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Abstract—Intelligent reflecting surface (IRS) is a new promis-
ing technology that is able to manipulate the wireless propagation
channel via smart and controllable signal reflection. In this paper,
we investigate the capacity region of a multiple access channel
(MAC) with two users sending independent messages to an access
point (AP), aided by M IRS reflecting elements. We consider two
practical IRS deployment strategies that lead to different user-
AP effective channels, namely, the distributed deployment where
the M reflecting elements form two IRSs, each deployed in the
vicinity of one user, versus the centralized deployment where all
the M reflecting elements are deployed in the vicinity of the AP.
For the distributed deployment, we derive the capacity region
in closed-form; while for the centralized deployment, we derive
a capacity region outer bound and propose an efficient rate-
profile based method to characterize an achievable rate region
(or capacity region inner bound). Furthermore, we compare the
capacity regions of the two cases and draw useful insights into
the optimal deployment of IRS in practical systems.

I. INTRODUCTION

Driven by the recent advancement in metamaterial technol-

ogy, intelligent reflecting surface (IRS) has become a cost-

effective and energy-efficient solution to improve the wireless

communication performance [1], [2]. Specifically, an IRS is a

planar metasurface consisting of a large number of passive

reflecting elements, each of which is able to introduce an

independent phase shift to the impinging electromagnetic

wave, thereby collaboratively altering the wireless channel. By

properly designing the IRS reflection coefficients (i.e., phase

shifts), IRS has been shown effective in improving the achiev-

able rate of various wireless communication systems (see, e.g.,

[3]–[6]). Moreover, efficient channel estimation methods have

been proposed to obtain the channel state information (CSI)

required to practically realize the above rate gains [4], [7],

[8]. Nonetheless, from an information theoretical viewpoint,

the fundamental capacity limit of IRS-aided channels has

only been characterized recently in [9] under the single-user

setup. To the best of our knowledge, the capacity region
characterization for the more complex IRS-aided multi-user
channels still remains an open problem.

Besides capacity characterization, another key problem not

fundamentally understood for IRS-aided multi-user systems is

IRS deployment. In the current literature, IRS is typically as-

sumed to be deployed in the vicinity of the users to enhance the

local signal coverage. Under this strategy, multiple distributed

IRSs need to be deployed each near one cluster of users if

the users in different clusters are located far apart, which

is referred to as the distributed deployment and illustrated

in Fig. 1 (a). In contrast, given a total number of available

IRS reflecting elements, another strategy is the centralized

(a) Distributed deployment (b) Centralized deployment

Fig. 1. A two-user MAC with different IRS deployment strategies.

deployment where all reflecting elements are deployed near the

access point (AP), as illustrated in Fig. 1 (b). Note that these

two strategies lead to different user-AP effective channels in

general and hence different user achievable rates. Specifically,

with distributed deployment, each user can only enjoy the

passive beamforming gain brought by its nearby IRS (since its

signals reflected by other far-apart IRSs are too weak due to

much higher path loss), which is thus smaller than the passive

beamforming gain under the centralized deployment with a

larger-size IRS where all the reflecting elements can be used

for enhancing the channels for all users. However, the IRS

passive beamforming gain under the centralized deployment

needs to be shared by all users, thus resulting in a reduced

gain for each user. To our best knowledge, it is yet unclear

which IRS deployment strategy achieves larger capacity region

in multi-user systems.

To address the above issue, we study in this paper a two-user

multiple access channel (MAC) aided by M IRS reflecting

elements, as shown in Fig. 1. For the distributed IRS deploy-

ment, we provide a closed-form characterization of its capacity

region. While for the centralized IRS deployment, we propose

a capacity region outer bound and develop a computationally

efficient rate-profile based method to characterize an achiev-

able rate region (or capacity region inner bound). Moreover,

we analytically prove that the capacity region with centralized

deployment contains that with distributed deployment under a

simplified but practical setup. Numerical results validate our

analysis and tightness of the proposed bounds. Furthermore, it

is shown that the capacity gain of centralized over distributed

deployment is most prominent when the rates of the two users

are asymmetric.

II. SYSTEM MODEL

We consider a two-user MAC in Fig. 1, where each single-

antenna user aims to send an independent message to a single-

antenna AP. The baseband equivalent direct channel from the

kth user to the AP is denoted as h̄k ∈ C, k = 1, 2. To improve

the user communication rates, we consider the deployment of
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M ≥ 1 passive reflecting elements, each element being able to

induce an independent phase shift to the incident signal, thus

collaboratively altering the effective channels from the users

to the AP. We propose two different deployment strategies

for the M reflecting elements. Specifically, for the distributed
deployment, the M elements form two IRSs (see Fig. 1 (a)),

where each IRS k consists of Mk elements and is placed

in the vicinity of user k, with
∑2

k=1 Mk = M . In contrast,

for the centralized deployment, all the M elements form one

single IRS located in the vicinity of the AP (see Fig. 1 (b)).

In the following, we describe the system models for the two

deployment cases, respectively.

A. Distributed IRS Deployment
For distributed IRS deployment, we denote hD

k ∈ C
Mk×1

as the channel vector from user k to its serving IRS, and

gDT

k ∈ C
1×Mk as the channel vector from its serving IRS

to the AP. Denote ΦD
k = diag{φD

k1, ..., φ
D
kMk

} ∈ C
Mk×Mk

as the IRS reflection matrix for the kth IRS, with |φD
km| =

1, ∀m ∈ Mk, where Mk = {1, ...,Mk}. We assume that the

locations of the two users are sufficiently far apart such that

the signal transmitted by one user and reflected by the other

user’s serving IRS is negligible at the AP due to the high path

loss. Hence, the effective channel from user k to the AP by

combining both the direct and reflected links is given by

h̃D
k (Φ

D
k ) = h̄k + gDT

k ΦD
k h

D
k , k = 1, 2. (1)

Let sk denote the desired information symbol for user k, which

is assumed to be a circularly symmetric complex Gaussian

(CSCG) random variable with zero mean and unit variance,

i.e., sk ∼ CN (0, 1). Note that sk’s are independent over k.

The transmitted signal by user k is modeled as xk =
√
pksk,

which satisfies E[|xk|2] = pk ≤ Pk, with pk denoting the

transmit power of user k and Pk denoting its maximum value.

The received signal at the AP is thus modeled as

y = h̃D
1 (Φ

D
1 )x1 + h̃D

2 (Φ
D
2 )x2 + z, (2)

where z ∼ CN (0, σ2) denotes the CSCG noise at the AP

receiver with average power σ2. For each user k, we let RD
k

denote its achievable rate in bits per second per Hertz (bps/Hz)

under the distributed IRS deployment.

B. Centralized IRS Deployment
For centralized IRS deployment, we denote hC

k ∈ C
M×1 as

the channel vector from user k to the IRS, and gCT ∈ C
1×M

as the channel vector from the IRS to the AP. Denote ΦC =
diag{φC

1 , ..., φ
C
M} ∈ C

M×M as the IRS reflection matrix, with

|φC
m| = 1, ∀m ∈ M, where M = {1, ...,M}. Thus, the

effective channel from user k to the AP is given by

h̃C
k (Φ

C) = h̄k + gCT

ΦChC
k , k = 1, 2. (3)

Note that different from the distributed deployment where

the effective channel between each user k and the AP is

only dependent on the Mk reflection coefficients of its own

serving IRS in ΦD
k , the effective channels for both users under

the centralized deployment depend on all the M reflection

coefficients in ΦC. Under the same transmitted signal and

receiver noise model as in the distributed deployment case,

the received signal at the AP is modeled similarly as (2) by

replacing each h̃D
k (Φ

D
k ) with h̃C

k (Φ
C). For each user k, let

RC
k denote the achievable rate in bps/Hz under the centralized

IRS deployment.
In this paper, we aim to characterize the capacity region

of the IRS-aided two-user MAC under the two deployment

strategies, namely, all the achievable rate-pairs (RD
1 , R

D
2 )’s and

(RC
1 , R

C
2 )’s. We then compare these two capacity regions and

draw useful insights on the optimal IRS deployment strategy.

III. CAPACITY REGION OF DISTRIBUTED DEPLOYMENT

First, we characterize the capacity region under the dis-

tributed IRS deployment. Note that with given IRS reflection

coefficients {ΦD
k }, the channels from the two users to the AP

are determined as {h̃D
k (Φ

D
k )} given in (1), and the capacity

region of the two-user MAC is well-known as the convex hull

of all rate-pairs that satisfy the following constraints [10]:

RD
1 ≤ log2(1 + P1|h̃D

1 (Φ
D
1 )|2/σ2)

Δ
= rD1 (Φ

D
1 ), (4)

RD
2 ≤ log2(1 + P2|h̃D

2 (Φ
D
2 )|2/σ2)

Δ
= rD2 (Φ

D
2 ), (5)

RD
1+R

D
2 ≤ log2(1+

∑2
k=1Pk|h̃D

k (Φ
D
k )|2/σ2)

Δ
=rD12({ΦD

k }), (6)

which is denoted as CD({ΦD
k }). Note that by flexibly design-

ing the IRS reflection coefficients {ΦD
k }, any rate-pair within

the union set of CD({ΦD
k })’s over all feasible {ΦD

k }’s can be

achieved. By further considering time sharing among different

{ΦD
k }’s, the capacity region under distributed IRS deployment

is defined as the convex hull of such a union set [10]:

CD Δ
= Conv

(⋃
{ΦD

k }∈RD
CD({ΦD

k })
)
, (7)

where Conv(·) denotes the convex hull operation, and RD Δ
=

{{ΦD
k } : |φD

km|=1, ∀k,m} denotes the feasible set of {ΦD
k }.

In the following, we characterize CD in closed-form by

exploiting the peculiar effective channel structure under the

distributed deployment. Specifically, note that for any {ΦD
k }∈

RD, the effective channel gain for each user k is upper-

bounded by

|h̃D
k (Φ

D
k )|=|h̄k+

∑Mk

m=1g
D
kmφD

kmhD
km|≤|h̄k|+

∑Mk

m=1|gDkm||hD
km|

=|h̄k|+ ‖diag{gD
k }hD

k ‖1 Δ
= h̃D

k,U, k = 1, 2, (8)

where ‖·‖1 denotes the l1-norm, and the inequality holds with

equality if and only if {ΦD
k } is designed as follows:

φD
km = ej(arg{h̄k}−arg{gD

kmhD
km}), k = 1, 2, m ∈ Mk. (9)

Based on this result, we obtain the following theorem.
Theorem 1: The capacity region of the IRS-aided two-user

MAC under the distributed deployment is given by

CD={(RD
1 , R

D
2 ) :R

D
1 ≤rD

�

1 , RD
2 ≤rD

�

2 , RD
1 +RD

2 ≤rD
�

12}, (10)

where rD
�

1
Δ
=log2(1+P1h̃

D2

1,U/σ
2), rD

�

2
Δ
=log2(1+P2h̃

D2

2,U/σ
2),

and rD
�

12
Δ
= log2

(
1 + (P1h̃

D2

1,U + P2h̃
D2

2,U)/σ
2
)
.

Proof (Sketch): Theorem 1 can be proved by noting

that (10) is an achievable rate region with {ΦD
k } given in

(9), and also a convex-shaped outer bound for all achievable

CD({ΦD
k })’s (thus, the convex-hull operation in (7) is not

needed with {ΦD
k } given in (9)).

IV. CAPACITY REGION OF CENTRALIZED DEPLOYMENT

Next, we characterize the capacity region under the cen-

tralized IRS deployment. Similar to the distributed case, the

capacity region with given IRS reflection coefficients ΦC is the

convex hull of the rate-pairs under the following constraints:



RC
1 ≤ log2(1 + P1|h̃C

1 (Φ
C)|2/σ2)

Δ
= rC1 (Φ

C), (11)

RC
2 ≤ log2(1 + P2|h̃C

2 (Φ
C)|2/σ2)

Δ
= rC2 (Φ

C), (12)

RC
1+R

C
2 ≤ log2(1+

∑2
k=1Pk|h̃C

k (Φ
C)|2/σ2)

Δ
=rC12(Φ

C), (13)

which is denoted as CC(ΦC). By tuning the IRS reflection

coefficients ΦC and performing time sharing among different

ΦC’s, the capacity region is defined as

CC Δ
= Conv

(⋃
ΦC∈RC

CC(ΦC)
)
, (14)

where RC Δ
= {ΦC : |φC

m| = 1, ∀m} denotes all feasible ΦC’s.

Compared to the distributed deployment case, the capacity

region in (14) is more challenging to characterize. This is

because the effective channels of the two users, h̃C
1 (Φ

C) and

h̃C
2 (Φ

C), are coupled through all the M reflection coefficients

in ΦC. Thus, different parts of the Pareto boundary of the

capacity region CC are generally achieved by different ΦC

to strike a balance between h̃C
1 (Φ

C) and h̃C
2 (Φ

C). Finding

such capacity-achieving sets of reflection coefficients is more

challenging as compared to the distributed case where the

entire Pareto boundary of the capacity region is achieved by

a single set of {ΦD
k } given in (9), since the effective channel

of each user is maximized by the reflection coefficients of

its own serving IRS. Although CC can be characterized via

the exhaustive search by first obtaining CC(ΦC)’s for all

feasible ΦC ∈RC and then taking the convex hull of their

union set, the required complexity is at least O(LM
0 ) if the

[0, 2π) phase range for each φC
m in ΦC is approximated by L0

uniformly sampled points, which is exponential over M and

thus prohibitive for practically large M . To avoid such high

complexity for characterizing CC, in the following, we provide

efficient methods to find both the outer and inner bounds of

CC, whose tightness will be evaluated via numerical results in

Section VI.

A. Capacity Region Outer Bound
To start with, we provide an outer bound of the capacity

region CC. Specifically, it follows from (11)–(13) that an outer

bound of CC can be constructed by finding an upper bound for

each of rC1 (Φ
C), rC2 (Φ

C), and rC12(Φ
C) separately, for which

the details are given as follows.

First, similar to (8), it can be shown that for each user k,

the effective channel gain |h̃C
k (Φ

C)| is upper-bounded by

|h̃C
k (Φ

C)| ≤ |h̄k|+ ‖diag{gC}hC
k ‖1 Δ

= h̃C
k,U, (15)

where the inequality holds with equality if and only if all the

IRS reflection coefficients are designed to maximize user k’s

effective channel gain, i.e.,

φC
m = ej(arg{h̄k}−arg{gC

mhC
km}), m ∈ M. (16)

Thus, based on (11)–(12), each rCk (Φ
C) is upper-bounded as

rCk (Φ
C) ≤ log2(1 + Pkh̃

C2

k,U/σ
2)

Δ
= rCk,U, k = 1, 2. (17)

Next, we derive an upper bound for rC12(Φ
C), which is

a challenging task since ΦC can change both h̃C
1 (Φ

C) and

h̃C
2 (Φ

C) in rC12(Φ
C). To achieve this goal, we formulate the

following optimization problem:
(P0) max

ΦC
:|φC

m|=1,∀m∈M
P1|h̃C

1 (Φ
C)|2 + P2|h̃C

2 (Φ
C)|2. (18)

Let s�0 denote the optimal value of (P0). Note that for any s0≥
s�0, log2(1+s0/σ

2) is an upper bound for rC12(Φ
C). However,

(P0) is a non-convex optimization problem due to the uni-

modular constraints on φC
m’s, thus s�0 is generally difficult to

obtain. In the following, we find an upper bound for s�0 instead.

First, we transform (P0) into a more tractable form. Define

qH
k

Δ
= gCT

diag{hC
k }, v

Δ
= P1h̄1q1 + P2h̄2q2, and φC Δ

=
[φC

1 , ..., φ
C
M ]T . Consequently, the objective function of (P0)

can be rewritten as P1|h̃C
1 (Φ

C)|2+P2|h̃C
2 (Φ

C)|2 = P1|h̄1|2+
P2|h̄2|2 + vHφC + φCH

v + φCH

(P1q1q
H
1 + P2q2q

H
2 )φC,

which is a quadratic function of φC. Thus, we can apply the

semidefinite relaxation (SDR) technique for finding an upper

bound for the optimal value of (P0). By introducing auxiliary

variables w = [φCT

, t]T and W = wwH , (P0) can be shown

to be equivalent to the following problem with an additional

constraint of rank(W ) = 1:
(P0-SDR) max

W�0:Wm,m=1,
m=1,...,M+1

P1|h̄1|2+P2|h̄2|2+tr{WQ}, (19)

where Q
Δ
= [P1q1q

H
1 + P2q2q

H
2 ,v;vH , 0]. (P0-SDR) is a

semidefinite program (SDP) which can be efficiently solved

via the interior-point method with complexity O(M4.5) [11].

Denote s� as the optimal value of (P0-SDR). Note that

s� ≥ s�0 holds due to the relaxation of the rank-one constraint.

Therefore, we have rC12(Φ
C) ≤ log2(1 + s�/σ2)

Δ
= rC12,U,

which yields an outer bound of CC given by

CC
O={(RC

1 ,R
C
2 ) :R

C
1 ≤rC1,U,R

C
2 ≤rC2,U,R

C
1 +RC

2 ≤rC12,U}⊇CC.
(20)

B. Capacity Region Inner Bound: A Rate-Profile Method

Next, we derive an inner bound of the capacity region CC

(or an achievable rate region). We first present a rate-profile
based method to achieve this goal by solving a series of sum-

rate maximization problems. Then, we propose an alternating
optimization algorithm to find high-quality solutions to these

problems efficiently.

1) Rate-Profile based Problem Formulation: To start with,

note that for each ΦC, all the achievable rate-pairs on the

Pareto boundary of its corresponding CC(ΦC) except those

requiring time sharing/rate splitting of the two users can be

attained via successive interference cancellation (SIC) at the

AP, i.e., first decoding the message of one user by treating the

signal of the other user as noise, then canceling the decoded

signal and decoding the other user’s message [10]. Motivated

by this result, we propose to first characterize the Pareto

boundary of the union set of the above SIC-achievable rate-

pairs for all feasible ΦC∈RC, and then perform time sharing

among the obtained rate-pairs on the Pareto boundary to

further enlarge the achievable rate region. For the first task, we

propose to adopt the rate-profile approach in [12]. Specifically,

let π denote the decoding order indicator, with π=[1, 2]T
Δ
=πI

representing that user 1 is decoded before user 2, and π =

[2, 1]T
Δ
=πII otherwise; let α∈ [0, 1] denote the rate ratio be-

tween the firstly decoded user and the users’ sum-rate, and α=
[α, 1−α]T denote the rate-profile vector. Based on the above,

we formulate the following problem to maximize the sum-rate

of the two users with given α and π by jointly optimizing

the IRS reflection coefficients and user transmit powers:



(P1) max
r,p1,p2,Φ

C
r (21)

s.t. log2

(
1+

pπ1 |h̃C
π1
(ΦC)|2

pπ2 |h̃C
π2
(ΦC)|2+σ2

)
≥αr (22)

log2(1 + pπ2 |h̃C
π2
(ΦC)|2/σ2) ≥ (1− α)r (23)

pk ≤ Pk, ∀k ∈ {1, 2} (24)

ΦC = diag{φC
1 , ..., φ

C
M} (25)

|φC
m| = 1, ∀m ∈ M. (26)

For each rate-profile vector α, let r�I (α) and r�II(α) denote

the optimal value to (P1) with π = πI and π = πII, respec-

tively. Note that r�I (α)≥r�II(α) represents that decoding order

πI is optimal for the given α, and r�I (α)<r�II(α) otherwise.

Therefore, the Pareto-optimal rate-pair (RC
1 , R

C
2 ) along the

rate-profile vector α is (αr�I (α), (1−α)r�I (α)) if r�I (α) ≥
r�II(α), and ((1 − α)r�II(α), αr�II(α)) otherwise.1 In the fol-

lowing, we address the remaining problem of solving (P1).
2) Proposed Solution to (P1):Note that (P1) is a non-convex

optimization problem due to the uni-modular constraints on

φC
m’s in (26), and the complicated coupling among p1, p2,

and ΦC in (22)–(23). To tackle such difficulty, we exploit the

structure of (P1) to transform it into a more tractable form.
Proposition 1: (P1) is equivalent to the following problem:

(P2) max
r,ΦC

r (27)

s.t. log2(1 + Pπ1 |h̃π1(Φ
C)|2/(2(1−α)rσ2)) ≥ αr (28)

log2(1 + Pπ2 |h̃π2(Φ
C)|2/σ2) ≥ (1− α)r (29)

(25), (26). (30)

Proof: Proposition 1 can be proved by noting that the

inequality in (23) can be replaced with equality without loss

of optimality. We omit the details here for brevity.
Note that for the case of α = 1, the optimal ΦC to (P2) can

be readily derived as φC
m = ej(arg{h̄π1}−arg{gC

mhC
π1m}), ∀m.

Thus, we focus on (P2) with α ∈ [0, 1) in the following. To

further simplify (P2), we define an auxiliary variable β
Δ
=

2(1−α)r, which is an increasing function of r for any α ∈
[0, 1). (P2) is then equivalently rewritten as

(P3) max
β,ΦC

β (31)

s.t. |h̃C
π1
(ΦC)|2 ≥ (β

1
1−α − β)σ2/Pπ1 (32)

|h̃C
π2
(ΦC)|2 ≥ (β − 1)σ2/Pπ2 (33)

(25), (26). (34)
(P3) is still non-convex due to the uni-modular constraints

on φC
m’s as well as the quadratic terms at the left-hand sides of

(32) and (33), for which the optimal solution is thus difficult to

obtain. In the following, we adopt an alternating optimization
approach for finding a high-quality suboptimal solution to

(P3). Specifically, note that each quadratic term |h̃C
k (Φ

C)|2
can be expressed as the following affine form over each φC

m

with {φC
i , i 
= m}Mi=1 being fixed:

|h̃C
k (Φ

C)|2 = 2Re{f2,kmφC
m}+f1,km, k = 1, 2, (35)

where f1,km
Δ
= |h̄k+

∑
i �=m gCi φ

C
i h

C
ki|2+|gCmhC

km|2 and f2,km
Δ
=

gCmhC
km(h̄∗

k+
∑

i �=m gC
∗

i φC∗
i hC∗

ki ), and the equality in (35) holds

due to |φC
m|=1. Hence, with given {φC

i , i 
= m}Mi=1, (P3) is
1It is worth noting that another approach to characterize the aforementioned

Pareto boundary is by solving a series of weighted sum-rate maximization
(WSRmax) problems [12], which is also challenging since the rates of the two
users are coupled in the objective function in a complicated manner. Thus,
we leave the WSRmax-based approach to our future work.

reduced to the following problem:
(P3-m)max

β,φC
m

β (36)

s.t. 2Re{f2,π1mφm}≥(β
1

1−α −β)σ2/Pπ1−f1,π1m (37)

2Re{f2,π2mφm}≥(β − 1)σ2/Pπ2−f1,π2m (38)

|φC
m| = 1. (39)

Note that the only non-convexity in (P3-m) lies in the uni-

modular constraint on φC
m, thus motivating us to apply the

convex relaxation technique on this constraint. Specifically, we

relax (P3-m) by replacing the constraint in (39) with a new

convex constraint |φC
m| ≤ 1, and denote the relaxed problem

as (P3-m-R). We then have the following lemma.

Lemma 1: The optimal φC
m to (P3-m-R) satisfies |φC

m| = 1.

Proof: For any solution of φC
m to (P3-m-R) with |φC

m|<1,

the objective value can always be increased by scaling |φC
m| to

1, since β
1

1−α −β and β−1 are non-decreasing and increasing

functions of β, respectively. This thus completes the proof.

Lemma 1 indicates that the convex relaxation from (P3-m)

to (P3-m-R) is tight, thus the optimal solution to (P3-m-R) is

also optimal for (P3-m). Thanks to the above transformations,

(P3-m-R) is a convex optimization problem, whose optimal so-

lution can be efficiently obtained via the interior-point method

with complexity O(1). Therefore, by iteratively optimizing

(β, φC
m) with all the other variables {φC

i , i 
= m}Mi=1 being

fixed at each time via solving (P3-m), we can obtain a feasible

solution to (P3) as well as (P1), which is in general suboptimal.

Note that since (P3-m) is solved optimally in every iteration,

the objective value of (P3), β, is non-decreasing over the

iterations, which guarantees the monotonic convergence of this

algorithm since the sum-rate r and hence β is bounded above

due to the finite transmit power. For each α, let r̃I(α) and

r̃II(α) denote the obtained solutions to (P1) with π = πI and

π = πII, respectively. Between their corresponding rate-pairs,

we further select the one with larger sum-rate as

(R̃C
1 (α), R̃C

2 (α))=

{
(α, 1−α)r̃I(α), if r̃I(α) ≥ r̃II(α)
(1−α, α)r̃II(α), otherwise.

(40)

By performing time sharing among the obtained

(R̃C
1 (α), R̃C

2 (α))’s, an inner bound of the capacity region (or

an achievable rate region) is obtained as

CC
I = Conv

(
(0, 0)

⋃
α:α∈[0,1]

(R̃C
1 (α), R̃C

2 (α))
)
⊆ CC. (41)

Note that the complexity for the above proposed solution to

(P1) with both decoding orders can be shown to be O(2MI),
where I denotes the number of outer iterations (each requires

solving (P3-m) for M times from m=1 to m=M ). Hence, by

approximating the [0, 1] range of α with L uniformly sampled

points, the overall complexity for obtaining CC
I is O(2MIL+

L logL), which is polynomial over M and thus much lower

than that of the exhaustive search (i.e., O(LM
0 )).

V. CAPACITY REGION COMPARISON: DISTRIBUTED
VERSUS CENTRALIZED IRS DEPLOYMENT

In this section, we compare the capacity regions under the

two IRS deployment strategies. For simplicity, we assume

that the direct user-AP channels are weak and negligible, i.e.,

h̄1 = h̄2 = 0, which is usually the case in practical systems

with severe blockage or large link distance.2 Moreover, for
2The general case with non-zero h̄1 and h̄2 is more difficult to analyze,

which is thus considered for the numerical example in Section VI.



fairness, we consider the following twin channels (defined

in Assumption 1 below) between the two deployment cases,

where the two distributed user-IRS channels constitute the

centralized IRS-AP channel, and each user-IRS channel in the

centralized case contains the corresponding IRS-AP channel in

the distributed case. The twin channels hold in practice if the

user-IRS distances in the distributed case are the same as the

IRS-AP distance in the centralized case, and the IRS-AP dis-

tances in the distributed case are the same as the corresponding

user-IRS distances in the centralized case (see Fig. 1).

Assumption 1 (Twin Channels): gC=[hDT

1 ,hDT

2 ]T , hC
1m=

gD1m, ∀m∈M1, hC
2(m+M1)

=gD2m, ∀m∈M2.

Under this assumption, we have the following proposition.

Proposition 2: Under h̄1= h̄2 =0 and Assumption 1, the

capacity region of the centralized IRS deployment contains

that of the distributed IRS deployment, i.e., CD ⊆ CC.

Proof (Sketch): We construct Φ̃
C

for the centralized IRS

such that the reflection coefficients of its two sub-surfaces,

{φ̃C
m}M1

m=1 and {φ̃C
m}Mm=M1+1, correspond to the capacity-

achieving reflection coefficients at IRS 1 and 2 for the dis-

tributed deployment shown in (9), respectively, but each being

rotated by a common phase θ1∈ [0, 2π) or θ2∈ [0, 2π), i.e.,

φ̃C
m=

{
ej(arg{h̄1}−arg{gD

1mhD
1m}+θ1), m ∈ M1

ej(arg{h̄2}−arg{gD
2(m−M1)h

D
2(m−M1)}+θ2), m∈M\M1.

(42)

Then, we have |h̃C
k (Φ̃

C
)|= |h̃D

k,U+ f̃k(θ1, θ2)| (recall h̃D
k,U’s

are the capacity-achieving effective channel gains for the

distributed case), where f̃k(θ1, θ2) is a function of θ1 and

θ2. It can be shown that we can always design θ1, θ2 such

that |h̃C
k (Φ̃

C
)| ≥ h̃D

k,U holds for any k ∈ {1, 2}, hence

CD⊆CC(Φ̃
C
)⊆CC. This thus completes the proof.

VI. NUMERICAL EXAMPLE

In this section, we provide a numerical example. We set

M =30, M1 =M2 =15, P1 =P2 =30 dBm, and σ2 =−90
dBm. Under a three-dimensional coordinate system, the AP

is located at (0, 0, 1) in meter (m), and the two users are

located at (500, 0, 1) m and (−500, 0, 1) m, respectively. The

IRS in the centralized deployment is located at (0, 0, 2) m,

and the two IRSs in the distributed deployment are located

at (500, 0, 2) m and (−500, 0, 2) m, respectively. We consider

the Rayleigh fading channel model, where the entries in {h̄k},

{hC
k } and {gC} are generated as independent CSCG random

variables with zero mean and variance equal to the path loss

of the corresponding link modeled as γ = γ0(1/d)
ᾱ, with

γ0=−30 dB, d being the link distance, and ᾱ=3 denoting the

path loss exponent. {hD
k } and {gD

k } are generated following

the twin channels in Assumption 1.

In Fig. 2, we show the capacity region for the traditional

MAC without IRS and that with two distributed IRSs, as

well as the outer and inner capacity region bounds (with

L=100) with a centralized IRS. It is observed that the capacity

region inner bound for centralized deployment contains the

capacity region with distributed deployment, while the latter

also contains the capacity region without IRS. This thus

validates the effectiveness of deploying IRS in enlarging the

capacity region as well as the advantage of centralized IRS
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Fig. 2. Capacity regions for distributed and centralized IRS deployments.

deployment over distributed deployment (even with the user-

AP direct channels). It is also interesting to observe that the

rate gain of centralized deployment is most pronounced when

the rates of the two users are asymmetric, since the larger

passive beamforming gain provided by the centralized IRS is

most useful for the user with larger rate requirement. Finally,

we show the achievable rate region by a heuristic scheme

under centralized deployment with Φ̃
C

given in (42) by setting

θ1 = θ2 = 0 (i.e., without the additional phase rotations de-

signed for the two sub-surfaces to further align their reflected

signals). This heuristic achievable rate region is observed to be

significantly smaller than our proposed one, which validates

the efficacy of our proposed rate-profile based design.

VII. CONCLUSION

This paper studied the capacity region of an IRS-aided two-

user MAC. For distributed IRS deployment, the capacity re-

gion was characterized in closed-form. For centralized IRS de-

ployment, computationally efficient algorithms were proposed

for finding capacity region inner and outer bounds. It was

revealed that centralized deployment outperforms distributed

deployment under the practical channel setup, and the capacity

gain is most pronounced when the user rates are asymmetric.
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