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Abstract—Intelligent reflecting surface (IRS) is a promising
solution to enhance the wireless communication capacity both
cost-effectively and energy-efficiently, by properly altering the
signal propagation via tuning a large number of passive reflecting
units. In this paper, we aim to characterize the fundamental
capacity limit of IRS-aided point-to-point multiple-input multiple-
output (MIMO) communication systems with multi-antenna
transmitter and receiver in general, by jointly optimizing the
IRS reflection coefficients and the MIMO transmit covariance
matrix. We consider narrowband transmission under frequency-
flat fading channels, and develop an efficient alternating opti-
mization algorithm to find a locally optimal solution by iteratively
optimizing the transmit covariance matrix or one of the reflection
coefficients with the others being fixed. Numerical results show
that our proposed algorithm achieves substantially increased
capacity compared to traditional MIMO channels without the
IRS, and also outperforms various benchmark schemes.

I. INTRODUCTION

Recently, intelligent reflecting surface (IRS) and its various
equivalents have emerged as a new and promising solution
to meet the ever-increasing demand for higher-capacity com-
munications in the fifth-generation (5G) and beyond wireless
networks [1]–[4]. Specifically, IRS is a planar meta-surface
equipped with a large number of passive reflecting elements
connected to a smart controller, which is capable of inducing
an independent phase shift and/or amplitude attenuation (col-
lectively termed as “reflection coefficient”) to the incident sig-
nal at each reflecting element in real-time, thereby modifying
the wireless channels between one or more pairs of transmitter-
s and receivers to be more favorable for their communications
[1]. By judiciously designing its reflection coefficients, the
signals reflected by IRS can be added either constructively
with those via other signal paths to increase the desired signal
strength at the receiver, or destructively to mitigate the co-
channel interference, thus offering a new degree-of-freedom
(DoF) to enhance the communication performance.

To fully exploit the new DoF brought by IRS, the IRS
reflection coefficients (also termed as “passive beamforming”)
need to be carefully designed, which has been studied under
various system and channel setups [5]–[8]. It is worth noting
that the existing works on IRS-aided communication mainly
focused on single-input single-output (SISO) or multiple-input
single-output (MISO) systems with single-antenna receivers.
However, there has been very limited work on IRS-aided
multiple-input multiple output (MIMO) communication with
multiple antennas at both the transmitter and the receiver,
while only a couple of papers appeared recently [9], [10].
In particular, the characterization of the capacity limit of
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Fig. 1. Diagram of an IRS-aided MIMO communication system.

IRS-aided MIMO communication still remains open, which
requires the joint optimization of IRS reflection coefficients
and MIMO transmit covariance matrix, and thus is more
challenging than the traditional MIMO channel capacity char-
acterization [11] without the IRS reflection. Note that this
problem is also more difficult to solve as compared to that
in IRS-aided SISO/MISO communications with single data
stream transmission only, since the MIMO channel capacity
is generally achieved by transmitting multiple data streams
in parallel (i.e., spatial multiplexing), thus the reflection co-
efficients need to be properly designed to optimally balance
the channel gains for multiple spatial data streams so as to
maximize their sum-rate. To the best of our knowledge, this
problem has not been fully addressed yet (e.g., in [9], [10]),
even for the point-to-point IRS-aided MIMO communication,
which thus motivates this work.

In this paper, we study the joint IRS reflection coefficient
and transmit covariance matrix optimization for maximizing
the capacity of a point-to-point IRS-aided MIMO system with
multiple antennas at both the transmitter and the receiver, as
illustrated in Fig. 1. To characterize the fundamental capacity
limit, we consider that perfect channel state information (CSI)
of all channels involved in Fig. 1 is available at both the
transmitter and the receiver by assuming that the CSI has been
accurately acquired via the techniques proposed in e.g., [8],
[12], [13]. Moreover, to reduce the implementation complexity
of IRS,1 we consider that the amplitude of all its reflection
coefficients is fixed as the maximum value of one [1]. The ca-
pacity maximization problem is non-convex and thus difficult
to solve. By exploring the structure of the MIMO capacity
expression, we develop an alternating optimization algorithm
by iteratively optimizing one of the reflection coefficients or
the transmit covariance matrix with the other optimization

1In practice, dynamic change of the resistor load connected to each reflect-
ing element is needed to adjust the reflection amplitude [14], which, however,
is difficult to implement in real-time with separate phase-shift control.
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variables being fixed. We derive the optimal solution to each
subproblem for optimizing one of these variables in closed-
form, which greatly reduces the computational complexity.
It is shown that the proposed algorithm is guaranteed to
converge to at least a locally optimal solution. Numerical
results are provided to validate the performance advantages
of our proposed alternating optimization algorithm over other
benchmark schemes with or without IRS.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MIMO communication system with Nt ≥ 1
antennas at the transmitter and Nr ≥ 1 antennas at the receiv-
er, as illustrated in Fig. 1, where an IRS equipped with M
passive reflecting elements is deployed to enhance the MIMO
communication performance. Each element of the IRS is able
to re-scatter the signal at the IRS with an individual reflection
coefficient, which can be dynamically adjusted by the IRS
controller for desired signal reflection. Specifically, let αm∈C
denote the reflection coefficient of the mth IRS element, which
is assumed to satisfy |αm| = 1,∀m = 1, ...,M , while the
phase of each αm can be flexibly adjusted in [0, 2π) [15].2

We assume quasi-static block-fading channels, and focus on
one particular fading block where all the channels involved in
Fig. 1 remain approximately constant. For the purpose of expo-
sition, we consider narrowband transmission over frequency-
flat channels. Denote H ∈ CNr×Nt as the complex baseband
channel matrix for the direct link from the transmitter to the
receiver, T ∈ CM×Nt as that from the transmitter to the
IRS, and R ∈ CNr×M as that from the IRS to the receiver.
Let ϕ ∈ CM×M denote the diagonal reflection matrix of the
IRS, with ϕ = diag{α1, ..., αM}. We assume that the signal
reflected by the IRS more than once is of negligible power
due to the high path loss and thus can be ignored. Therefore,
the effective MIMO channel matrix from the transmitter to the
receiver is given by H̃ = H +RϕT .

Let x ∈ CNt×1 denote the transmitted signal vector. The
transmit signal covariance matrix is thus defined as Q

∆
=

E[xxH ] ∈ CNt×Nt , with Q ≽ 0. We consider an average
sum power constraint at the transmitter given by E[∥x∥2] ≤ P ,
which is equivalent to tr(Q) ≤ P . The received signal vector
denoted as y ∈ CNr×1 is given by

y = H̃x+ z = (H +RϕT )x+ z, (1)

where z ∼ CN (0, σ2INr ) denotes the independent circularly
symmetric complex Gaussian (CSCG) noise vector at the
receiver, with σ2 denoting the average noise power. To reveal
the fundamental capacity limit, we assume that perfect CSI
is available at both the transmitter and receiver. The MIMO
channel capacity is thus given by

C = max
Q:tr(Q)≤P,Q≽0

log2 det
(
INr +

1

σ2
H̃QH̃

H
)

(2)

in bits per second per Hertz (bps/Hz). Note that different
from the conventional MIMO channel without the IRS, i.e.,

2To characterize the capacity limit of IRS-aided MIMO systems, we assume
that the phase-shift by each IRS element can be continuously adjusted, while
the results of this paper can be readily extended to the practical setup with
discrete phase-shift levels [16], [17].

H̃ = H , for which the capacity is solely determined by
the channel matrix H , the capacity for the IRS-aided MIMO
channel shown in (2) is also dependent on the IRS reflection
matrix ϕ, since it influences the effective channel matrix H̃
as well as the resultant optimal transmit covariance matrix Q.

Motivated by the above, we aim to maximize the capacity
of an IRS-aided MIMO channel by jointly optimizing the IRS
reflection matrix ϕ and the transmit covariance matrix Q,
subject to uni-modular constraints on the reflection coefficients
and a sum power constraint at the transmitter. The optimization
problem is formulated as

(P1) max
ϕ,Q

log2 det
(
INr +

1

σ2
H̃QH̃

H
)

(3)

s.t. ϕ = diag{α1, ..., αM} (4)
|αm| = 1, m = 1, ...,M (5)
tr(Q) ≤ P (6)
Q ≽ 0. (7)

Note that Problem (P1) is a non-convex optimization prob-
lem since the objective function can be shown to be non-
concave over the reflection matrix ϕ, and the uni-modular
constraint on each reflection coefficient αm in (5) is also non-
convex. Moreover, the transmit covariance matrix Q is coupled
with ϕ in the objective function of (P1), which makes (P1)
more difficult to solve. It is worth noting that although uni-
modular constraints have been considered in the designs of
constant envelope precoding and hybrid analog/digital precod-
ing at the transmitter (see, e.g., [18], [19]), the existing designs
are not applicable to solving (P1) due to the different rate
expressions in terms of the uni-modular variables. In the next
section, we solve (P1) by exploiting its unique structure.

III. PROPOSED SOLUTION TO PROBLEM (P1)
In this section, we propose an alternating optimization

algorithm for solving (P1). Specifically, we first transform
the objective function of (P1) into a more tractable form
in terms of the optimization variables in {αm}Mm=1 ∪ {Q},
based on which we then solve two subproblems of (P1),
for optimizing respectively the transmit covariance matrix
Q or one reflection coefficient αm in ϕ with all the other
variables being fixed. We derive the optimal solutions to
both subproblems in closed-form, which enable an efficient
alternating optimization algorithm to obtain a locally optimal
solution to (P1) by iteratively solving these subproblems.

A. Alternating Optimization
In this subsection, we introduce the framework of our

proposed alternating optimization for solving (P1). Our main
idea is to iteratively solve a series of subproblems of (P1), each
aiming to optimize one single variable in {αm}Mm=1∪{Q} with
the other M variables being fixed. To this end, we first provide
a more tractable expression for the objective function of (P1) in
(3) in terms of Q and {αm}Mm=1. Note that (3) is the logarithm
determinant of a linear function of Q, while its relationship
with αm’s is rather implicit. Thus, we propose to rewrite (3)
as an explicit function over αm’s. Denote R = [r1, ..., rM ]
and T = [t1, ..., tM ]H , with rm ∈ CNr×1 and tm ∈ CNt×1.
Then, the effective MIMO channel can be rewritten as



H̃ = H +

M∑
m=1

αmrmtHm. (8)

Notice from (8) that the effective channel is the summation
of the direct channel matrix H and M rank-one matrices
rmtHm’s each multiplied by a reflection coefficient αm, which
is a unique structure of IRS-aided MIMO channel and implies
that {αm}Mm=1 should be designed to strike an optimal balance
between the M + 1 matrices for maximizing the capacity.

Furthermore, denote Q = UQΣQU
H
Q as the eigenvalue

decomposition (EVD) of Q, where UQ ∈ CNt×Nt and
ΣQ ∈ CNt×Nt . Note that since Q is a positive semi-definite
matrix, all the diagonal elements in ΣQ are non-negative
real numbers. Based on this, we define H ′ = HUQΣ

1
2

Q ∈
CNr×Nt , T ′ = TUQΣ

1
2

Q = [t′1, ..., t
′
M ]H ∈ CM×Nt , where

t′m = Σ
1
2

QU
H
Q tm ∈ CNt×1. Therefore, the objective function

of (P1) can be rewritten as

f
∆
=log2 det

(
INr+

1

σ2
H̃QH̃

H
)

(9)

=log2 det
(
INr+

1

σ2
(H ′ +RϕT ′)(H ′ +RϕT ′)H

)
=log2 det

(
INr+

1

σ2

(
H ′+

M∑
i=1

αirit
′H
i

)(
H ′+

M∑
i=1

αirit
′H
i

)H)
(a)
= log2 det

(
INr+

1

σ2
H ′H

′H +
1

σ2

M∑
i=1

rit
′H
i t′ir

H
i

+
1

σ2

M∑
i=1

(
H ′α∗

i t
′
ir

H
i +αirit

′H
i H

′H+
M∑

j=1,j ̸=i

αiα
∗
jrit

′H
i t′jr

H
j

))
,

where (a) holds due to |αm|2 = 1,∀m. Note that the new
objective function of (P1) shown in (9) is in an explicit form of
individual reflection coefficients {αm}Mm=1, which facilitates
our proposed alternating optimization in the sequel.

With (9), we are ready to present the two types of subprob-
lems that need to be solved during the alternating optimization,
which aim to optimize the transmit covariance matrix Q with
given {αm}Mm=1 or a reflection coefficient αm with given
{αi, i ̸= m}Mi=1 ∪Q, elaborated as follows.

1) Optimization of Q with Given {αm}Mm=1: In this sub-
problem, we aim to optimize the transmit covariance matrix
Q with given reflection coefficients {αm}Mm=1 or the effective
channel H̃ in (8). Note that with given H̃ , (P1) is a convex
optimization problem over Q, and the optimal Q is given by
the eigenmode transmission [11]. Specifically, denote H̃ =

ŨΛ̃Ṽ
H

as the truncated singular value decomposition (SVD)
of H̃ , where Ṽ ∈CNt×D, with D = rank(H̃)≤min(Nr, Nt)
denoting the maximum number of data streams that can be
transmitted over H̃ . The optimal Q is thus given by

Q⋆ = Ṽ diag{p⋆1, ..., p⋆D}Ṽ H
, (10)

where p⋆i denotes the optimal amount of power allocated
to the ith data stream following the water-filling strategy:
p⋆i = max(1/p0 − σ2/[Λ̃]2i,i, 0), i = 1, ..., D, with p0
satisfying

∑D
i=1 p

⋆
i = P . Hence, the channel capacity with

given {αm}Mm=1 is C =
∑D

i=1 log2(1 + [Λ̃]2i,ip
⋆
i /σ

2).

2) Optimization of αm with Given Q and {αi, i ̸=m}Mi=1:
In this subproblem, we aim to optimize αm in (P1) with given
Q and {αi, i ̸=m}Mi=1, ∀m ∈ M, where M={1, ...,M}. For
ease of exposition, we rewrite the objective function of (P1)
in (9) in the following form with respect to each αm:
fm

∆
=log2 det

(
Am+αmBm+α∗

mBH
m

)
= f, ∀m∈M, (11)

where

Am=INr+
1

σ2

(
H ′+

M∑
i=1,i ̸=m

αirit
′H
i

)(
H ′+

M∑
i=1,i̸=m

αirit
′H
i

)H

+
1

σ2
rmt

′H
m t′mrHm, ∀m ∈ M,

Bm=
1

σ2
rmt

′H
m

(
H

′H+
M∑

i=1,i̸=m

t′ir
H
i α∗

i

)
, ∀m ∈ M. (12)

Therefore, this subproblem can be expressed as

(P1-m) max
αm

log2 det(Am + αmBm + α∗
mBH

m) (13)

s.t. |αm| = 1. (14)

Notice that Am and Bm are both independent of αm.
Hence, the objective function of (P1-m) can be shown to be
a concave function over αm. Nevertheless, the uni-modular
constraint in (14) is non-convex, which makes (P1-m) still
non-convex. In the following, by exploiting the structure of
(P1-m), we derive its optimal solution in closed-form.

B. Optimal Solution to Problem (P1-m)
First, we exploit the structures of Am and Bm.
Lemma 1: For anym∈M,rank(Am)=Nr,rank(Bm)≤1.

Proof: Note from (12) that Am is the summation of
an identity matrix and two positive semi-definite matrices.
Thus, Am is a positive definite matrix with full rank. On the
other hand, based on the definition of Bm in (12), we have
rank(Bm) ≤ rank(rmt

′H
m ) = 1 [20].

Next, by noting from Lemma 1 that Am is of full rank and
thus invertible, we rewrite the objective function of (P1-m) as

fm = log2 det(INr + αmA−1
m Bm + α∗

mA−1
m BH

m)

+ log2 det(Am)
∆
= f ′

m + log2 det(Am). (15)

Based on (15), (P1-m) is equivalent to the maximization of
f ′
m

∆
= log2 det(INr + αmA−1

m Bm + α∗
mA−1

m BH
m) under the

constraint in (14) by optimizing αm, which is addressed next.
Notice that A−1

m Bm plays a key role in our new objective
function f ′

m, whose structure is exploited as follows. Specif-
ically, since rank(Bm) ≤ 1, we have rank(A−1

m Bm) ≤
rank(Bm) ≤ 1. Note that for the case with rank(A−1

m Bm) =
0, namely, A−1

m Bm = 0, any αm with |αm| = 1 is an optimal
solution to (P1-m), whose corresponding optimal value is
thus log2 det(Am). As such, we focus on the case with
rank(A−1

m Bm) = 1 in the next. In this case, A−1
m Bm may

be either diagonalizable or non-diagonalizable, which can be
determined by the following lemma.

Lemma 2: A−1
m Bm is diagonalizable if and only if

tr(A−1
m Bm) ̸= 0.
Proof: First, since A−1

m Bm is of rank one, we can express
it as the multiplication of two vectors as A−1

m Bm = umvH
m,



where um ∈ CNr×1 and vm ∈ CNr×1. Then, it follows
that A−1

m Bm is non-diagonalizable if and only if vH
mum =

tr(A−1
m Bm) = 0, where it becomes a nilpotent matrix [20].

This completes the proof of Lemma 2.
In the following, we investigate the two cases where

A−1
m Bm is diagonalizable or non-diagonalizable, and derive

the optimal solution for each case, respectively.
1) Case I: Diagonalizable A−1

m Bm: First, we consider the
case where A−1

m Bm is diagonalizable, namely, its EVD exists.
Since A−1

m Bm has rank one, its EVD can be expressed as
A−1

m Bm = UmΣmU−1
m , where Um ∈ CNr×Nr , and Σm =

diag{λm, 0, ..., 0} ∈ CNr×Nr , with λm ∈ C denoting the
sole non-zero eigenvalue of A−1

m Bm. Therefore, f ′
m can be

expressed as
f ′
m = log2 det(INr + αmUmΣmU−1

m

+ α∗
mA−1

m U−1H
m ΣH

mUH
mAm)

(b1)
= log2(det(U

−1
m ) det(INr + αmUmΣmU−1

m

+ α∗
mA−1

m U−1H
m ΣH

mUH
mAm) det(Um))

(b2)
= log2det(INr+αmΣm+α

∗
mU−1

m A−1
m U−1H

m ΣH
mUH

mAmUm)

= log2 det(INr + αmΣm + α∗
mV −1

m ΣH
mV m), (16)

where (b1) holds due to det(A) det(A−1) = 1 for any invert-
ible matrix A; (b2) holds due to det(AB) = det(A) det(B)

for two equal-sized square matrices A and B; and V m
∆
=

UH
mAmUm is a Hermitian matrix with V m = V H

m, since
Am is a Hermitian matrix according to (12). Let νm ∈ CNr×1

denote the first column of V −1
m and ν

′T
m ∈ C1×Nr denote

the first row of V m. Note that it follows that ν
′T
m νm = 1;

moreover, let νm1 and ν′m1 denote the first element in νm

and ν
′T
m , respectively, we have νm1 ∈ R and ν′m1 ∈ R since

both V m and V −1
m are Hermitian matrices. Hence, (16) can

be further simplified as

f ′
m= log2 det(INr + αmΣm + α∗

mνmλ∗
mν

′T
m )

(c1)
= log2 det(1 + α∗

mλ∗
mν

′T
m (INr + αmΣm)−1νm)

+ log2 det(INr
+ αmΣm)

= log2

((
1+α∗

mλ∗
m−α∗

mλ∗
mν′m1αmλmνm1

1+αmλm

)
(1+αmλm)

)
(c2)
= log2

(
(1 + αmλm)(1 + α∗

mλ∗
m)− ν′m1νm1|λm|2

)
= log2

(
1 + |λm|2(1− ν′m1νm1) + 2Re{αmλm}

)
, (17)

where (c1) holds due to the fact that det(AB) =
det(A) det(B) and det(Ip + CD) = det(Iq + DC) for
C ∈ Cp×q and D ∈ Cq×p; (c2) holds due to |αm|2 = 1.

Based on (17), (P1-m) is equivalent to maximizing
Re{αmλm} under the constraint in (14) when A−1

m Bm is
diagonalizable, for which we have the following proposition.

Proposition 1: If tr(A−1
m Bm) ̸= 0, the optimal solution to

(P1-m) is given by α⋆I
m = e−j arg{λm}. The optimal value of

(P1-m) is thus given by f⋆I
m = log2(1+ |λm|2(1−ν′m1νm1)+

2|λm|) + log2 det(Am).
Proof: Since Re{αmλm} ≤ |αmλm| = |λm|, where

the inequality holds with equality if and only if arg{αm} =
− arg{λm}, the proof of Proposition 1 is completed.

2) Case II: Non-Diagonalizable A−1
m Bm: Next, consider

the case where A−1
m Bm is non-diagonalizable. In this case, we

express it as A−1
m Bm = umvH

m, where um ∈ CNr×1, vm ∈
CNr×1, and vH

mum = uH
mvm = tr(A−1

m Bm) = 0 according
to Lemma 2. To exploit the structure of A−1

m Bm in this case,
we first provide the following lemma for um and vm.

Lemma 3: INr + αmumvH
m is an invertible matrix, whose

inversion is given by (INr+αmumvH
m)−1 = INr−αmumvH

m.
Proof: Lemma 3 follows from the Sherman-Morrison-

Woodbury formula [20], which states that for an invertible
matrix A ∈ CNr×Nr and two vectors a ∈ CNr×1 and b ∈
CNr×1, A+ abH is invertible if and only if 1 + bHA−1a ̸=
0, and the inversion is given by (A + abH)−1 = A−1 −
A−1abHA−1

1+bHA−1a
. Based on this, by replacing A with INr , we

have 1 + αmvH
mum = 1 ̸= 0, thus INr + αmumvH

m is an
invertible matrix, with inversion INr − αmumvH

m.
Based on the results in Lemma 3, f ′

m can be rewritten as

f ′
m = log2 det

(
INr + αmumvH

m + α∗
mA−1

m vmuH
mAm

)
(d1)
= log2 det(INr + α∗

m(INr − αmumvH
m)A−1

m vmuH
mAm)

+ log2 det(INr + αmumvH
m)

(d2)
= log2 det(INr + α∗

m(INr − αmumvH
m)A−1

m vmuH
mAm)

(d3)
= log2 det(Am(INr + α∗

m(INr − αmumvH
m)

×A−1
m vmuH

mAm)A−1
m )

(d4)
= log2 det(INr + α∗

mvmuH
m −AmumvH

mA−1
m vmuH

m)
(d5)
= log2 det(INr−(INr−α∗

mvmuH
m)AmumvH

mA−1
m vmuH

m)

+ log2 det(INr + α∗
mvmuH

m)
(d6)
= log2 det(INr−A−1

m vmuH
m(INr−α∗

mvmuH
m)AmumvH

m)
(d7)
= log2 det(INr −A−1

m vmuH
mAmumvH

m), (18)

where (d1) can be derived similarly as (c1) via Lemma 3;
(d2) holds since log2 det(INr

+ αmumvH
m) = log2 det(1 +

αmvH
mum) = 0; (d3) can be derived in a similar manner

as (b1) and (b2) by noting that Am is invertible; (d4) holds
since |αm|2 = 1; (d5) can be derived similarly as (d1);
(d6) follows from det(Ip + CD) = det(Iq + DC) and
log2 det(INr + α∗

mvmuH
m) = log2 det(1 + α∗

muH
mvm) =

0; and (d7) holds since uH
mvm = 0, and consequently

A−1
m vmuH

mα∗
mvmuH

mAmumvH
m becomes an all-zero matrix.

It is worth noting from (18) that when A−1
m Bm is non-

diagonalizable, f ′
m is independent of αm. Therefore, we have

the following proposition.
Proposition 2: If tr(A−1

m Bm) = 0, any αm with |αm| = 1
is an optimal solution to (P1-m). The optimal value of (P1-m)
is thus given by f⋆II

m = log2 det(Am −BH
mA−1

m Bm).
Proof: The first half of Proposition 2 follows directly

from (18). The second half of Proposition 2 can be de-
rived as f⋆II

m = log2 det(INr − A−1
m vmuH

mAmumvH
m) +

log2 det(Am) = log2 det(Am − vmuH
mAmumvH

m) =
log2 det(Am−BH

mA−1
m Bm), by noting that A−1

m Bm=umvH
m

holds. This thus completes the proof of Proposition 2.
Based on Proposition 2, we set α⋆II

m = 1 as the optimal
solution to (P1-m) in this case without loss of optimality.



3) Summary of the Optimal Solution to Problem (P1-m):
To summarize, the optimal solution to (P1-m) is given by

α⋆
m =

{
e−j arg{λm}, if tr(A−1

m Bm) ̸= 0
1, otherwise.

(19)

The corresponding optimal value of (P1-m) is given by

f⋆
m =

{
f⋆I
m , if tr(A−1

m Bm) ̸= 0

f⋆II
m , otherwise.

(20)

C. Overall Algorithm
With the optimal solution to (P1-m) derived above, we

are ready to complete our proposed alternating optimization
algorithm for solving (P1). Specifically, we first randomly
generate L > 1 sets of {αm}Mm=1 with |αm| = 1, ∀m and
phases of αm’s following the uniform distribution in [0, 2π).
By obtaining the optimal transmit covariance matrix Q for
each set of {αm}Mm=1 according to (10) as well as the corre-
sponding channel capacity, we select the set with maximum
capacity as the initial point. The algorithm then proceeds by
iteratively solving the two subproblems presented in Section
III-A, until convergence is reached. Note that since we have
obtained the optimal solution to every subproblem, monotonic
convergence of the proposed algorithm is guaranteed, since
the algorithm yields non-decreasing objective value of (P1)
over the iterations, which is also upper-bounded by a finite
capacity. Moreover, since the objective function of (P1) is
differentiable and all the variables {αm}Mm=1 and Q are not
coupled in the constraints, any limit point of the iterations
generated by the proposed algorithm satisfies the Karush-
Kuhn-Tucker (KKT) condition of (P1) [21]. By further setting
the convergence criteria as that the objective function of
(P1) cannot be further increased by optimizing any variable
in {αm}Mm=1 ∪ Q, the proposed algorithm is guaranteed to
converge to at least a locally optimal solution of (P1). Finally,
the complexity of the proposed algorithm can be shown to be
O(NrNt(M +min(Nr, Nt))L+((3N3

r +2N2
rNt+N2

t )M +
NrNt min(Nr, Nt))I) with I denoting the number of outer
iterations, which is polynomial over Nr, Nt, and M .

IV. NUMERICAL RESULTS
In this section, we provide numerical results to examine

the performance of our proposed algorithm. We consider a
Rayleigh fading model for all channels involved, where each
channel coefficient is an independent CSCG random variable
with zero mean and variance denoting the path loss, namely,
[H]i,j ∼ CN (0, βD), ∀i, j, [T ]i,j ∼ CN (0, βTI), ∀i, j, and
[R]i,j ∼ CN (0, βIR), ∀i, j, where βD, βTI, and βIR respec-
tively denote the corresponding distance-dependent path loss
modeled by β=β0(d/d0)

−ᾱ, with β0=−30 dB denoting the
path loss at the reference distance d0=1 m; d denoting the link
distance; and ᾱ denoting the path loss exponent. The distances
for the direct link, the transmitter-IRS link, and the IRS-
receiver link are set as 600.0833 m, 598.0033 m, and 10.3923
m, respectively, and the corresponding path loss exponents are
set as ᾱD = 3.5, ᾱTI = 2.2, and ᾱIR = 2.8, respectively. We
set Nt =Nr = 4, P = 30 dBm, and σ2 =−90 dBm. For the
proposed algorithm, we set the number of random initializa-
tions as L= 100, and the convergence threshold in terms of
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Fig. 2. Performance of IRS-aided MIMO communication.
the relative increment in the objective value as ϵ=10−5.

We compare the performance of our proposed alternat-
ing optimization algorithm with the following benchmark
schemes: 1) Without IRS: Obtain the channel capacity in
(2) by optimizing Q with given H̃ = H; 2) Random
phase: Randomly generate {αm}Mm=1 with |αm| = 1, ∀m and
phases of αm’s following independent uniform distribution in
[0, 2π). Obtain the channel capacity in (2) by optimizing Q
with given {αm}Mm=1; 3) Reflection optimization with fixed
Q: We first obtain the optimal (capacity-achieving) transmit
covariance matrix Q for the direct channel H; then, we
apply our proposed algorithm to optimize {αm}Mm=1 with
Q fixed; 4) Heuristic channel total power maximization:
We propose a heuristic approach to maximize the channel
total power by maximizing its lower bound, which is given
by ∥H̃∥2F =

∑Nr

i=1

∑Nt

j=1 |[H]i,j +
∑M

m=1 αmrmit
∗
mj |2 ≥

|h̃d +
∑M

m=1 αmh̃r
m|2, where h̃d ∆

=
∑Nr

i=1

∑Nt

j=1[H]i,j and

h̃r
m

∆
=

∑Nr

i=1

∑Nt

j=1 rmit
∗
mj . The optimal {αm}Mm=1 that max-

imizes this lower bound can be easily shown to be αm =
ej(arg{h̃

d}−arg{h̃r
m}), ∀m. Note that this scheme is the optimal

solution to the SISO case with Nt = Nr = 1.
We show in Fig. 2 the achievable rate versus the number

of reflecting elements M for the proposed algorithm and the
benchmark schemes. All results are averaged over 100 inde-
pendent channel realizations. It is observed that all the schemes
with IRS outperform that without the IRS, and the perfor-
mance gain increases with M ; moreover, benchmark schemes
3) and 4) with IRS outperform the random phase scheme.
It is also observed that our proposed algorithm achieves the
best performance among all schemes at all values of M .
Particularly, the proposed algorithm outperforms benchmark
scheme 4) with transmit covariance matrix Q optimized only
based on the direct MIMO channel, which shows the necessity
of jointly optimizing Q and the IRS reflection coefficients.

V. CONCLUSIONS
This paper studied the capacity maximization for IRS-aided

MIMO communication via joint IRS reflection and transmit
covariance matrix optimization. An alternating optimization
algorithm was proposed to find a locally optimal solution by
iteratively optimizing one optimization variable with the others
being fixed, for which the optimal solutions were derived
in closed-form. It was shown via numerical results that our
proposed algorithm achieves superior rate performance over
various benchmark schemes with or without IRS.
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