUs.
Only 7.58% of SCBs and 4.28% of NIBs have no same content
neighbor CU. Therefore, when encoding an 8×8 CU, if one of
its neighbor CUs from the top and left selects Intra mode,
i.e. 퐹푙푎푔 =1, we additionally check Intra mode for it based
on the outcomes of decision trees, and if one of its neighbor CUs
from the top and left selects PLT or IBC mode, i.e. 퐹푙푎푔 =1,
we additionally check IBC mode and PLT mode for it based on
the outcomes of decision trees. Although there is also strong
spatial correction of optimal modes for large CU sizes, it is
unnecessary to check more mode candidates for them in order
to achieve higher encoding reduction. For a large CU, if
decision trees assign an incorrect mode to it, it still has a chance
to select good modes when partitioned into 8×8 CUs by using
the decision tree constraint technique, so that the RD
performance loss brought by the incorrect decision of large CU
is decreased. The impact of the decision tree constraint
technique will be discussed in Section IV.

TABLE VI
THE GAIN RATIO OF EACH FEATURE FOR EACH DECISION TREE

Decision Tree 퐹푙푎푔 퐽 BCN DCN 퐻퐺푁 퐻퐺푁 퐻퐺푁 퐻퐺푁 HorAct VerAct Var

Intra

64×64 0.044 0.029 0.071 0.094 0.074 0.065 0.054
32×32 0.179 0.043 0.022 0.084 0.045 0.046
16×16 0.102 0.035 0.029 0.029 0.025 0.027
8×8 0.180 0.051 0.046 0.005 0.020 0.019 0.025

IBC Merge
& Skip

64×64 0.065 0.099 0.084 0.097 0.100
32×32 0.669 0.045 0.070 0.066
16×16 0.431
8×8 0.178 0.014 0.032 0.019 0.024 0.017 0.018 0.025

IBC Search 16×16 0.275 0.007 0.028 0.030 0.019 0.023 0.010 0.016 0.022
8×8 0.281 0.039 0.027 0.061 0.067 0.035 0.036

PLT
32×32 0.001 0.048 0.064 0.041 0.026 0.035
16×16 0.166 0.038 0.035 0.025 0.009 0.034 0.031
8×8 0.105 0.027 0.029 0.021 0.031 0.039 0.027 0.023

CU Type 8×8 0.058 0.045 0.031 0.028
 TABLE VII

DECICIOSN ACCURACY FOR EACH DECISION TREE

CU Size Intra (%) IBC PLT (%) CU Type (%) Merge & Skip (%) Search (%)
64×64 75.44 82.31
32×32 87.95 94.51 82.27
16×16 83.34 84.57 81.89 82.48
8×8 78.23 83.13 85.66 79.83 83.17

TABLE VIII
INCORRECT DECISION FOR EACH DECISION TREE

CU Size Intra (%) IBC PLT (%) Merge & Skip (%) Search (%)
64×64 3.81 5.00
32×32 2.88 3.77 5.33
16×16 4.07 13.14 8.73 5.06
8×8 9.95 6.07 6.75 6.60

 Table IX
SAME CONTENT NEIGHBOR CU NUMBER DISTRIBUTIONS FOR 8×8 CUS

CU content 0 (%) 1 (%) 2 (%)
NIB 7.58 18.12 74.30
SCB 4.28 15.08 80.64

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

All proposed techniques are treated as additional mode
checking conditions based on the original encoding process
when they are implemented in SCM-8.3. As a summary, the
flowchart of the proposed fast mode decision algorithm is
shown in Fig. 10, where 퐹푙푎푔 , and 퐹푙푎푔 are used to
denote the outcome of the decision tree constrain technique, and
DT_Intra, DT_IBC_S&M, DT_IBC_Search, and DT_PLT are
used to denote the outcomes of the decision trees for Intra, IBC
merge & skip, IBC search, and PLT modes, respectively. For
simplicity, the original mode checking conditions in SCM-8.3
are not shown in this figure.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
To evaluate the performance of the proposed fast mode

decision framework, the coding efficiency and computational
complexity of the proposed algorithm were compared with
those of the original SCM-8.3 and they are measured by BDBR
and encoding time increase in percentage (%), ΔTime under AI
configuration defined in CTC. Four sets of experiments have
been conducted to analyze the performance of the proposed
work from different aspects. First, a study on different number

of training sequences is discussed. Second, the performance of
the proposed framework is evaluated by comparing it with
existing fast SCC encoding algorithms. Third, the contribution
of each individual mode decision algorithm is analyzed. At last,
the efficiency of the feature subset selection and decision tree
constraint techniques is validated.

A. Study on Different Training Set
To understand the impact of the training sequences to the

performance of the proposed algorithm, we gradually reduce
the number of the training sequences and then compare their
performances. Fig. 11 shows the simulation results with two,
five, eight training sequences, respectively. It is observed that
the proposed algorithm can provide relatively good
performance even though two training sequences are used,
where 48.72% encoding time is reduced with 1.97% increase in
BDBR. Besides, it is observed that using more training
sequences helps to reduce the increase in BDBR. When training
sequences are increased from two to eight, the increase in
BDBR is reduced from 1.97% to 1.42%.

B. Performance of the Decision Tree Based Framework
Table X shows the performance of the proposed framework

using 8 training sequences in Fig. 11 and four state-of-the-art
SCC fast intra prediction algorithms [15]–[18] in terms of
BDBR and ΔTime, where the largest value of ΔTime in each
sequence is marked in boldface. It is noted that they were
implemented in different reference software from ours in their
original publications. Zhang et al.’s method [15] was simulated
using HM-12.1+RExt-5.1 rather than SCM, while Duanmu et
al.’s method [16], Lei et al.’s method [17] and Yang et al.’s
method [18] were simulated using SCM-4.0, SCM-2.0 and
SCM-5.0, respectively. There are numerous enhancements,
speed-up techniques and codes clean-up in SCM-8.3 compared

Proposed techniques: 1. The decision tree constraint, 2. Intra mode decision tree, 3. IBC merge & skip decision tree, 4. IBC search mode decision tree, 5. PLT
mode decision tree, and 6. CU type decision tree.
Fig. 10. Flowchart of the proposed fast mode decision algorithm in a CTU.

 Fig. 11. Simulation results with two, five, eight training sequences.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

with the older versions. In the older versions, the BV signal in
IBC mode was not unified with the inter mode which only has
left and above BVs as predictors with no skip and merge modes.
Consequently, incoming CUs always need to check the time-
consuming IBC search and PLT modes without early
termination. Moreover, N×N IBC search was done after 2N×N
search while it is eliminated in SCM-8.3. In addition, the older
versions enable PLT mode in the depth level of 0 while it is
disabled in SCM-8.3 because of the occasional use. Due to
those differences, we re-implemented them into SCM-8.3 for
fair comparisons. It is observed that our proposed framework
shows the best performance compared with other SCC fast intra
prediction algorithms [15]–[18], and it provides the largest
encoding time reduction for 10 sequences out of 14 sequences.
Compared with the anchor SCM-8.3, our proposed framework
achieves up to 62.34% encoding time reduction on the “Desktop”
sequence. On average, 47.62% encoding time reduction is
obtained with a negligible increase in BDBR of 1.42%. Zhang
et al.’s method [15] adopts the fast CU size decision framework
shown in Fig 4(a), and it is observed in Table X that it only
reduces the encoding time by 14.53% on average. Compared
with Duanmu et al.’s method [16], Lei et al.’s method [17] and
Yang et al.’s method [18] which adopt the hybrid method by
combining the frameworks in Fig. 4(a) and (b) for fast CU size
decision and fast mode decision based on CU type classification,
the proposed framework substantially outperforms them in both
coding efficiency and computation complexity. Duanmu et al.’s
method [16] provides 26.89% encoding time reduction while
BDBR is increased by 1.70% on average. When compared with
the anchor SCM-8.3, our proposed framework shows 22.60%
larger encoding time reduction with 0.21% smaller increase in
BDBR than Duanmu et al.’s method [16] for sequences in TGM
and M. For sequences in A and CC, the proposed framework
shows 13.87% larger encoding time reduction with 0.53%
smaller increase in BDBR than Duanmu et al.’s method [16].
Lei et al.’s method [17] achieves 33.20% encoding time
reduction while BDBR is increased by 2.36% on average.
Although Lei et al.’s method [17] shows larger encoding time
reduction than the proposed framework for sequences in A and
CC, the increase in BDBR is about 4 times higher than the

proposed framework. For the sequences in TGM and M, Lei et
al.’s method [17] also shows a very high increase in BDBR
while the encoding time is only reduced by 26.71%. Yang et
al.’s method [18] shows 35.36% encoding time reduction with
a very high increase in BDBR of 3.50% on average. Since it
always checks Intra mode for 2N×2N PUs, it brings only 0.30%
increase in BDBR to the sequences in A and CC. However, the
BDBR of the sequences in TGM and M is increased by 4.37%
due to the low decision accuracy for SCBs.

It should be noted that our proposed decision trees were
trained by the sequences marked with T, where the first frame
of each second from these sequences is extracted to generate
training data, while the sequences were not used for training are
marked with NT. It is observed in Table X that our proposed
framework provides similar performance for the training
sequences and the unseen sequences. Besides, the best
performance of our proposed framework is not achieved for the
training sequences but for the unseen “Desktop” sequence
where 62.34% encoding time is reduced with 1.03% negligible
increase in BDBR. Specifically, the average performances of the
NT sequences are also shown in Table X. The NT sequences
show 51.97% encoding time reduction with 1.09% increase in
BDBR, which outperforms algorithms in [15]–[18]. This shows
that the proposed framework is generalizable to the unseen
sequences. It is noted that the 14 sequences in CTC [20] are
carefully selected to be representatives for other screen content
sequences, and all existing fast SCC encoding algorithms
always utilize some sequences from CTC [20] for both training
and testing. To further show the generalization of the proposed
algorithm to other screen content sequences, ten more test
sequences [30]–[34] that are not included in CTC [20] were
evaluated. The results are shown in Table XI with comparison
to the existing fast SCC encoding algorithms [15]–[18], where
the largest value of ΔTime in each sequence is marked in
boldface. It is observed that the proposed algorithm again
outperforms the fast SCC encoding algorithms [15]–[18], and it
provides the largest encoding time reduction for seven
sequences out of the ten test sequences. Although Lei et al.’s
method [17] shows larger encoding time reduction in other
three sequences, the increase in BDBR is remarkably higher

Table X
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 UNDER CTC FOR YVU 4:4:4 SEQUENCES

Sequences Zhang et al. [15] Duanmu et al. [16] Lei et al. [17] Yang et al. [18] Proposed Framework
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing (T) 0.14 -3.40 1.10 -17.47 0.99 -18.96 4.30 -34.16 0.60 -53.06
Console (NT) 2.64 -8.23 1.87 -28.12 2.87 -23.40 7.38 -42.83 0.60 -54.14
Desktop (NT) 0.67 -4.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.03 -62.34

FlyingGraphics (T) 0.54 -3.24 0.98 -20.13 1.72 -18.13 5.47 -31.19 1.56 -52.13
Map (T) 0.97 -10.66 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.36 -31.89

Programming (NT) 0.44 -11.76 1.89 -22.16 2.50 -22.92 4.71 -27.38 2.20 -48.94
SlideShow (T) 0.36 -46.92 2.82 -52.47 2.32 -55.58 3.69 -34.45 3.76 -35.67

WebBrowsing (NT) 0.79 -6.99 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.98 -57.23
BasketballScreen (T) 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.87 -48.60

MissionControlClip2 (T) 0.40 -20.5 2.86 -33.9 1.71 -25.49 2.51 -38.54 2.51 -47.30
MissionControlClip3 (NT) 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.68 -52.21

Robot (T) 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.51 -47.19
EBURainFruits (T) 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.16 -39.07

Kimono1(NT) 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.05 -36.93
Average (NT) 0.84 -11.65 1.85 -25.84 2.76 -34.38 4.40 -38.24 1.09 -51.97

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.65 -49.41
Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.57 -41.06
Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.42 -47.62

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained decision trees.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

than the proposed framework. On average, the fast SCC
encoding algorithms [15]–[18] reduce 11.78%–36.80%
encoding time with 0.94%–4.29% increase in BDBR.
Comparatively, the proposed algorithm reduces 51.34%
encoding time with only 0.98% increase in BDBR. Again, this
confirms the generalization ability of the proposed algorithm.

The proposed algorithm includes additional processes of
feature extraction and decision determination for making fast
mode decision, and these computational overheads are further
analyzed and summarized in Table XII. It is observed that the
average computational overhead proportions of feature
extraction and decision determination are only 1.32% and
0.01%, respectively. It is noted that these computational
overheads have been counted in Table X to calculate the
encoding time reduction.

We also extend our work to support sequences in YUV 4:2:0
and RGB 4:4:4 formats based on the same methodology, and
their performances are summarized in Table XIII. It is observed
that for sequences in YUV 4:2:0 and RGB 4:4:4 formats,
encoding time of 41.68% and 49.98% is reduced with 1.68% and
1.41% increase in BDBR on average, respectively. The results
are very similar to that of YUV 4:4:4 sequences, which
demonstrates the proposed framework is generalizable to other
color formats. Since the fast SCC encoding algorithms [15]–[18]
only investigated the fast prediction for YUV 4:4:4 sequences,
we cannot make comparisons for sequences in YUV 4:2:0 and
RGB 4:4:4 formats.

Since Intra-prediction is also needed in inter frame coding,
Fig. 12 also shows the impact of the proposed algorithm on inter
frame coding under Low Delay (LD) configuration. BDBR and
ΔTime of five typical sequences in YUV 4:4:4 format are
shown in Fig. 12, and similar results are observed for other
sequences. It is observed that the proposed algorithm reduces
6.52%–8.44% encoding time with negligible increase in BDBR,
which implies the proposed algorithm also benefits to inter
frame coding.

C. Performance of the Individual Mode Decision Algorithm
To further investigate the contribution of each mode decision

algorithm, additional experiments were performed by
implementing decision trees for IBC mode, PLT mode,
IBC+PLT modes, Intra mode, respectively, and the results are
shown in Table XIV. We can see from the table that IBC mode
decision trees provide the largest encoding time reduction,
followed by Intra mode and PLT mode, which are 23.84%,
16.26% and 7.15%, respectively. When the decision trees of IBC
mode and PLT mode are both implemented, sequences in A and
CC show 39.55% encoding time reduction, which is nearly the
same as the results of the overall framework with all decision
trees enabled. It is because nearly all CUs in A and CC
sequences are encoded by Intra mode, and it shows that the IBC
and PLT decision trees can efficiently skip these CUs. Smaller
encoding time is saved for sequences in TGM and M because
they contain many SCBs, so that fewer IBC mode and PLT mode
are skipped. In contrast, only 0.13% encoding time reduction is
observed for sequences in A and CC when only the Intra mode
decision trees are implemented. For sequences with almost pure
SCBs, such as “ChineseEditing”, “Console” and “Desktop”,
over 27% encoding time is saved by using Intra mode decision
trees. The reason is that almost all CUs in these sequences can
skip Intra mode and large encoding time reduction is achieved.
Furthermore, Table XIV shows that the overall framework
provides 23.52%–34.60% larger encoding time reduction for
“ChineseEditing”, “Console” and “Desktop”, as compared with
the results that only intra mode decision trees are enabled. The
reason is that besides the Intra mode which is not suitable for
encoding SCBs, the overall framework considers PLT mode
and IBC mode separately and then further skips unnecessary
PLT mode and IBC mode for SCBs. To support this statement,
we investigated the mode decision of the proposed overall
framework by encoding all sequences with QPs of 22, 27, 32,
37, and the average distribution of mode decision is shown in

Table XI
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-8.3 FOR SEQUENCES NOT IN CTC FOR YVU 4:4:4 SEQUENCES

Sequences Zhang et al. [15] Duanmu et al. [16] Lei et al. [17] Yang et al. [18] Proposed Framework
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

BigBuckBunnyStudio 0.64 -20.44 1.90 -31.34 2.58 -44.83 1.98 -35.08 1.78 -41.94
ClearTypeSpreadsheet 0.54 -1.14 1.81 -22.83 0.72 -20.86 7.67 -41.76 0.71 -62.56
EBULupoCandlelight 0.33 -36.23 1.18 -41.42 3.41 -66.49 0.43 -43.05 0.13 -38.35

CadWaveform 1.22 -6.19 6.40 -33.64 4.66 -19.97 4.85 -36.16 0.50 -58.40
PcbLayout 0.96 -10.77 2.58 -36.07 3.08 -27.30 4.95 -38.08 1.67 -48.82
PptDocXls 1.35 -4.31 1.47 -24.01 1.29 -17.38 4.16 -32.72 0.74 -55.70

RealTimeData 3.32 -6.19 1.55 -26.15 2.11 -22.43 7.11 -34.65 0.82 -50.62
VideoConferencingDocSharing 0.37 -3.60 1.57 -24.57 3.63 -19.93 7.06 -34.76 0.55 -58.27

Viking 0.33 -18.66 1.00 -30.41 5.00 -65.84 0.47 -29.61 1.36 -45.02
WordEditing 0.36 -10.30 0.97 -23.17 1.24 -24.42 4.21 -42.10 1.57 -53.71

Average (ALL) 0.94 -11.78 2.04 -29.36 2.78 -32.95 4.29 -36.80 0.98 -51.34
 Table XII

AVERAGE COMPUTATIONAL OVERHEARDS OF THE PROPOSED ALGORITHM

Computational Overhead
Proportion (%)

Feature Extraction Decision Determination
1.32 0.01

 Table XIII
∆Time and BDBR OF THE PROPOSED ALGORITHM FOR YUV 4:2:0 AND RGB

4:4:4 SEUQNECES UNDER CTC

Sequence Categories YUV 4:2:0 RGB 4:4:4
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Average (TGM+M) 1.66 -37.92 1.58 -48.98
Average (A+CC) 1.79 -59.82 0.80 -55.30
Average (ALL) 1.68 -41.29 1.41 -49.98

Fig. 12. BDBR and ΔTime of the proposed algorithm under LD configuration.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Table XV. It is observed that in the depth level of 3, IBC or PLT
mode is always checked with other modes because of the
decision tree constrain technique. However, the proposed
overall framework is very efficient for larger CU sizes. In the
depth level of 0, 56.84% CUs directly go to the next depth level
because only Intra mode and IBC mode exist. In the depth levels
of 1 and 2, 42.67% and 28.20% CUs select either IBC mode or
PLT mode, respectively. By further reducing the mode
candidates for SCBs in the proposed overall framework, it
provides 20.48%–38.49% larger encoding time reduction for
“ChineseEditing”, “Console” and “Desktop” compared with
[16]–[18], as shown in Table X. Furthermore, by considering
IBC mode and PLT mode individually, our proposed
framework can also break the upper limit of the fast mode
decision methods which only use Intra mode for NIBs and test
both IBC mode and PLT mode for SCBs, as illustrated in Table
III. This observation shows the advantage of the sequential
arrangement of mode decision compared with the fast mode
decision frameworks in [16]–[18], which only perform CU type
classifications. In the practical application of real video services,
parallelizing is an effective way to speed up the encoding
process. One concern of the proposed algorithm can be the
difficulties in the mode decision parallelizing due to the
sequential arrangement of mode decision. However, the
proposed algorithm can be integrated with other parallel coding
techniques which encode several regions in a frame in parallel
to solve this problem, such as the existing tile structures and
wavefront parallel processing (WPP) in SCM.

D. Evaluation of the Feature Subset Selection and the
Decision Tree Constraint Techniques

To validate the efficiency of the feature subset selection and
the decision tree constraint techniques, experiments were
performed by implementing the overall framework without the
feature subset selection and decision tree constraint techniques,

and the results are shown in table XVI. Compared with the case
without performing feature subset selection, the proposed
overall framework in Table XIV provides 3.97% larger
encoding time reduction with 0.13% decrease in BDBR.
Therefore, better performance is provided by adopting the
feature subset selection technique, because the impact of
irrelevant or redundant features is removed. Besides, it is
observed that the decision tree constraint technique helps to
reduce BDBR increase of the proposed framework at the cost of
less encoding time reduction. On average, the encoding time
saving of the proposed framework is slightly reduced from
52.90% to 47.62% while the increase in BDBR is reduced from
3.07% to 1.42% by implementing the decision tree constraint
technique. Specifically, we can see that the performance
improvement for sequences in A and CC is limited, but
sequences in TGM and M gain large benefits from the decision

Table XIV
PERFORMANCE OF EACH INDIVIDUAL MODE DECISION ALGORITHM AND THEIR COMBINATIONS FOR YVU 4:4:4 SEQUENCES

Sequences IBC Mode Decision PLT Mode Decision PLT+IBC Mode Decision Intra Mode Decision Overall Framework
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing (T) 0.35 -21.79 0.27 -1.37 0.62 -23.08 0.17 -29.54 0.60 -53.06
Console (NT) 0.15 -26.56 0.12 -2.12 0.25 -27.68 0.37 -27.81 0.60 -54.14
Desktop (NT) 0.45 -33.40 0.37 -1.58 0.65 -34.64 0.33 -27.74 1.03 -62.34

FlyingGraphics (T) 0.31 -26.52 0.11 -2.01 0.45 -27.40 1.21 -24.14 1.56 -52.13
Map (T) 0.34 -13.97 0.06 -4.24 0.57 -17.97 0.85 -14.56 1.36 -31.89

Programming (NT) 0.87 -21.64 0.93 -6.17 1.88 -27.62 0.37 -20.84 2.20 -48.94
SlideShow (T) 2.26 -16.23 0.41 -11.09 3.09 -28.26 0.71 -8.31 3.76 -35.67

WebBrowsing (NT) 0.67 -31.58 0.11 -3.83 0.78 -34.83 0.25 -22.56 0.98 -57.23
BasketballScreen (T) 1.05 -22.76 0.21 -8.98 1.31 -31.58 0.56 -17.85 1.87 -48.60

MissionControlClip2 (T) 1.65 -21.72 0.58 -11.66 2.10 -33.55 0.74 -14.50 2.51 -47.30
MissionControlClip3 (NT) 0.91 -24.09 0.30 -8.28 1.04 -31.53 0.67 -19.42 1.68 -52.21

Robot (T) 0.57 -23.08 0.67 -17.97 1.38 -43.02 0.12 -3.11 1.51 -47.19
EBURainFruits (T) 0.12 -26.12 0 -11.03 0.13 -38.15 0.02 0.22 0.16 -39.07

Kimono1 (NT) 0.04 -24.28 0 -9.76 0.04 -37.48 0.04 2.51 0.05 -36.93
Average (NT) 0.52 -26.93 0.31 -5.29 0.77 -32.30 0.34 -19.31 1.09 -51.97

Average (TGM+M) 0.82 -23.66 0.32 -5.58 1.16 -28.92 0.57 -20.66 1.65 -49.41
Average (A+CC) 0.24 -24.49 0.22 -12.92 0.52 -39.55 0.06 -0.13 0.57 -41.06
Average (ALL) 0.70 -23.84 0.30 -7.15 1.02 -31.20 0.46 -16.26 1.42 -47.62

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained decision trees.
Table XV

MODE DECISION DISTRIBUTION OF THE PROPOSED OVERALL ALGORITHM FOR YVU 4:4:4 SEQUENCES
CU Size Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT No Mode
64×64 27.60 6.70 8.86 56.84
32×32 41.79 1.15 41.52 0.08 4.30 3.674 0.02 7.48
16×16 53.23 3.89 24.31 1.49 3.06 12.18 1.03 0.82
8×8 52.06 0 0 4.01 1.97 27.14 14.81 0

 Table XVI
PERFORMANCES OF THE PROPOSEED ALGORITHM WITH OTHER SETINGS FOR

YVU 4:4:4 SEQUENCES

Sequences
Without Feature Subset

Selection
Without Decision Tree

Constraint
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing 0.60 -48.06 1.77 -57.46
Console 0.81 -48.06 1.75 -59.07
Desktop 1.00 -58.62 3.06 -66.93

FlyingGraphics 1.68 -42.28 3.35 -55.79
Map 1.52 -28.83 3.38 -40.19

Programming 2.17 -43.10 4.98 -55.51
SlideShow 3.93 -33.84 6.94 -56.91

WebBrowsing 1.25 -57.68 2.17 -60.75
BasketballScreen 1.79 -43.58 4.72 -54.01

MissionControlClip2 3.13 -42.57 4.85 -51.85
MissionControlClip3 1.98 -45.97 3.52 -56.63

Robot 1.61 -45.69 2.11 -48.76
EBURainFruits 0.15 -37.16 0.29 -39.13

Kimono1 0.05 -35.68 0.07 -37.64
Average (TGM+M) 1.81 -44.78 3.68 -55.92

Average (A+CC) 0.60 -39.51 0.82 -41.84
Average (ALL) 1.55 -43.65 3.07 -52.90

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

tree constraint technique and the increase in BDBR is reduced
by 2.03%. The reason is that IBC and PLT modes are very
effective in 8×8 SCBs. Therefore, even small incorrect decision
rate of IBC and PLT modes in 8×8 SCBs leads to large RD
performance loss. By using the decision tree constraint
technique, additional mode candidates are available at the last
depth level (depth level of 3), and the RD performance loss
brought by the incorrect decision is reduced effectively.

V. CONCLUSION AND FUTURE WORK
In this paper, a machine learning based fast mode decision

framework is proposed for SCC. To avoid the exhaustive mode
searching process, a flexible intra mode decision framework is
proposed by utilizing a sequential arrangement of mode
classifiers. Compared with the traditional methods that IBC and
PLT modes are both checked for SCBs, we insert a decision tree
before checking each mode with the help of new dynamic
features, so that the decision of each mode is made separately,
and it allows the case that only mode is checked for a SCB.
Experiments results have shown that the proposed framework
can provide an average computational complexity reduction of
47.62% with a negligible increase in BDBR of 1.42%. Future
works may include fast SCC encoding algorithms based on
CNNs, which is a powerful tool in many classification problems
Nevertheless, the drawback CNNs is the high computational
complexity brought by convolutional operation in the test phase,
and it might be solved by increasing the stride size and
designing a multi-output CNN that makes predictions for
multiple CUs in one test. However, this paper can be treated as
the baseline for CNN approaches in the future.

REFERENCES
[1] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for cloud-

mobile convergence,” IEEE Multimedia, vol. 18, no. 2, pp. 4–11, Feb.
2011.

[2] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[3] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC
screen content coding extension,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016.

[4] X. Xu et al., “Intra block copy in HEVC screen content coding
extensions”, IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no. 4, pp.
409–419, Dec. 2016.

[5] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced screen content coding
using color table and index map”, IEEE Trans. Image Process., vol. 23,
no. 10, pp. 4399–4412, Oct. 2014.

[6] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Exploiting inter-layer
correlations in scalable HEVC for the support of screen content videos,”
in Proc. 19th Int. Conf. Digital Signal Process, Hong Kong, China, Aug.
2016, pp.1–5.

[7] H.-S. Kim, and R.-H. Park, “Fast CU partitioning algorithm for HEVC
using an online-learning-based bayesian decision rule,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 130–138, Jan. 2016.

[8] S-H. Jung, and H.W. Park, “a fast mode decision method in HEVC using
adaptive ordering of modes,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 10, pp. 1846–1858, Oct. 2016.

[9] Q. Hu, X.-Y. Zhang, Z.-R. Shi, and Z.-Y. Gao, “Neyman-Pearson-based
early mode decision for HEVC encoding,” IEEE Trans. Multimedia, vol.
18, no. 3, pp.379–391, Mar. 2016.

[10] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast and efficient intra coding
techniques for smooth regions in screen content coding based on
boundary prediction samples,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Brisbane, Australia, Apr. 2015, pp.1409–1413.

[11] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Hash based fast local search
for intra block copy (IntraBC) mode in HEVC screen content coding,”
in Proc. APSIPA ASC, Hong Kong, Dec. 2015, pp. 396–400.

[12] S.-H. Tsang, W. Kuang, Y.-L. Chan and W.-C. Siu, “Fast HEVC screen
content coding by skipping unnecessary checking of intra block copy
mode based on CU activity and gradient,” in Proc. APSIPA ASC, Jeju,
Korea, Dec. 2016, pp.1–5.

[13] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using
machine learning for screen content compression,” in Proc. IEEE Int.
Conf. Image Process., Quebec, QC, Canada, Sep. 2015, pp. 4972–4976.

[14] H. Zhang, Q. Zhou, N.-N Shi, F. Yang, X. Feng, and Z. Ma, “Fast intra
mode decision and block matching for HEVC screen content
compression,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Shanghai, China, Mar. 2016, pp.1377–1381.

[15] M. Zhang, Y. Guo, and H. Bai, “Fast intra partition algorithm for HEVC
screen content coding,” in Proc. IEEE Vis. Commun. Image Process.,
Valletta, Malta, Dec. 2014, pp. 390–393.

[16] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision
using machine learning for intra-frame coding in HEVC screen content
coding extension,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no.
4, pp.517–531, Dec. 2016.

[17] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra
prediction based on content property analysis for low complexity
HEVC-based screen content coding,” IEEE Trans. Broadcast., vol. 63,
no.1, pp.48–58, Mar. 2017.

[18] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm based
on statistical learning for screen content coding”, in Proc. IEEE Int. Conf.
Image Process., Beijing, China, Sep. 2017, pp. 2468–2472.

[19] HM-16.12+SCM-8.3, HEVC test model version 16.12 screen content
model version 8.3, [Online], available at: https://hevc.hhi.fraunhofer.de/
svn/svn_HEVCSoftware/tags/HM-16.12+SCM-8.3/.

[20] H. -P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions
for screen content coding”, 24th JCT-VC meeting, document JCTVC-
X1015-r1, Geneva, Switzerland, May. 2016.

[21] G. Bjontegaard, “Calculation of average PSNR differences between rd-
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 2001.

[22] Machine Learning Based Fast Intra Mode Decision for HEVC Screen
Content Coding Via Decision Trees. [Online]. Available at:
http://www.eie.polyu.edu.hk/~ylchan/research/DT-FastSCC/.

[23] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann, 1993.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: An update,” ACM SIGKDD
Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[25] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” in
Proc. Int. Conf. Machine Learning, pp. 195–201, 1997.

[26] P. Burman, “A comparative study of ordinary cross-validation, v-fold
cross-validation and the repeated learning-testing methods,” Biometrika,
vol. 76, no. 3, pp. 503-514, Sep. 1989.

[27] Z. Pan, H. Shen, Y. Lu, S. Li, and N. Yu, “A low-complexity screen
compression scheme for interactive screen sharing,” IEEE Trans.
Circuits Syst. Video Technol., vol. 23, no. 6, pp. 949–960, Jun. 2013.

[28] N. Japkowicz, “The class imbalance problem: Significance and
strategies,” in Proc. Int. Conf. Artif. Intell., 2000, pp. 111–117.

[29] I. Guyon, and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[30] J. Guo, L. Zhao, and T. Lin, “Response to B1002 Call for test materials:
Five test sequences for screen content video coding”, 3th JVET meeting,
document JVET-C0044, Geneva, Switzerland, May. 2016.

[31] R. Cohen, “AHG8: 4:4:4 game content sequences for HEVC range
extensions development”, 14th JCT-VC meeting, document JCTVC-
N0294, Vienna, Austria, Aug. 2013.

[32] A. M. Tourapis, D. Singer, and K. Kolarov, “New test sequences for
screen content coding”, 15th JCT-VC meeting, document JCTVC-
O0222, Geneva, Switzerland, Nov. 2013.

[33] H. -P. Yu, W. Wang, X. Wang, J. Ye, and Z. Ma, “AHG8: New 4:4:4
test sequences with screen content”, 15th JCT-VC meeting, document
JCTVC- O0256, Geneva, Switzerland, Nov. 2013.

[34] K. Sharman, and K. Suehring, “Common test conditions”, 24th JCT-VC
meeting, document JCTVC-X1100, Geneva, Switzerland, May. 2016.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

Wei Kuang (S’17) received the B. S. degree in
School of Electronic and Optical Engineering from
Nanjing University of Science and Technology,
Nanjing, China, in 2015. Now, he is currently
pursuing the Ph.D. Degree in the Department of
Electronic and Information Engineering at The Hong
Kong Polytechnic University. His research interests
include machine learning and deep learning in video
coding and video transcoding. He serves as a
reviewer of international journals including the IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY and KSII TRANSACTIONS ON INTERNET AND
INFORMATION SYSTEMS.

Yui-Lam Chan (S’94-A’97-M’00) received the
B.Eng. (Hons.) and Ph.D. degrees from The Hong
Kong Polytechnic University, Hong Kong, in 1993
and 1997, respectively.

He joined The Hong Kong Polytechnic University
in 1997, where he is currently an Associate Professor
with the Department of Electronic and Information
Engineering. He is actively involved in professional
activities. He has authored over 120 research papers
in various international journals and conferences. His
research interests include multimedia technologies,
signal processing, image and video compression,

video streaming, video transcoding, video conferencing, digital TV/HDTV,
3DTV/3DV, multiview video coding, machine learning for video coding, and
future video coding standards including screen content coding, light-field video
coding, and 360-degree omnidirectional video coding.

Dr. Chan serves as an Associate Editor of IEEE TRANSACTIONS ON
IMAGE PROCESSING. He was the Secretary of the 2010 IEEE International
Conference on Image Processing. He was also the Special Sessions Co-Chair
and the Publicity Co-Chair of the 2015 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference, and the Technical
Program Co-Chair of the 2014 International Conference on Digital Signal
Processing.

Sik-Ho Tsang (M’10) received the Ph.D. degree from
The Hong Kong Polytechnic University (PolyU),
Hong Kong, in 2013.
 He was a Postdoctoral Fellow from 2013 to 2016,
and involved numerous industrial projects for video
coding and transcoding. He is currently a Research
Fellow in PolyU. He has authored numerous
international journals, conferences and patents. His
current research fields involve video coding such as
HEVC, VVC, multiview video plus depth coding,

screen content coding, and immersive video coding including light field coding
and 360-degree video coding. His research interests also includes machine
learning and deep learning.
 He serves as a reviewer of international journals including the IEEE
TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, and Elsevier
Journal of Signal Processing: Image Communication.

Wan-Chi Siu (S’77-M’77-SM’90-F’12-Life-F’16)
received the MPhil and PhD degrees from The
Chinese University of Hong Kong in 1977 and
Imperial College London in 1984. He is Life-Fellow
of IEEE and Fellow of IET, and Immediate-Past
President (2019-2020) of APSIPA (Asia-Pacific
Signal and Information Processing Association). Prof.
Siu is now Emeritus Professor, and was Chair
Professor, Director of Signal Processing Research

Centre, Head of Electronic and Information Engineering Department and Dean
of Engineering Faculty of The Hong Kong Polytechnic University. He is an
expert in DSP, fast algorithms, super-resolution imaging, 2D and 3D video
coding, and machine learning for object recognition and tracking. He has
published 500 research papers (over 200 are international journal papers) and
has 9 recent patents granted. Prof. Siu was also an independent non-executive
director (2000-2015) of a publicly-listed video surveillance company and
convenor of the First Engineering/IT Panel of the RAE(1992/93) in Hong Kong.
He is an outstanding scholar, with many awards, including the Best Faculty
Researcher Award (twice) and IEEE Third Millennium Medal (2000). Prof. Siu

has been Guest Editor/Subject Editor/AE for IEEE Transactions on Circuits and
System II, Image Processing, Circuit & System for Video Technology, and
Electronics Letters, and organized very successfully over 20 international
conferences including IEEE society-sponsored flagship conferences, such as
TPC Chair of ISCAS1997 and General Chair of ICASSP2003 and General
Chair of ICIP2010. He was Vice-President, Chair of Conference Board and
Core Member of Board of Governors (2012-2014) of the IEEE Signal
Processing Society, and is now a member of IEEE Fourier Award for Signal
Processing Committee and some other IEEE committees.

