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Variational Domain Adversarial Learning
with Mutual Information Maximization

for Speaker Verification
Youzhi Tu, Man-Wai Mak, Senior Member, IEEE, and Jen-Tzung Chien, Senior Member, IEEE

Abstract—Domain mismatch is a common problem in speaker
verification (SV) and often causes performance degradation. For
the system relying on the Gaussian PLDA backend to suppress
the channel variability, the performance would be further limited
if there is no Gaussianity constraint on the learned embeddings.
This paper proposes an information-maximized variational do-
main adversarial neural network (InfoVDANN) that incorporates
an InfoVAE into domain adversarial training (DAT) to reduce
domain mismatch and simultaneously meet the Gaussianity
requirement of the PLDA backend. Specifically, DAT is applied
to produce speaker discriminative and domain-invariant features,
while the InfoVAE performs variational regularization on the
embedded features so that they follow a Gaussian distribution.
Another benefit of the InfoVAE is that it avoids posterior collapse
in VAEs by preserving the mutual information between the
embedded features and the training set so that extra speaker
information can be retained in the features. Experiments on
both SRE16 and SRE18-CMN2 show that the InfoVDANN
outperforms the recent VDANN, which suggests that increasing
the mutual information between the embedded features and
input features enables the InfoVDANN to extract extra speaker
information that is otherwise not possible.

Index Terms—Speaker verification, domain adaptation, do-
main adversarial training, variational autoencoder, mutual in-
formation.

I. INTRODUCTION

THE objective of speaker verification (SV) is to determine
whether the identity of a test utterance matches that

of a target speaker. To achieve optimal performance, SV
systems rely on the condition that the training data (or source-
domain data) share the same distribution with the test data (or
target-domain data). In practice, however, this condition can
hardly be met and domain mismatch occurs, which poses a
great challenge to SV. As a result, it is necessary to adapt
the trained models based on some target-domain data. This
strategy is known as domain adaptation (DA), which is a
branch of transfer learning. However, due to the high cost of
data labeling, usually only a small amount of labeled data or
even no labeled data from the target domain are available. This
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difficulty motivates researchers to seek advanced DA methods
to alleviate the domain mismatch problems.

A. Related Work

Early DA methods are implemented in a supervised manner,
which require speaker labels from the target domain [1],
[2]. Recently, research on DA has been focusing on the
semi-supervised learning scenario where only some unlabeled
target-domain data are available besides a large amount of
labeled source-domain data. One approach is to hypothesize
the speaker labels through unsupervised learning. With the
hypothesized labels, one can adapt the source-domain prob-
abilistic linear discriminant analysis (PLDA) model [3] to the
target domain [4]–[6].

Another category aims to learn a domain-invariant space
for transforming the source-domain i-vectors [7] so that the
PLDA models trained on these transformed i-vectors can
match the target-domain data. Such methods include inter-
dataset variability compensation [8], dataset-invariant covari-
ance normalization [9], and correlation alignment (CORAL)
[10]. Although CORAL is as simple as aligning the second-
order statistics of the source and target domains, it can achieve
comparable performance as the competitive Kaldi’s PLDA
adaptation1 in SRE16. Recently, a feature-level method called
feature-Distribution Adaptor [11] was proposed to mitigate
the adverse effect of inaccurate information estimated from
the limited in-domain data. Yet we may directly adapt the
parameters of PLDA models, e.g., CORAL+ [12] aligns the
covariance matrices in PLDA models for DA.

In addition to explicitly finding a transformation matrix in
the feature level [8]–[11] or directly adapting PLDA parame-
ters in the model level [12], DNN-based DA has also been ap-
plied to learn a domain-invariant space. In [13], autoencoder-
based DA was proposed to reduce channel mismatch. In
[14]–[16], Lin et al. applied maximum mean discrepancy
(MMD) [17] as a distribution distance metric and produced the
features that are less domain-dependent. Since the emergence
of generative adversarial networks (GAN) [18], adversarial
learning has been applied to unsupervised DA [19]–[24].
In [22], Wang et al. utilized domain adversarial training
(DAT) [19] to generate speaker discriminative and domain-
invariant representations, which outperformed traditional DA
approaches in the Domain Adaptation Challenge 2013. Rohdin

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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et al. [23] implemented DAT in an end-to-end fashion to
produce features that are invariant to languages.

Although adversarial-learning based unsupervised DA has
greatly boosted the SV performance under domain mismatch
scenarios, it may lead to non-Gaussian latent vectors, which do
not meet the Gaussianity requirement of the PLDA backend.
This problem can be solved by using the heavy-tailed PLDA
[25], [26] or applying the i-vector length normalization [27].
However, the former is more computationally expensive than
the Gaussian PLDA and the latter is not really a Gaussian-
ization procedure but a sub-optimal compromise. Recently,
there have been some works trying to Gaussianize speaker
embeddings obtained by neural networks. In [28], Gaussian-
constrained training was proposed by incorporating an l2-
regularizer into the cross-entropy loss. Chien et al. [29] inte-
grated a Gaussianity constraint by using a variational autoen-
coder (VAE) [30] in training a GAN for data augmentation.

Using VAEs for regularization is effective in Gaussianizing
the speaker embeddings [29], [31]. However, training VAEs
by maximizing the evidence lower bound (ELBO) of log like-
lihood has some problems, which can cause failure in learning
informative latent representations [32]–[36]. One problem is
that given a finite amount of training data, a VAE tends to
overfit the training data and generate inaccurate variational
posteriors [37], [38]. Another problem is that if the decoder is
flexible enough, e.g., it uses a recurrent neural network (RNN)
as in [39] or it is characterized by an arbitrarily complex
distribution constructed by a normalizing flow [40], [41], a
VAE can produce noninformative latent vectors independent
of the inputs. This problem is referred to as posterior collapse
[35], [42]–[44]. This is undesirable because our objective is
to learn the meaningful representations.

Several methods have been proposed to address the posterior
collapse problem, e.g., applying the Kullback-Leibler (KL)
cost annealing [39], using a variational mixture of posteriors
in the prior of latent features [37], reducing the amortiza-
tion gap [43], skipping the connections in the decoder [44],
aggressively training the encoder within an update of the
decoder [35], etc. In [45], self attention was introduced to
alleviate posterior collapse by attending the latent informa-
tion when training variational recurrent autoencoders. Some
advanced flow-based generative models [46], [47] could also
be applied to deal with the posterior collapse by relaxing the
strict assumption that the prior follows a standard Gaussian
distribution and using more complex variational posteriors.

B. Main Idea of This Work
In [48], Tu et al. proposed a variational domain adversarial

neural network (VDANN) by incorporating a VAE into the
standard DANN [19] to regularize the distribution of the
embedded features. The authors demonstrated that the trans-
formed embeddings were more Gaussian than the DANN-
transformed ones, which led to performance improvement.

However, as discussed in Section I-A, the VAE may not
learn any useful embeddings even though the ELBO has been
maximized. In [36], Zhao et al. proposed the InfoVAE, a
variant of VAE with the information-maximized latent rep-
resentation, to address the problems in VAEs. The idea is to

increase the contribution of the KL divergence between the
aggregated variational posterior [33], [49] and the latent prior
so that the latent inference and data reconstruction can be
balanced. Also, the dependence of the latent vectors on the
inputs can be enhanced by explicitly incorporating a mutual
information (MI) term into the objective function.

In this paper, we adopt the idea of InfoVAE and extend
the VDANN [48] for unsupervised DA. With the InfoVAE,
the learned features can sufficiently reflect the meaningful
information from the inputs, while simultaneously retain the
benefit of VDANN to produce speaker discriminative, domain-
invariant and Gaussian distributed features. We refer to the
resulting information-maximized variational domain adversar-
ial neural network as InfoVDANN. InfoVDANN improves
VDANN in two aspects: 1) it balances the latent representation
learning and data reconstruction to avoid overfitting; 2) it
preserves the MI between the learned embeddings and the
inputs to improve speaker discriminative capacity.

This paper is organized as follows. In Section II, we
introduce variational domain adversarial learning and clarify
the novelty of this work compared with previous works.
Section III details the principle of the proposed InfoVDANN
and its two variants: MMD–VDANN and AAE–VDANN. The
experimental settings and results are reported in Section IV
and Section V, respectively. We then give concluding remarks
in Section VI.

II. VARIATIONAL DOMAIN ADVERSARIAL LEARNING

This study works on SV by using the variational do-
main adversarial learning. The fundamentals of variational
autoencoders (VAEs) and domain adversarial neural networks
(DANNs) are addressed.

A. Variational Autoencoder

Suppose we have a training set X whose true data dis-
tribution is denoted as pD(x) (x ∈ X ) and its underlying
generation is determined by a latent variable set Z . A VAE
can be optimized by maximizing the evidence lower bound
(ELBO) of log likelihood [30], [36]

ELBO = EpD(x) [− KL (qφ(z|x)‖p(z))
+ Eqφ(z|x) [log pθ(x|z)]

]
∝ − KL (qφ(z)‖p(z))
− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))] , (1)

where φ and θ are parameters of the encoder and decoder,
respectively, qφ(z|x) is an approximation of the intractable
true posterior pθ(z|x), and p(z) is the prior of z which is
generally a standard Gaussian N (z;0, I). In (1), qφ(z) is the
aggregated posterior [33], [49]: qφ(z) =

∫
x
pD(x)qφ(z|x)dx.

Because qφ(z) requires an aggregation over the entire training
set X , it cannot be computed exactly. In practice, we can
approximate qφ(z) by a Monte Carlo estimate [50], [51].

Maximizing the ELBO directly can lead to some problems.
First, due to the inherent properties of the ELBO, maximiza-
tion can lead to very inaccurate variational posteriors even
though the ELBO can be maximized to infinity [36]. This
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limitation is exacerbated when the dimension of the latent
variables is much lower than the input dimension; in such
situation, optimization tends to sacrifice variational inference
to enhance data reconstruction. This is because according to
(1), if the dimension of x is much higher than that of z,
maximization of the ELBO will emphasize the second term,
i.e., data reconstruction. This bias in emphasis can easily cause
overfitting. Second, if the decoder is flexible enough, VAE
training will ignore the information between the latent features
and the inputs, leading to noninformative representations [36],
[42]. This issue is known as the posterior collapse [35], [43],
[44] in which the learned features will not depend on the
training data. In [36], InfoVAE was proposed to address both
problems.

B. Domain Adversarial Neural Network

DANN [19] aims to learn a domain-invariant latent space
by adversarial training for unsupervised domain adaptation.
A standard DANN consists of three subnetworks: a feature
extractor E, a label predictor C, and a domain discriminator
D, where both C and D take the output of E as the input.
Their parameters are denoted by φe, θc and θd, respectively.
Given a source domain set XS = {xS1 , . . . ,xSNS} and a target
domain set X T = {xT1 , . . . ,xTNT }, where NS and NT are
the number of samples in XS and X T , respectively. Denote
y = {yi} corresponding to XS as the one-hot main task labels
and d = {di} corresponding to {XS ,X T } as the domain
labels, respectively. Define the loss function of DANN as

L(θc, θd, φe) = LC(θc, φe)− αLD(θd, φe)

=
∑

xi∈XS
LC (C(E(xi), yi))

− α
∑

xi∈{XS ,XT }

LD (D(E(xi), di)) , (2)

where LC(·) and LD(·) are the loss functions for C and D,
respectively. α weights the domain discrimination loss during
training. The minmax optimization in DANN is denoted as
follows

min
θc,φe

max
θd
L(θc, θd, φe). (3)

After training, the features encoded by the extractor are not
only task discriminative but also domain-invariant. This feature
extractor is used to calculate embeddings for later tasks.

C. Relation to Previous Works

One common characteristic of [8]–[12] is that they per-
formed DA without using DNNs. For DNN-based DA meth-
ods, [13] and [14]–[16] applied Euclidean distance and MMD
to measure the discrepancy between different distributions,
respectively. Different from these distance metrics, [22] and
[23] used adversarial training to learn domain-invariant rep-
resentations. But because there is no constraint on the latent
features learned by DANN, the adversarial training may lead to
non-Gaussian latent vectors, which would break the assump-
tion of the Gaussian PLDA backend. VDANN overcame this
limitation by regularizing the learned embeddings using a VAE

in DAT so that they were Gaussian distributed. Thus, VDANN
differs from DANN in this variational regularization.

However, a potential limitation of the VDANN is that
posterior collapse may occur while training the VAE, lead-
ing non-informative speaker representations. The proposed
InfoVDANN follows the framework of variational DAT in that
it performs domain adaptation and Gaussianity regularization
simultaneously. However, a major difference with the previous
VDANN is that it addresses the posterior collapse problem
by explicitly incorporating an MI term in the loss function.
Maximizing this term enables the InfoVDANN to preserve
more speaker information into the learned embeddings, which
is the novel part of the method.

In particular, MMD–VDANN and AAE–VDANN are pro-
posed in Section III-C as two specialized variants of the
InfoVDANN to leverage MI. The difference between MMD–
VDANN and AAE–VDANN is that MMD–VDANN min-
imizes the MMD between the aggregated posterior qφ(z)
and the prior p(z) as a proxy to minimize the generalized
divergence Dg (qφ(z)‖p(z)), whereas AAE–VDANN applies
adversarial training to minimize this divergence. We propose
these two variants to demonstrate that the performance of
InfoVDANN is not sensitive to how the generalized divergence
is minimized. In other words, InfoVDANN would not be
biased towards a specific divergence between qφ(z) and p(z).
We will verify this through the experimental results in Section
V.

From [48], we see that DANN is a special case of the
VDANN. By removing the sampling operation and the decoder
in the VAE, VDANN becomes the DANN. In Section III-B,
we will show that both the VDANN and DANN are special
cases of the InfoVDANN: InfoVDANN becomes the VDANN
if the MI term is removed from the objective function, and
it becomes the DANN if we further remove the sampling
operation and the decoder in the VAE.

III. INFORMATION-MAXIMIZED VARIATIONAL DOMAIN
ADVERSARIAL NEURAL NETWORK

This study pursues an informative latent variable model
where the MI between the input and the latent variables
is maximized. The solution based on information-maximized
adversarial learning is accordingly proposed.

A. Information-Maximized VAE

In [36], a new objective function was proposed based
on (1) to address the problems in VAEs. The objective
includes 1) adding a scalar to increase the contribution of
KL (qφ(z)‖p(z)) and to counteract the dimension imbalance
between X and Z and 2) incorporating an MI term that
explicitly retains high mutual information between x and z.
The resulting model is called InfoVAE whose objective is
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Fig. 1. Schematic of InfoVDANN. The solid and dashed arrows represent
network connections and stochastic sampling, respectively. After training, the
transformed features are extracted from the z nodes.

expressed as follows:

ELBOInfoVAE = −λKL (qφ(z)‖p(z)) + ηIq(x; z)

− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))] (4)

∝ EpD(x)Eqφ(z|x) [log pθ(x|z)]
− (1− η)EpD(x) [KL (qφ(z|x)‖p(z))]
− (λ− 1 + η)KL (qφ(z)‖p(z)) , (5)

where Iq(x; z) is the MI between x and z under qφ(x, z). The
hyperparameter λ compensates for the dimension imbalance
between x and z, so that the variational inference and data
reconstruction can be balanced. η signifies the importance
of maintaining high mutual information between the origi-
nal and latent vectors. We rewrite (4) as (5) because the
MI term is difficult to compute directly, especially in high-
dimensional spaces [52]. Note that we can further generalize
the KL (qφ(z)‖p(z)) in (5) to broader divergence families
for efficient optimization, e.g., we may use MMD [17] as a
divergence measure or introduce a discriminator and apply
adversarial training to distinguish samples drawn from qφ(z)
and p(z), similar to the adversarial autoencoder (AAE) [49].

B. Information-Maximized VDANN

One desirable property of VAE is that the term
KL (qφ(z|x)‖p(z)) in (1) can be considered as a regularizer
that constrains the variational posterior qφ(z|x) to be close to
the desired prior p(z). Therefore, if we constrain p(z) to be
a multivariate Gaussian distribution, the encoder will likely
to produce Gasussian latent vectors, which is amenable to
PLDA modeling. This is also the key idea of the Gaussian
regularization in the VDANN.

Due to the problems in training VAEs described in Sec-
tion III-A, we propose an InfoVDANN by incorporating an
InfoVAE into the DANN [19] to learn features that can
sufficiently characterize the latent information from the inputs
while simultaneously leverage the benefit of the VDANN.

As shown in Fig. 1, the InfoVDANN has a similar structure
as the VDANN. It consists of a speaker predictor C, a domain

classifier D, and a VAE that comprises an encoder E and a
decoder G. The network parameters are denoted as θc, θd, φe,
and θg , respectively.

Suppose the training set X = {X r}Rr=1 comprises N sam-
ples from R domains, where X r = {xr1, . . . ,xrNr} contains
Nr samples from the r-th domain. Also we denote y = {yik}
and d = {di} as the one-hot speaker labels and domain labels,
respectively. The total number of training speakers is set to K.

Assume that p(z) = N (z;0, I), and for a given xi, the
true posterior also follows a Gaussian distribution with mean
vector µi and a diagonal covariance matrix diag

(
σ2
i

)
, i.e.,

qφ(z|xi) = N
(
z;µi,diag

(
σ2
i

))
. Applying the reparameteri-

zation trick in sampling z’s from qφ(z|xi), we obtain the l-th
latent sample zil = µi + σi � εl, where εl ∼ N (0, I) and
� is the Hadamard product. Substitute these terms into the
negative of (5), we obtain the InfoVAE loss function

LInfoVAE (θg, φe) = −
1

N

R∑
r=1

Nr∑
i=1

{
1

L

L∑
l=1

log pθ (x
r
i |zril)

− 1− η
2

J∑
j=1

[(
µrij
)2

+
(
σrij
)2 − 1− log

(
σrij
)2]

− (λ− 1 + η)
1

L

L∑
l=1

[log qφ(z
r
il)− log p(zril)]

}
, (6)

where J is the dimension of z and L denotes the number
of sampled latent variables for a given x. The hyperparam-
eters λ and η are consistent with those in (5). The first
term on the right-hand side of (6) is the data reconstruction
error, whereas the second term is the analytical expression
of KL (qφ(z|x)‖p(z)). The third term is the Monte Carlo
estimate of KL (qφ(z)‖p(z)) in (5), i.e.,

KL (qφ(z)‖p(z)) = Eqφ(z) [log qφ(z)− log p(z)] . (7)

In practice, we set L = 1 as suggested in [30].
To train the InfoVDANN, we define the loss of InfoVDANN

as

LInfoVDANN(θc, θd, φe, θg) = LC(θc, φe)− αLD(θd, φe)
+ βLInfoVAE(φe, θg), (8)

where

LC(θc, φe) =
1

N

R∑
r=1

Nr∑
i=1

{
−

K∑
k=1

yrik logC (E (xri ))k

}
(9)

and

LD(θd, φe) =
1

N

R∑
r=1

Nr∑
i=1

{−dri logD (E (xri ))r} (10)

are the categorical cross-entropy losses for speaker predictor
and domain classifier, respectively; LInfoVAE(φe, θg) is de-
fined as (6). The subscript k in (9) indexes the speakers. The
hyperparameters α and β control the contribution of LC and
LInfoVAE, respectively.

During training, for each mini-batch, we first optimize D
by minimizing LD(θd, φe) with respect to θd. θd is then
fixed while training the remaining parts of the InfoVDANN.
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Through adversarial training, the InfoVDANN learns a
domain-invariant space. Specifically, applying adversarial
training on E while keeping θd fixed together with minimizing
the cross-entropy loss of C with respect to φe will make E to
produce a domain-invariant but speaker discriminative repre-
sentation through z in Fig. 1. Simultaneously, minimizing the
InfoVAE loss will regularize the learned representations to be
Gaussian. Also this minimization will feed more meaningful
speaker information into the latent features through maximiz-
ing the MI between x and z. The minimax optimization can
be summarized as follows:

min
θc,φe,θg

max
θd
LInfoVDANN(θc, θd, φe, θg). (11)

Alternatively, (11) can be expressed as

θ̂d = argmax
θd

LInfoVDANN(θ̂c, θd, φ̂e, θ̂g), (12)(
θ̂c, φ̂e, θ̂g

)
= argmin

θc,φe,θg

LInfoVDANN(θc, θ̂d, φe, θg), (13)

where symbols with a hat (e.g., θ̂c) on the right-hand side of
(12) and (13) mean that they are fixed when optimizing the
target parameters. After training, we extract the transformed
features from the z nodes in Fig. 1.

C. MMD–VDANN and AAE–VDANN

To compute the term KL (qφ(z)‖p(z)) in LInfoVAE, we
first need to obtain samples z’s from qφ(z). This can be
easily addressed by ancestral sampling [32], [35], [44], that
is, we first uniformly sample x’s from the training data, and
then draw samples z’s from qφ(z|x). Take a mini-batch of B
training samples as an example, this can be denoted as follows:

z ∼ qφ (z|xb) , b ∼ Uniform (1, . . . , N). (14)

After getting samples from qφ(z|xb), the aggregate posterior
can be calculated through the Monte Carlo estimate:

qφ(zs) ≈
1

B

B∑
b=1

qφ (zs|xb) , s = 1, . . . , B. (15)

If we use these B zs’s to estimate Eqφ(z) [log qφ(z)], i.e., the
first term of KL (qφ(z)‖p(z)) in (7), we have

Eqφ(z) [log qφ(z)] ≈
1

B

B∑
s=1

[
log

1

B

B∑
b=1

qφ (zs|xb)

]
. (16)

Since the estimate in (16) is biased and can only give a
lower bound on the true expectation [35], the estimate of
KL (qφ(z)‖p(z)) will also be biased. This means that we need
to set the mini-batch size B to a large value during training to
make the estimate of the KL divergence reliable, which would
lead to heavy computation.

Although there are other methods to estimate qφ(z) and
Eqφ(z) [log qφ(z)] [53], [54], these methods are restricted to
using KL divergence as the “distance” between qφ(z) and
p(z). Inspired by the work in [36], [55], we generalize the
KL divergence to other probability distance metrics. Setting

L = 1, the resulting objective of the InfoVAE is then updated
as

L̂InfoVAE (θg, φe) = −
1

N

R∑
r=1

Nr∑
i=1

{
log pθ (x

r
i |zri )

− 1− η
2

J∑
j=1

[(
µrij
)2

+
(
σrij
)2 − 1− log

(
σrij
)2]}

+ (λ− 1 + η)Dg (qφ(z)‖p(z)) , (17)

where Dg(·‖·) denotes a generalized distance metric.
If we apply MMD [14], [17] as the specialized dis-

tance metric in (17), the resulting InfoVDANN is called
MMD–VDANN. MMD characterizes the distance between
two distributions as the Euclidean distance in the Hilbert space,
which can be efficiently computed by the kernel trick. Given
a suitable kernel, MMD can match up to infinite moments of
their distributions. An unbiased empirical estimate of MMD
between datasets X and Y is given by

MMD2(X ,Y) = 1

N(N − 1)

N∑
n=1

N∑
n′ 6=n

k (xn,xn′ )

+
1

N ′(N ′ − 1)

N
′∑

n=1

N
′∑

n′ 6=n

k (yn,yn′ )

− 2

NN ′

N∑
n=1

N
′∑

n′=1

k (xn,yn′ ) , (18)

where N and N
′

denote the number of samples in X and Y ,
respectively, and k (·, ·) represents a kernel.

Alternatively, we may use adversarial learning to minimize
the distance between two distributions in the latent space as in
AAEs [49]. This can be fulfilled by introducing a discriminator
to distinguish the samples drawn from qφ(z) and p(z). We
call the InfoVDANN that implements the minimization of
Dg (qφ(z)‖p(z)) by adversarial learning as AAE–VDANN.

The optimization of MMD–VDANN and AAE–VDANN is
the same as in (11), except that (6) is replaced by (17) for the
LInfoVDANN. Take the MMD–VDANN as an example, we use
MMD between qφ(z) and p(z) as the Dg (qφ(z)‖p(z)) term in
(17). It is straightforward to implement this by replacing x’s
and y’s in (18) with the samples drawn from qφ(z) and p(z),
respectively. Also, we set both N and N

′
to the mini-batch

size B during training. The latent samples z’s from qφ(z) can
be drawn according to (14).

IV. EXPERIMENTAL SETUP

The performance of various DA methods was evaluated on
SRE16 and SRE18-CMN2. All experiments were based on x-
vectors [56] using the x-vector extractor available in the Kaldi
repository.2 Unless otherwise stated, the InfoVDANN men-
tioned in the latter sections represents both MMD–VDANN
and AAE–VDANN.

2http://kaldi-asr.org/models/m3
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A. Training of InfoVDANN, VDANNn and DANN
We used data from four domains as shown in Table I to

train the InfoVDANN, VDANN and DANN. Each dataset
corresponds to a domain. To briefly summarize, SRE04–10
mainly consist of clean conversational telephone speech in
English. Voxceleb1 was a wideband corpus extracted from the
YouTube videos spanning a wide range of ethnicities with real-
world noises. SwitchBoard-2 was an English corpus of two-
sided telephone conversations but was collected in the 90’s.
Similar to the Voxceleb1 dataset, SITW was a collection from
the open source media with unconstrained acoustic conditions.
In contrast, the SRE16 evaluation set is composed of telephone
conversations spoken in Tagalog and Cantonese, while SRE18-
CMN2 contains mainly conversational telephone speech in
Tunisian Arabic. Although there is overlap in the collection
conditions amongst these datasets, basically, they differed from
each other in channels, languages, noises, etc. Therefore, there
are mismatches between the training data and the test data and
mismatches within the training data.

The statistics of the four training sets are shown in Table I.
Note that each training set is a subset of the original set. For
example, the minimum number of x-vectors per speaker is
30 for both SRE04–10 and Voxceleb1. SwitchBoard-2 was
selected from Phases I–III to ensure that there are at least 20
x-vectors for each speaker, whereas each speaker in SITW has
at least 15 x-vectors.

TABLE I
STATISTICS OF TRAINING SETS

Dataset No. of speakers No. of utterances

SRE04–10 1,796 53,880
Voxceleb1 1,181 35,430

SwitchBoard-2 268 6,812
SITW 198 3,572

As shown in Fig. 1, there are four sub-networks in the
InfoVDANN. The encoder has two hidden layers and each
layer has 1,024 nodes. We used ReLU as the activation
function in each layer, followed by batch normalization (BN)
and dropout. The dimension of the latent space was set to
400. There is only one hidden layer with 2,048 nodes in the
decoder. The output layers of both the encoder and decoder are
linear. For the speaker classifier, we used a 1024-1024 hidden-
layer structure with Leaky ReLU activation functions, and
BN and dropout layers were appended after each layer. The
output layer has 3,443 nodes with a softmax function, which
correspond to 3,443 speakers. The configuration of the domain
classifier is similar to that of the speaker classifier except that
the number of nodes in the two hidden layers are 128 and 32,
respectively. There are four output nodes which correspond to
the four domains in Table I. The dropout rate was set to 0.2 for
all dropout layers in the network. For the AAE–VDANN, we
included an additional latent-variable discriminator to Fig. 1
to differentiate the samples drawn from qφ(z) and p(z). This
discriminator has a 128-16 layered structure followed by ReLU
activation and BN in each layer.

We used the Adam optimizer to train the InfoVDANN,
VDANN and DANN with a learning rate of 1.0× 10−3. The

mini-batch size was set to 128. MMD was computed using
a mixture of seven radial basis functions (RBFs) with width
being set to 0.1, 0.2, 0.4, 1.0, 4.0, 16.0, 256.0, respectively
for the MMD–VDANN. For the DANN, we set α = 0.1 and
β = 0 in (8), whereas for the VDANN, we set α = 0.1 and
β = 0.1 with η = 0 and λ = 1.0 in (17). For the InfoVDANN,
we set α = 0.1, β = 1.0, η = 0.2, and λ = 1.0.

The configuration of the decoder in the VDANN is different
from that in [48]. Specifically, the decoder in [48] was imple-
mented by a 1024-1024 hidden-layer structure. Besides, all the
networks in this paper were implemented in Tensorflow while
those in [48] were based on Keras. Due to these differences
in the implementation details, the results of the VDANN and
DANN as shown in Table II are different from those in [48].

B. PLDA Training and Scoring

We used the Gaussian PLDA (G-PLDA) backend and the
heavy-tailed PLDA (HT-PLDA) [26] for scoring. For SRE16,
the baseline G-PLDA and HT-PLDA models were both trained
on the augmented SRE04–10 x-vectors. For SRE18, Mixer6
and its augmentation were also added to the training sets. The
augmentation step followed the Kaldi’s SRE16 recipe. Before
G-PLDA training, the x-vectors were centered and projected
to a 150 dimensional space by an LDA transformation matrix,
followed by whitening and length normalization. The LDA
projection matrix was trained on the same dataset as for train-
ing the PLDA models. The dimension of the LDA projection
was selected according to the EER on the development set.
Evidences of why the projection dimension was set to 150
can be found in the supplementary material. As for the HT-
PLDA training, we used the same setup as that in [26]. For
example, the degree of freedom in the heavy-tailed distribution
and the dimension of the speaker subspace were set to 2
and 150, respectively. Also, the LDA projection and length
normalization were excluded from the preprocessing.

For all the G-PLDA backends, we also applied Kaldi’s
PLDA adaptation as an extra adaptation step. Specifically,
SRE16 unlabeled data were used to adapt the PLDA model
for SRE16, whereas we used SRE18 unlabeled data for PLDA
adaptation for SRE18. While for the HT-PLDA systems, since
Kaldi’s PLDA adaptation was not compatible with the HT-
PLDA model, we used the unsupervised domain adaptation [5]
via parameter interpolation as in [26]. The interpolation factor
was set to 0.9 for the out-of-domain part. The adaptation data
are the same as those in the G-PLDA adaptation.

For the evaluations of InfoVDANN, VDANN and DANN,
we applied the same processing as the baseline using the
transformed x-vectors rather than the raw x-vectors.

V. RESULTS AND DISCUSSIONS

A. SRE Performance

We followed the Kaldi’s SRE16 recipe for SRE16/18 eval-
uations for the G-PLDA backends. For the baseline, the
x-vectors were centered, LDA-transformed, whitened, and
length-normalized before PLDA scoring. The same prepro-
cessing was applied to the transformed x-vectors for the
InfoVDANN, VDANN and DANN. As for the preprocessing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE II
PERFORMANCE ON SRE16 AND SRE18-CMN2. THE FIRST PART (ROWS 1–5) AND THE SECOND PART (ROWS 6–10) SHOW THE PERFORMANCE BASED

ON THE HEAVY-TAILED PLDA (HT-PLDA) AND THE GAUSSIAN PLDA (G-PLDA) BACKENDS, RESPECTIVELY. THE THIRD PART (ROWS 11–14)
PRESENTS THE PERFORMANCE OF SOME STATE-OF-THE-ART END-TO-END DOMAIN ADAPTATION SYSTEMS.

SRE16-All SRE16-Cantonese SRE16-Tagalog SRE18-CMN2

w/o adp w/ adp w/o adp w/ adp w/o adp w/ adp w/o adp w/ adp

EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF

Baseline (HT-PLDA) 11.48 0.830 12.43 0.871 7.03 0.648 6.43 0.605 16.36 0.926 16.84 0.929 10.42 0.674 10.21 0.668
DANN (HT-PLDA) 12.03 0.844 12.23 0.850 6.81 0.576 6.37 0.579 16.97 0.940 17.06 0.946 11.06 0.683 10.72 0.665

VDANN (HT-PLDA) 11.57 0.776 11.68 0.800 6.48 0.568 6.15 0.555 16.51 0.888 16.63 0.897 10.81 0.674 10.41 0.658
MMD–VDANN (HT-PLDA) 11.47 0.797 11.65 0.816 6.24 0.544 6.06 0.533 16.40 0.910 16.63 0.905 10.69 0.655 10.19 0.636
AAE–VDANN (HT-PLDA) 11.50 0.795 11.62 0.820 6.20 0.543 6.04 0.539 16.42 0.907 16.55 0.917 10.59 0.657 10.15 0.643

Baseline (G-PLDA) 11.30 0.890 8.27 0.604 7.16 0.579 4.69 0.427 15.60 0.972 11.93 0.751 11.21 0.676 9.60 0.575
DANN (G-PLDA) 11.64 0.894 8.22 0.604 6.85 0.570 4.33 0.439 16.54 0.973 12.24 0.742 10.77 0.674 9.29 0.574

VDANN (G-PLDA) 10.92 0.852 8.13 0.587 6.62 0.540 4.54 0.413 15.33 0.963 11.76 0.731 10.29 0.664 9.18 0.572
MMD–VDANN (G-PLDA) 10.67 0.835 7.91 0.581 6.41 0.538 4.07 0.402 15.03 0.958 11.59 0.723 9.92 0.653 8.95 0.570
AAE–VDANN (G-PLDA) 10.61 0.832 7.91 0.582 6.35 0.535 4.06 0.400 15.08 0.955 11.59 0.726 9.91 0.654 8.85 0.559

WGAN [23] 13.25 0.899 9.15 0.677 7.39 0.561 – – 19.12 0.968 – – 10.35 0.658 9.21 0.602
WGAN+lan+sup [23] 9.59 0.746 8.00 0.651 5.59 0.497 – – 13.70 0.880 – – 8.88 0.619 8.25 0.576

LSGAN [24] 11.74 – – – 7.90 – – – 15.63 – – – – – – –
Multi-level [16] 9.03 0.585 8.29 0.546 – – – – – – – – 8.33 0.520 8.09 0.521

of x-vectors for HT-PLDA models, only centering and whiten-
ing were applied.

Table II shows the performance of different systems on
SRE16 and SRE18-CMN2. The first part (rows 1–5) and the
second part (rows 6–10) are the results applying HT-PLDA
and G-PLDA scoring, respectively. For evaluations based on
HT-PLDA, without PLDA adaptation, the HT-PLDA backends
only outperform the G-PLDA counterparts in minDCF under
SRE16-All and SRE16-Tagalog. For SRE18-CMN2 evalu-
ations, the HT-PLDA backends even cannot compete with
the G-PLDA models. Besides, we see that the unsupervised
DA failed on SRE16-All and SRE16-Tagalog, and it only
worked on SRE16-Cantonese and SRE18-CMN2 with a slight
performance gain over the unadapted version. In general, there
is no consistent observation that InfoVDANN with HT-PLDA
backends outperforms the other systems. It seems that although
the HT-PLDA model is theoretically capable of addressing the
non-Gaussian embeddings, it failed to achieve consistent gains
compared with those of the G-PLDA backend (rows 6–10).
Maybe the (transformed) x-vectors do not present a strong
heavy-tailed characteristic. Or there may be a need for LDA
to find more discriminative directions in the speaker subspace
before performing HT-PLDA scoring.

The performance based on the G-PLDA backend is shown in
the second part (rows 6–10) in Table II. Without Kaldi’s PLDA
adaptation under SRE16-All, we can observe that although
VDANN can reduce domain mismatch in terms of both
EER and minDCF, both MMD–VDANN and AAE–VDANN
consistently outperform the VDANN. We also performed
Kaldi’s PLDA adaptation as an extra domain adaptation. From
columns 4–5 in the second part, we see that Kaldi’s PLDA
adaptation is still helpful in further reducing domain mismatch.
From the improvement due to the PLDA adaptation, we
may conclude that adversarial domain adaptation and PLDA
adaptation are complementary. The fact that the performance
of InfoVDANN is better than that of DANN verifies that

imposing the variational regularization on the transformed x-
vectors is effective for domain adaptation. The performance
of the Cantonese and Tagalog partitions is consistent with
that of SRE16-All. These findings suggest both types of
InfoVDANNs (MMD–VDANN and AAE–VDANN) benefit
DA in extracting additional speaker discriminative information
from the training data compared with the VDANN, and that
incorporating an MI term in the loss function is effective for
reducing domain mismatch.

From the last four columns in the second part of Table II,
we obtain similar conclusions for SRE18-CMN2 as in SRE16:
maintaining high MI between the latent features and the inputs
can feed more speaker information into the learned embed-
dings, which enhances speaker recognition performance.

As shown in the supplementary material, the P -values of
the McNemar’s tests [57] between both InfoVDANNs and the
others are mostly zeros for SRE16-All and SRE18-CMN2.
This means that the improvement of both InfoVDANNs over
VDANN, DANN and the baseline is statistically significant.

We also present the performance of some state-of-the-art
end-to-end systems in the third part (rows 11–14) of Table II.
Generally, results show that end-to-end systems outperform
the embedding–backend cascaded systems. This is reasonable
because the end-to-end systems have greater capacity to learn
the domain invariance.

B. Speaker Discriminative Features

By explicitly incorporating an MI term in the objective
function, InfoVDANN is able to feed extra information into
the speaker embeddings, making them more discriminative
than those of the VDANN and DANN. To investigate the
discriminativeness of the InfoVDANN, we plot the between-
class variances against the within-class variances using the
SRE04–10 dataset (with augmentation). In Fig. 2(a), the x-axis
denotes the logarithm of normalized within-class variances:
log[(Vw − min(Vw))/(max(Vw) − min(Vw))], where Vw is
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Fig. 2. Illustration for (a) between-class variances versus within-class variances before LDA and (b) between-class variances in each dimension after LDA.

the within-class variance. Therefore, different systems can
be compared in the same scale. The scale of the y-axis is
log[(Vb−min(Vw))/(max(Vw)−min(Vw))], where Vb denotes
the between-class variance. We see that InfoVDANN generally
has larger between-class variances than the baseline for each
within-class variance. This means that the x-vectors trans-
formed by the InfoVDANN are more discriminative compared
with the baseline because the speaker clusters become more
separated after the transformation. However, it is not clear if
InfoVDANN outperforms the VDANN and DANN because
their scatters overlap with each other in the plot.

Since LDA was applied before PLDA scoring, we further
evaluate the discriminativeness of these systems after LDA
projection. The sorted between-class variances after normal-
ization were plotted in Fig. 2(b). Note that the within-class
variances are all normalized to 1. According to Fig. 2(b), we
see that for the first 150 dimensions, InfoVDANN consistently
has larger between-class variances than the other systems. This
suggests that the embeddings transformed by InfoVDANN are
more discriminative after LDA projection, which verifies the
advantage of InfoVDANN over the VDANN and DANN.

C. Effect on Gaussian Regularization

The InfoVDANN and the VDANN apply variational regu-
larization on the learned embeddings so that the transformed
x-vectors will follow a Gaussian distribution. To investigate
the effectiveness of this Gaussian regularization, we present
the normal Q–Q plots [58] of two randomly selected dimen-
sions of the raw x-vectors and the x-vectors transformed by
InfoVDANN, VDANN, and DANN. These x-vectors were
selected from the CMN2 part of the SRE18 evaluation set.
Evidently, as shown in Fig. 3, the distributions of all the x-
vectors transformed by the MMD–VDANN, AAE–VDANN,
and VDANN are closer to a Gaussian distribution than the
DANN and the baseline systems, whereas the InfoVDANN-
transformed ones seem to be more Gaussian than those
transformed by the VDANN. This suggests that the InfoVAE
loss can make the latent vectors z’s to follow a Gaussian

distribution. The p-values obtained from Shapiro-Wilk tests
[59], [60] also suggest that the distributions of InfoVDANN-
transformed x-vectors are closer to the standard Gaussian than
the x-vectors transformed by the other three methods.

D. Comparison of Mutual Information
The InfoVDANN explicitly incorporates an MI term in

the objective function during DAT to additionally preserve
meaningful information between the learned features and the
input set. It makes sense to infer latent representations that
are more speaker discriminative by maximizing this MI term
together with the optimization of other sub-networks in the
InfoVDANN. It has been verified in Table II that both the
InfoVDANNs consistently outperform the VDANN based on
the G-PLDA backend. To further evaluate the effectiveness of
this MI maximization, we report the MI estimates on both
the SRE16 Evaluation set and SRE18-CMN2 Evaluation set
in Table III.

The MI between the latent variable z and the input x is
estimated by (4) in the supplementary material. We randomly
selected 1,024 x-vectors from each set (e.g., SRE16-eval En-
rollment and Test, SRE18-eval-CMN2 Enrollment and Test),
and used these 1,024 samples as one single batch for each
estimation. Each of the mean and variance was based on 200
simulations.

We can see from Table III that both MMD–VDANN and
AAE–VDANN have higher MI between the learned features
and the inputs than the VDANN, which contributes to the per-
formance gain in SRE16 and SRE18-CMN2. According to (5)
in the supplementary material, the MI estimates are bounded
by 6.9314 (i.e., log(1024)) for these samples. Although there
is some gap between the estimates and the upper bound, the
performance gains on SREs are still statistically significant as
reported in Subsection V-A.

E. Impact of Hyperparameters λ and η
In (8), we use four hyperparameters (α, β, λ and η) in the

InfoVDANN’s objective function. VDANN is a special case
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Fig. 3. Quantile-quantile (Q–Q) plots of the 151-st (Row 1), and 301-st (Row 2) components of (a) raw x-vectors, (b) DANN-transformed x-vectors, (c)
VDANN-transformed x-vectors, (d) MMD–VDANN transformed x-vectors, and (e) AAE–VDANN transformed x-vectors. The vertical and horizontal axes
correspond to the samples under test and the samples drawn from a standard normal distribution, respectively. The red line represents the case of perfectly
Gaussian. The p-values above the graphs were obtained from Shapiro-Wilk tests, with p > 0.05 meaning failing to reject the null hypothesis that the test
samples come from a Gaussian distribution (i.e., the larger the p, the more Gaussian the distribution).

TABLE III
ESTIMATES OF THE MUTUAL INFORMATION TERM (Iq(x; z) IN (4)) UNDER SRE16 EVALUATION SET AND SRE18-CMN2 EVALUATION SET

SRE16-eval SRE18-eval-CMN2

Enrollment Test Enrollment Test

mean variance mean variance mean variance mean variance

VDANN 4.466 1.092 5.078 1.115 3.922 1.045 4.567 1.077
MMD–VDANN 4.811 1.052 5.770 1.150 5.357 1.228 5.028 1.327
AAE–VDANN 5.114 1.047 6.263 1.151 5.038 1.163 5.031 1.248

of InfoVDANN in that the InfoVDANN loss degenerates into
the VDANN objective when η = 0, and λ = 1 in (17). The
discrepancy between the two loss functions is the choice of
Dg (qφ(z)‖p(z)) and the contribution of KL (qφ(z|x)‖p(z))
and Dg (qφ(z)‖p(z)) to the total loss, which are controlled
by λ and η, respectively. To examine the superiority of
InfoVDANN over VDANN, we present the impact of λ and η
on SRE performance in Fig. 4 by setting α = 0.1, and β = 1.0
in (8).

From (5), we note that λ is to balance the variational
inference and data reconstruction during the optimization of
the VAE sub-network in Fig. 1. In our experimental setup,
because the difference between the dimension of the latent
vector (400) and that of the input embedding (512) is not very
large, we started with λ = 1.0 to evaluate the influence of η
on SRE16-eval and SRE18-CMN2. As shown in Fig. 4(a) and
Fig. 4(b), both MMD–VDANN and AAE–VDANN achieve
the best performance at η = 0.2 for SRE16 with and without
the extra Kaldi’s PLDA adaptation. In this regard, we fixed η to
0.2 when inspecting how λ impacts SRE16 performance. The
result is illustrated in Fig. 4(e) and Fig. 4(f), from which we
can see that within a wide range of λ ∈ [0.8, 10], the SRE16
performance without PLDA adaptation does not change too

much, while it achieves a slightly better performance at
λ = 1.0. With Kaldi’s PLDA adaptation, we can obtain
similar performance at λ = 1.0 and λ = 2.0. Overall, with
η = 0.2, both MMD–VDANN and AAE–VDANN obtained a
consistently good performance at λ = 1.0 for SRE16 with and
without PLDA adaptation. From Figs. 4(a), 4(b), 4(e) and 4(f),
we conclude that η = 0.2 and λ = 1.0 are suitable choices
for compromising the contribution of KL (qφ(z|x)‖p(z)) and
Dg (qφ(z)‖p(z)) to produce meaningful speaker embeddings.

We obtained a similar conclusion for SRE18-CMN2, as
shown in Figs. 4(c), 4(d), 4(g) and 4(h). The performance over
the choice of both hyperparameters with PLDA adaptation is
more stable than that without it. For fixed λ, increasing η
from 0 to an appropriate value (e.g., 0.2) can improve the
performance of InfoVDANN. However, a larger value for η
can have a detrimental effect on the performance. Because η
represents the contribution of the MI term in (5), maintaining
a high MI between the latent features and the inputs during
training does not always produce better features. Note that
when η = 1.0 and λ = 1.0, (5) becomes the standard AAE
loss function [49]. This in turn verifies that KL (qφ(z|x)‖p(z))
is still very important as a regularization term on the learned
embeddings. On the other hand, with η = 0.2, as shown in
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Fig. 4. Impact of hyperparameters λ and η on the performance of SRE16 and SRE18-CMN2. The first row shows the impact of η on the performance of
SRE16 [(a) and (b)] and SRE18-CMN2 [(c) and (d)] with λ fixed to 1.0. The second row illustrates the impact of λ on SRE16 [(e) and (f)] and SRE18-CMN2
[(g) and (h)] with η = 0.2. The instances with a suffix “ adp” in the legend denote the use of Kaldi’s PLDA adaptation.

Figs. 4(g) and 4(h), the performance is insensitive to a wide
range of λ.

From the above analysis, we thus used α = 0.1, β =
1.0, η = 0.2, and λ = 1.0 for experimental comparisons
in the previous subsections. From Figs. 4(a)–(h), we also
observe that there is no big difference between the choice
of Dg (qφ(z)‖p(z)), e.g., MMD and adversarial learning,
since MMD–VDANN has a comparable performance with the
AAE–VDANN for nearly all of the experiments. This also
empirically verifies the robustness of InfoVDANN using dif-
ferent ways to minimize the generalized divergence. But due to
the additional latent-variable discriminator (distinguishing the
samples drawn from qφ(z) and p(z)) in AAE–VDANN, AAE–
VDANN possesses more parameters compared with MMD–
VDANN. Moreover, the minimax optimization of this latent-
variable discriminator is not as efficient as the minimization
of the MMD. As such, in practice, training AAE–VDANN
takes slightly longer than training MMD–VDANN. Thus, from
the perspective of implementation, MMD–VDANN may be a
better choice.

VI. CONCLUSIONS

In this paper, we proposed a network called InfoVDANN
for unsupervised domain adaptation (DA). The InfoVDANN
incorporated an InfoVAE into the DANN to encourage higher
mutual information (MI) between the learned features and
the inputs, while simultaneously retaining the advantage of
VDANN as a Gaussian distribution regularizer. Experimen-
tal results on SRE16 and SRE18-CMN2 showed that the
InfoVDANN is capable of reducing domain mismatch through

domain adversarial training and maintaining high speaker
information in the transformed features. Gaussianity tests
verified the effectiveness of the variational regularization. The
fact that the InfoVDANN consistently outperforms VDANN
suggests that feeding suitable MI into the training of In-
foVDANNs is effective for extracting extra information for
speaker verification. The consistency of the MI estimates
on the test datasets also confirmed the feasibility of using
InfoVDANNs for unsupervised DA.
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