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ABSTRACT

Domain mismatch is a common problem in speaker ver-
ification. This paper proposes an information-maximized
variational domain adversarial neural network (InfoVDANN)
to reduce domain mismatch by incorporating an InfoVAE
into domain adversarial training (DAT). DAT aims to pro-
duce speaker discriminative and domain-invariant features.
The InfoVAE has two roles. First, it performs variational
regularization on the learned features so that they follow
a Gaussian distribution, which is essential for the standard
PLDA backend. Second, it preserves mutual information be-
tween the features and the training set to extract extra speaker
discriminative information. Experiments on both SRE16 and
SRE18-CMN2 show that the InfoVDANN outperforms the
recent VDANN, which suggests that increasing the mutual
information between the latent features and input features
enables the InfoVDANN to extract extra speaker information
that is otherwise not possible.

Index Terms— Speaker verification, domain adaptation,
adversarial training, variational autoencoder, mutual informa-
tion

1. INTRODUCTION

To achieve optimal performance, speaker verification (SV)
systems rely on the condition that the training data share the
same distribution with the test data. In practice, however, this
condition is often not satisfied and domain mismatch occurs,
posing a great challenge to SV. Usually, domain adaptation
(DA) is adopted to alleviate this problem.

Recent research on DA has been focusing on the unsu-
pervised situation where only some unlabeled target-domain
data are available besides large amount of labeled source-
domain data. One approach is to hypothesize speaker la-
bels through clustering; with hypothesized labels, one can
adapt the probabilistic linear discriminant analysis (PLDA)
model to the target domain [1, 2]. Another category aims to
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learn a domain-invariant space for transforming the source-
domain i-vectors [3], e.g., inter-dataset variability compensa-
tion [4] and dataset-invariant covariance normalization [5]. In
[6, 7], Lin et al. applied maximum mean discrepancy (MMD)
[8] as a distribution distance metric for training autoencoders
and produced features that are more invariant to multiple do-
mains. Since the emergence of generative adversarial net-
works [9], adversarial learning has been applied for DA to
create a domain-invariant space [10, 11]. In [12], Wang et
al. utilized domain adversarial training (DAT) [10] to gen-
erate speaker discriminative and domain-invariant represen-
tations, which outperforms traditional DA approaches on Do-
main Adaptation Challenge 2013. Rohdin et al. [13] followed
the same framework but implemented DAT in an end-to-end
fashion to produce features that are invariant to languages.

Although adversarial learning based unsupervised DA has
greatly boosted the performance of SV systems under domain
mismatch scenarios, it may lead to non-Gaussian latent vec-
tors, which do not meet the Gaussianity requirement of the
PLDA backend. This problem can be solved by using the
heavy-tailed PLDA [14, 15] or applying the i-vector length
normalization [16]. However, the former is more compu-
tationally expensive than the Gaussian PLDA and the latter
is not really a Gaussianization procedure but a sub-optimal
compromise. Recently, there have been some work trying
to Gaussianize speaker embeddings obtained by neural net-
works. For instance, in [17], Tu et al. proposed a variational
domain adversarial neural network (VDANN) by incorporat-
ing a variational autoencoder (VAE) [18] into the standard
DANN [10, 12] to regularize the distribution of embedded
features to be Gaussian. The transformed embeddings have
been shown to be more Gaussian than the DANN-transformed
ones, which led to performance improvement in SRE16 and
SRE18-CMN2. A similar approach using VAEs for Gaussian
regularization for speaker embeddings was proposed in [19].

Using VAEs to regularize the latent variables has achieved
some progress [17, 19]. However, training VAEs by maximiz-
ing the evidence lower bound (ELBO) has some problems
which can cause failure in learning useful latent representa-
tions [20, 21, 22]. One problem is that given finite training
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data, a VAE tends to overfit the training set and generate in-
accurate variational posteriors [23]. Another problem is that
if the decoder is flexible enough, a VAE can produce nonin-
formative latent vectors independent of the input [24, 25, 26].
This is undesirable if our objective is to learn meaningful rep-
resentations. In [23], Zhao et al. proposed an InfoVAE to
address these problems. The idea is to increase the contribu-
tion of the KL divergence between the aggregated variational
posterior [21, 27] and the latent prior so that latent inference
and data reconstruction can be balanced. Also, by explicitly
adding a mutual information (MI) term to the objective func-
tion, the dependence of the latent vectors on the input can be
enhanced. In this paper, we adopt the idea of InfoVAE and
extend the VDANN [17] for unsupervised DA. With the Info-
VAE, the learned features can gain more meaningful informa-
tion from the input, while simultaneously retain the benefit of
VDANN to produce speaker discriminative, domain-invariant
and Gaussian distributed features. We call the resulting net-
work InfoVDANN in this paper.

2. INFO VARIATIONAL AUTOENCODERS

Suppose we have a training set X whose true data distribution
is denoted as pD(x) and the underlying generation is deter-
mined by the latent variable set Z . For x ∈ X and z ∈ Z , a
VAE can be optimized by maximizing the ELBO [23]:

ELBO = EpD(x) [− KL (qφ(z|x)‖p(z))
+ Eqφ(z|x) [log pθ(x|z)]

]
, (1)

∝ − KL (qφ(z)‖p(z))
− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))] , (2)

where φ and θ are parameters of the encoder and decoder,
respectively. qφ(z|x) is an approximation of the intractable
true posterior pθ(z|x) and p(z) is the prior of z. qφ(z) in
Eq. 2 is the aggregated posterior [21, 27]:

qφ(z) =

∫
x

pD(x)qφ(z|x)dx. (3)

Eq. 3 suggests that qφ(z) cannot be computed exactly, be-
cause it requires an aggregation over the entire training set.
In practice, we can approximate the integral in Eq. 3 by a
Monte Carlo estimate [28, 29].

Maximizing the ELBO directly can lead to some prob-
lems. First, due to the inherent properties of the ELBO, maxi-
mization can lead to very inaccurate variational posterior even
though the ELBO can be maximized to infinity [23]. This
limitation is exacerbated when the dimension of the latent
variables is much lower than the input dimension, i.e., op-
timization tends to sacrifice variational inference to enhance
data reconstruction. Because from Eq. 2 we find that if the
dimension of x is much higher than that of z, maximization
of the ELBO will emphasize the second term, i.e., data recon-
struction. This bias in emphasis can cause overfitting easily

given finite data. Second, if the decoder is flexible enough,
VAE training will ignore the information in the latent features
related to the input. As a result, the MI between the latent fea-
tures and the input vanishes, leading to noninformative repre-
sentations [30, 31, 32]. We also call this issue as the posterior
collapse [22, 33, 34]. In this case the learned features will not
depend on the training data. This is undesirable as our objec-
tive is to learn meaningful representations for unsupervised
DA.

Zhao et al. [23] proposed a new objective based on Eq. 2
to address the problems in VAEs by 1) adding a scalar to
increase the contribution of KL (qφ(z)‖p(z)) and counteract
the dimension imbalance between X and Z; 2) incorporating
an MI term which explicitly retains high mutual information
between x and z. The resulting model is called the InfoVAE
whose objective is expressed as follows:

ELBOInfoVAE = −λKL (qφ(z)‖p(z)) + ηIq(x; z)

− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))] , (4)

∝ EpD(x)Eqφ(z|x) [log pθ(x|z)]
− (1− η)EpD(x) [KL (qφ(z|x)‖p(z))]
− (λ− 1 + η)KL (qφ(z)‖p(z)) , (5)

where Iq(x; z) is the MI between x and z under qφ(x, z).
λ compensates for the dimension imbalance between x and
z, so that variational inference and data reconstruction can
be balanced. η signifies the importance of maintaining high
mutual information between the original and latent vectors.
We rewrite Eq. 4 as Eq. 5 because the MI term cannot be
computed directly. Note that we can further generalize the
KL (qφ(z)‖p(z)) in Eq. 5 to broader divergence families for
efficient optimization, e.g., we may use MMD [8] as a diver-
gence measure or introduce a discriminator and apply adver-
sarial training to distinguish samples from qφ(z) and p(z) as
in the adversarial autoencoder (AAE) [27].

3. INFORMATION MAXIMIZED VARIATIONAL
DOMAIN ADVERSARIAL NEURAL NETWORK

Due to the problems in training VAEs described in Section 2,
we propose an InfoVDANN by incorporating an InfoVAE
into DANN to learn features that can gain more meaningful
information from the input while simultaneously leverage the
benefit of the VDANN.

As shown in Figure 1, the InfoVDANN has a similar
structure as the VDANN. It consists of a speaker predictor C,
a domain classifier D and a VAE which contains an encoder
E and a decoder G. The network parameters are denoted as
θc, θd, φe and θg , respectively.

Suppose the training set X = {X (r)}Rr=1 comprises sam-
ples from R domains, where X (r) = {x(r)

1 , . . . ,x
(r)
Nr
} con-

tains Nr samples from the r-th domain. Also we denote y as
the one-hot speaker labels. For p(z) = N (z;0, I), we define
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Fig. 1. Schematic of InfoVDANN. The solid and dashed ar-
rows represent network connections and stochastic sampling,
respectively. After training, the transformed features are ex-
tracted from the z node.

the InfoVDANN loss as:

LInfoVDANN(θc, θd, φe, θg) = LC(θc, φe)− αLD(θd, φe)
+ βLInfoVAE(φe, θg), (6)

where

LC(θc, φe) =

R∑
r=1

EpD(x(r))

{
−

K∑
k=1

y
(r)
k logC

(
E
(
x(r)

))
k

}
, (7)

LD(θd, φe) =

R∑
r=1

EpD(x(r))

{
− logD

(
E
(
x(r)

))
r

}
, (8)

and

LInfoVAE (θg, φe) = −
R∑
r=1

Nr∑
i=1

{
log pθ

(
x
(r)
i |z

(r)
i

)
+

1− η
2

J∑
j=1

[
1 + log

(
σ
(r)
ij

)2
−
(
µ
(r)
ij

)2
−
(
σ

(r)

ij

)2]
− (λ− 1 + η)Dg

(
qφ(z

(r)
i )‖p(z(r)i )

)}
. (9)

The subscript k in Eq. 7 indexes the speakers. Eq. 9 is the
negative of Eq. 5 where J denotes the dimension of z and
Dg(·‖·) is a generalized divergence measure which can be im-
plemented by MMD or adversarial training. α and β control
the contribution of LC and LInfoVAE, respectively.

During training, for each mini-batch, we first optimize D
by minimizing LD(θd, φe). θd are then fixed while training
the remaining parts of the InfoVDANN. The min-max opti-
mization can be summarized as follows:

min
θc,φe,θg

max
θd
LInfoVDANN(θc, θd, φe, θg). (10)

After training, we may sample the transformed features from
the z node as shown in Figure 1.

4. RELATION TO PRIOR WORK

In [12], DANN was applied to produce speaker discriminative
and domain-invariant features. In that case, we have R = 2.
The DANN is a special case of the InfoVDANN. Specifically,
if we remove the decoder and the sampling procedure in the
InfoVDANN, we obtain the DANN.

Since there is no extra constraint on the distribution of
features learned from a DANN, the adversarial training may
lead to non-Gaussian latent vectors, which do not meet the
Gaussianity requirement of the PLDA backend. VDANN [17]
was proposed to overcome this limitation. By incorporating a
VAE into DAT, we are able to regularize the learned features
so that they are Gaussian distributed after VDANN transfor-
mation. We find that the VDANN also belongs to the InfoV-
DANN class: by setting η = 0, and λ = 1, Eq. 9 becomes the
VDANN objective.

5. EXPERIMENTAL SETUP

The performance of various DA methods were evaluated on
SRE16 and SRE18-CMN2. The x-vector extractor available
from the Kaldi repository1 was used for extracting x-vectors
[35] in the experiments.

5.1. InfoVDANN, VDANN and DANN training

We used data from four domains to train the InfoVDANN,
VDANN and DANN. The statistics of the training data are
shown in Table 1.

Table 1. Statistics of training sets

Dataset No. of speakers No. of utterances

SRE04–10 1,806 54,180
Voxceleb1 1,251 37,530

SwitchBoard II 273 6,962
SITW 203 3,700

As shown in Figure 1, there are four sub-networks in the
InfoVDANN. The encoder has two hidden layers and each
layer has 1,024 nodes. We used ReLU as the activation func-
tion in each layer, followed by batch normalization (BN). The
dimension of the latent space was set to 400. There is only one
hidden layer with 2,048 nodes in the decoder. The output lay-
ers of both the encoder and decoder are linear. For the speaker
classifier, we used a 1024-1024 hidden-layer structure with
Leaky ReLU activation functions, and BN and dropout layers
were appended after each layer. The output layer has 3,533
nodes with a softmax function which correspond to 3,533
speakers. The configuration of the domain classifier is sim-
ilar to that of the speaker classifier except that the number of

1http://kaldi-asr.org/



nodes in the two hidden layers are 128 and 32, respectively.
It has four nodes in the output layer corresponding to the four
domains in Table 1.

To train the InfoVDANN, we used two divergence met-
rics to measure the discrepancy between qφ(z) and p(z) in
Eq. 9: Maximum mean discrepancy (MMD) [6] and adver-
sarial training used in the AAE [27]. The resulting networks
are called MMD-VDANN and AAE-VDANN, respectively.
The discriminator in the AAE-VDANN is to differentiate the
samples drawn from qφ(z) and p(z). It has a 128-16 layered
structure followed by ReLU activation and BN in each layer.
We used the Monte Carlo method to draw samples from qφ(z)
and used a standard Gaussian for p(z).

For the DANN, we set α = 0.1 in Eq. 6, whereas for the
VDANN, we set α = 0.1 and β = 0.1. For the InfoVDANN,
we set α = 0.1, β = 1.0, η = 0.2, and λ = 1.0.

5.2. PLDA training and scoring

We used the standard Gaussian PLDA backend for scoring.
For SRE16, the baseline PLDA model was trained on the aug-
mented SRE04–10 data. For SRE18, Mixer6 and its augmen-
tation were also added to the training sets. The augmentation
step follows Kaldi’s SRE16 recipe. Before PLDA training,
the x-vectors were projected to a 150 dimensional space by
an LDA transformation matrix, followed by length normal-
ization. The LDA projection matrix was trained on the same
dataset as for training the PLDA models.

We also applied the PLDA adaptation detailed in the
Kaldi’s SRE16 recipe as an extra adaptation. Specifically,
SRE16 unlabeled data were used to adapt the PLDA model
for SRE16, while we used SRE18 unlabeled data for PLDA
adaptation for SRE18.

For the evaluations of InfoVDANN, VDANN and DANN,
we applied the same preprocessing as the baseline except that
the transformed x-vectors were used for centering, LDA train-
ing, PLDA training, adaptation and scoring.

6. RESULTS AND DISCUSSIONS

We followed the Kaldi’s SRE16 recipe for SRE16/18 evalu-
ations. For the baseline, the x-vectors were centered, LDA-
transformed and length normalized before PLDA scoring.
The same preprocessing was applied to the transformed x-
vectors for the InfoVDANN, VDANN and DANN systems.

Table 2 shows the pooled evaluation performance of the
systems on SRE16. We can observe that both MMD-VDANN
and AAE-VDANN consistently outperform the VDANN,
while MMD-VDANN achieves the best performance. The
right part presents the results using Kaldi’s PLDA adaptation
as an extra adaptation. We see that Kaldi’s PLDA adapta-
tion is still powerful because even though the x-vectors have
been transformed by the InfoVDANNs, they outperform the
baseline by a small margin only. The results in Table 2 show

that both InfoVDANNs benefit DA in extracting additional
speaker discriminative information from the training data
compared with the VDANN, and that incorporating an MI
compensation is effective for reducing domain mismatch.

Performance on SRE18-CMN2 is shown in Table 3. We
obtain similar conclusions as in SRE16: Maintaining high
MI between the latent features and the input can feed more
speaker information into learned embeddings, which en-
hances speaker recognition performance.

TheP -values of the McNemar’s test [36] between VDANN
and InfoVDANN are all zeros for SRE16 and SRE18. This
means that the improvement of InfoVDANNs over VDANN
is statistically significant.

Table 2. Performance on SRE16
No PLDA adaptation PLDA adaptation

EER minDCF EER minDCF

Baseline 11.30 0.890 8.27 0.604
DANN 11.62 0.862 8.43 0.599

VDANN 11.13 0.845 8.22 0.585
MMD-VDANN 10.74 0.825 7.87 0.575
AAE-VDANN 10.90 0.834 7.96 0.579

Table 3. Performance on SRE18-CMN2
No PLDA adaptation PLDA adaptation

EER minDCF EER minDCF

Baseline 11.21 0.676 9.60 0.575
DANN 10.79 0.678 9.31 0.584

VDANN 10.24 0.667 9.22 0.578
MMD-VDANN 9.95 0.653 8.97 0.568
AAE-VDANN 10.08 0.661 8.99 0.569

7. CONCLUSIONS

In this paper, we proposed an InfoVDANN for unsupervised
DA. InfoVDANN incorporates an InfoVAE into the DANN to
encourage higher MI between learned features and the input,
while simultaneously retaining the advantage of VDANN as
a Gaussian distribution regularizer. Experimental results on
SRE16 and SRE18-CMN2 show that InfoVDANN is capable
of reducing domain mismatch. The fact that the InfoVDANN
consistently outperforms VDANN suggests that feeding suit-
able MI in training InfoVDANN is effective for extracting ex-
tra useful information for SV.
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