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Abstract—Brillouin optical time domain analyzer (BOTDA) 
fiber sensors have shown strong capability in static long haul 
distributed temperature/strain sensing. However, in applications 
such as structural health monitoring and leakage detection, real-
time measurement is quite necessary. The measurement time of 
temperature/strain in a BOTDA system includes data acquisition 
time and post-processing time. In this work, we propose to use 
hardware accelerated support vector regression (SVR) for the 
post-processing of the collected BOTDA data. Ideal Lorentzian 
curves under different temperatures with different linewidths are 
used to train the SVR model to determine the linear SVR decision 
function. The performances of SVR is evaluated under different 
signal-to-noise ratios (SNRs) experimentally. After the model 
coefficients are determined, algorithm-specific hardware 
accelerators based on field programmable gate arrays (FPGAs) 
are used to realize SVR decision function. During the 
implementation, hardware optimization techniques based on loop 
dependence analysis and batch processing are proposed to reduce 
the execution latency. Our FPGA implementations can achieve up 
to 42× speedup compared with software implementation on an i7-
5960x computer. The post-processing time for 96,100 BGSs along 
38.44-km FUT is only 0.46 seconds with FPGA board ZCU104, 
making the post-processing time no longer a limiting factor for 
dynamic sensing. Moreover, the energy efficiency of our FPGA 
implementation can reach up to 226.1× higher than software 
implementation based on CPU.  

Index Terms—Distributed optical fiber sensing, Brillouin 
optical time domain analyzer (BOTDA), digital signal processing, 
support vector machine (SVM), field programmable gate arrays 
(FPGA), hardware implementation. 

I. INTRODUCTION

ISTRIBUTED optical fiber sensors allow many points to be 
measured simultaneously, and it is compatible to 

ubiquitously deployed underground fiber system for 
telecommunication purpose, therefore, they attract interest from 
both industry and academic [1-4]. Distributed optical fiber 
sensors mainly depends on scattering effects in optical fiber, 
Brillouin optical time domain analyzer (BOTDA) based on 
stimulated Brillouin scattering (SBS) was invented in 1990 [5], 

it can measure strain as well as temperature. BOTDA sensors 
rely on stimulated Brillouin scattering (SBS) of two counter-
propagating light waves, a continuous-wave (CW) signal and a 
pulsed pump. The frequency offset between the pump and 
probe is scanned around the Brillouin frequency shift (BFS) of 
the fiber to reconstruct the Brillouin gain spectrum (BGS). 
Since the change of BFS has a linear relationship with the 
change of temperature and strain on the fiber, an important 
operation in a BOTDA system is to find the BFS from the 
measured BGS to determine temperature or strain information 
along the fiber under test (FUT). In an ideal BGS, BFS is the 
shift in peak gain frequency. However, acquired BGSs are 
always contaminated by noises. Therefore, post-processing 
algorithms are needed to accurately determine BFS from the 
measured BGSs. The conventional wisdom to predict the BFS 
information from the BGS is Levenberg-Marquardt algorithm 
(LMA) curve fitting [6,7]. However, its complexity is often a 
limiting factor in the sensing speed of a BOTDA system 
especially for long sensing distance. 

In recent years, the performances of BOTDA are improved 
significantly due to the rapid developments of the technology. 
The sensing distance of BOTDA can achieve hundreds of 
kilometers [8], and the spatial resolution can be reduced to 
millimeter level [9]. Longer sensing distance brings larger 
amount of sensing data and finer resolution requires higher 
sampling rate and smaller frequency scanning step which result 
in denser sensing points. The sensing data volume keeps 
increasing, which adds the computational load for post-
processing. In real scenario, to extract temperature/strain 
information from the measured BGSs with low latency is quite 
necessary. Several works have mentioned the challenges of 
post-processing in real applications. In [10], a non-curve fitting 
technique called cross-correlation method (XCM) was 
proposed based on calculation of cross-correlation between an 
ideal Lorentzian curve and the measured BGS to determine BFS. 
In [11], a modified version of XCM is implemented on FPGA 
to speed up the processing time at the cost of sensing accuracy. 
Artificial neural network (ANN) is proposed for BOTDA 
system to improve the sensing accuracy and processing speed 
[12]. However, the training of ANN is difficult due to numerous 
hyperparameters.  Recently, we reported a machine learning 
method called support vector classification (SVC) to extract 
temperature information from measured BGSs with simple 
training strategy and fast processing speed [13-15].  

By far, most post-processing methods are implemented on 
X86-based computers like windows desktop and Linux servers. 
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These methods normally rely on separate stages including 
experimental data measurement, data storage, data transmission 
and data post-processing. Due to the discontinuous workflow, 
real time post-processing is challenging because additional cost 
by data storage and transmission cannot be ignored, not to 
mention the running time of the computation-intensive 
algorithms. Thus, it is challenging to realize real-time 
surveillance and monitoring based on software solutions. For 
the applications which need extreme low latency, hardware 
solutions are alternatives and can alleviate the difficulties 
mentioned above [16]. Among the current hardware platforms, 
FPGA and ASIC are two representatives which can provide 
sufficient computation capability, moreover, FPGA and ASIC 
are more compact which means they can be easily integrated 
into a portable BOTDA system. Compared with ASIC, FPGA 
has the advantages of reconfigurability and fast deployment 
time especially with the help of high level synthesis [17]. The 
computation capability of FPGA can outperform CPU by one 
order of magnitude through massively parallelizing the 
algorithm in an efficient manner [18]. However, not all the 
algorithms can be easily implemented on FPGA because of the 
inadaptability to fixed hardware structures. LMA curve fitting 
is an iterative optimization method based on the error gradient 
estimation, which requires matrix inversion during error 
correction. From the hardware perspective, the iterative process 
and matrix inversion are expensive to realize. For cross 
correlation, the total multiply-accumulation (MAC) operations 
required is proportional to the square of frequency number in 
the BGS, thus pose a huge computation burden, therefore, in 
[11], moving average and referential triangular pulse are 
adopted to reduce the computational complexity at the expense 
of BFS accuracy. The ANN proposed in [12] is also not very 
suitable for efficient hardware implementation since the 
sigmoid nonlinear activation function in each neuron can only 
be approximated with a big look-up table or low-order 
polynomial expansion. As for SVC [13-15], n-class SVC is 
built upon n(n-1)/2 binary classifiers and each classifier has 
unique number of support vectors, the irregular computation 
pattern doesn’t fit a fixed hardware structure. What's more, n is 
normally larger than 100 which generates more than 5000 
independent binary classifiers, causing heavy storage 
requirements and computation loads. Considering the 
convenience and efficiency of algorithm to hardware migration, 
we propose a novel method called support vector regression 
(SVR) in our recent conference paper [19]. In this work, an in-
depth comparison with other methods regarding the algorithm 
performances is included. Moreover, multiple optimization 
strategies with high level synthesis are proposed and proved 
experimentally. The main contributions of this work are as 
follows: 
1) A temperature prediction method based on SVR is proposed. 
The experimental results prove that SVR can achieve 
comparable performance with existing BFS extraction methods 
like SVC, cross correlation, LMA Lorentzian curve fitting and 
ANN. 
2) Hardware implementations of SVR decision function are 
realized on two FPGA boards. Optimizations to linear SVR 

decision function through loop analysis and batch processing 
are proposed to take advantages of high flexibility and 
scalability of modern FPGA devices. These optimization 
methods transform the decision function into matrix-matrix 
multiplication and matrix-vector multiplication and parallelize 
these operations by tiling the large matrix into smaller ones. 
3) Post-processing time for 96,100 BGSs along 38.44-km FUT 
can be completed in 0.46 seconds with Xilinx ZCU104 using 
the proposed hardware optimization techniques. It achieves 42× 
speedup compared with the software implementation running 
on an i7-5960x computer. Meanwhile, the 26.5W power 
consumption of ZCU104 is also much lower than the 
conventional CPU, making the energy efficiency of our FPGA 
implementation 221.6× higher than software implementation 
based on LIBSVM [20]. 

The paper is organized as follows. Section II describes the 
principle of SVR and its training process for temperature 
extraction in a BOTDA system. Section III introduces the 
experimental setup of BOTDA and evaluates the performance 
of SVR under different SNRs experimentally. FPGA 
optimizations and implementations of linear SVR decision 
function are given in Section IV. Section V concludes this work.  

II. PRINCIPLE OF SVR AND TRAINING PROCESS FOR 
TEMPERATURE EXTRACTION IN A BOTDA SYSTEM 

Suppose we have training data {(𝒙𝒙1,𝑦𝑦1), … , (𝒙𝒙𝑙𝑙 , 𝑦𝑦𝑙𝑙)}, where 
𝒙𝒙𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 is training sample and 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅 is label. In linear case, 
we construct a linear decision function to fit the training data: 

                                𝑓𝑓(𝒙𝒙) = ⟨𝒘𝒘,𝒙𝒙⟩ + 𝑏𝑏                           (2.1) 
where ⟨⋅, ⋅⟩ denotes the dot product, 𝒘𝒘 is the norm vector of the 
linear function and 𝑏𝑏 is intercept. Traditional linear least-square 
error regression derives a decision function by minimizing the 
deviation between predicted value 𝑓𝑓(𝒙𝒙𝑖𝑖) and given value 𝑦𝑦𝑖𝑖  for 
all training data. Unlike linear least-square error fitting, SVR 
allows a tolerance degree to errors not greater than 𝜀𝜀 as shown 
in Fig. 1(a). Only the data points outside the shaded region 
contribute to the error and the deviations are penalized in a 
linear fashion as shown in Fig. 1(b). The goal of SVR is to find 
a function that fits current training data with a deviation no 
larger than 𝜀𝜀, and at the same time as flat as possible. One way 
to ensure this is to minimize the norm, i.e., ‖𝒘𝒘‖2 = ⟨𝒘𝒘,𝒘𝒘⟩. We 
can write this problem as a convex optimization problem as 
follows: 

minimize: 1
2
‖𝒘𝒘‖2 

subject to �𝑦𝑦𝑖𝑖 −
⟨𝒘𝒘, 𝑥𝑥⟩ − 𝑏𝑏 ≤ 𝜀𝜀

⟨𝒘𝒘, 𝑥𝑥⟩ + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀                            (2.2) 

The above convex optimization problem is feasible in cases 
where 𝑓𝑓(𝒙𝒙) actually exists and all pairs (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) are within 𝜀𝜀 
precision. However, in most cases, not all (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) are within 𝜀𝜀 
precision, then we can introduce slack variables  ξ𝑖𝑖, 𝜉𝜉𝑖𝑖∗ to deal 
with this problem. Hence, we get the following formulation: 

  minimize: 1
2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑙𝑙

𝑖𝑖=1  

                     subject to  �𝑦𝑦𝑖𝑖 −
⟨𝒘𝒘,𝒙𝒙⟩ − 𝑏𝑏 ≤ 𝜀𝜀 + ξ𝑖𝑖

⟨𝒘𝒘,𝒙𝒙⟩ + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗
          (2.3) 

where ξ𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0, the constant 𝐶𝐶 > 0 determines the trade-off 
between the flatness of 𝑓𝑓(𝑥𝑥)  and the amount up to which 
deviations larger than 𝜀𝜀 are tolerated. Equation (2.3) is known 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

as the primal problem of SVR algorithm and it can be 
transformed to dual problem and solved by quadratic 
programming [21]. The solution is as follows: 
                                𝐰𝐰 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝒙𝒙𝑖𝑖)𝑙𝑙

𝑖𝑖=1                     (2.4) 
                       𝑓𝑓(𝒙𝒙) = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)⟨𝒙𝒙𝑖𝑖 ,𝒙𝒙⟩𝑙𝑙

𝑖𝑖=1 + 𝑏𝑏               (2.5) 
where 𝛼𝛼𝑖𝑖  and 𝛼𝛼𝑖𝑖∗  are the dual variables, ⟨𝒙𝒙𝑖𝑖 ,𝒙𝒙⟩ represents the 
inner product between training sample 𝒙𝒙𝑖𝑖  and test sample 𝒙𝒙. 
From Equation (2.5), we can see that once the model parameters 
are identified, SVR only depends on 𝒙𝒙𝑖𝑖  with corresponding  
(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)  which are non-zero, these 𝒙𝒙𝑖𝑖  are called support 
vectors and they are subsets of training data. 
 

 
Fig. 1. (a) one-dimensional linear SVR for illustration, (b) linear loss function. 

 
In our case, to process measured BGSs collected from a 

BOTDA system, a high dimensional linear SVR is used, 
normalized gain value at every frequency on the BGS forms 
feature vector 𝒙𝒙𝑖𝑖, and corresponding temperature of the BGS is 
label 𝑦𝑦𝑖𝑖 . The use of SVR includes two phases, the training phase 
and testing phase as shown in Fig. 2. During the training phase, 
the simulated ideal BGSs together with the corresponding 
temperature labels serving as the training samples are used to 
get linear decision function for temperature prediction. We 
design the simulated ideal BGSs by using ideal Lorentzian 
curve as the gain profile for the training of SVR:  

                               g(ν) = 𝑔𝑔𝐵𝐵

1+�(𝜈𝜈−𝜈𝜈𝐵𝐵)
Δ𝜈𝜈𝐵𝐵 2⁄ �

2                             (2.6) 

where 𝑔𝑔𝐵𝐵, 𝜈𝜈𝐵𝐵 and Δ𝜈𝜈𝐵𝐵 are the peak gain, BFS and bandwidth 
of the BGS. Peak gain is set as 1, BFSs of the ideal BGSs from 
a temperature range of  0℃  to 70℃  with 0.5℃  step are 
determined using the temperature coefficient (0.975MHz/℃) of 
the fiber under test (FUT). It should be mentioned that the 
temperature range is determined by the application, in our case, 
the room temperature is around 20℃ and part of the fiber is 
heated to 50℃, therefore, we set the temperature range in [0,70]. 
The bandwidth of the BGS is determined by the pulse width / 
spatial resolution, to accommodate pulse width from minimum 
10ns to infinity (continuous wave), we set the bandwidth of the 
ideal BGSs from 30MHz to 100MHz at a step of 2MHz. Finally, 
we have 141 × 36 ideal BGSs to train the SVR. The frequency 
range of ν  is from 10.78GHz to 11.0GHz with 1MHz step, 
therefore, we have 220 frequencies. After training, we get 1,136 
support vectors in the SVR model. In the testing phase, the fixed 
model predicts a continuous temperature value for each 
normalized measured BGS collected from a BOTDA system.  
 

 
Fig. 2. Training and testing phase of SVR. 

III. BOTDA SETUP AND EXPERIMENTAL RESULTS 

A. BOTDA Experimental Setup 
The experimental setup of the BOTDA system is shown in 

Fig. 3. The output of a tunable laser source is set around 
1550nm and is split into two branches using a coupler. The CW 
light in the upper branch is modulated by a Mach-Zehnder 
modulator (MZM) driven by a pulse pattern generator (PPG) to 
generate optical pump pulses. The bias controller after MZM is 
to stabilize the applied voltage. The pump is then amplified by 
an erbium-doped fiber amplifier (EDFA) and passes through a 
polarization scrambler (PS) to eliminate polarization dependent 
noise. In the lower branch, another high extinction ratio MZM 
is driven by a radio frequency (RF) generator. The bias 
controller is biased at Null point to generate a carrier suppressed 
double-sideband probe signal. An optical attenuator (ATT) is 
used to control the probe power followed by an isolator to block 
the signal from the pump branch. The probe signal is detected 
by a photodetector (PD) after the lower-frequency probe 
sideband is selected by using a fiber Bragg grating (FBG) filter. 
Local BGSs are reconstructed with RF scanned around the BFS 
of FUT.  

 
Fig. 3. BOTDA experimental setup. TLS: tunable laser source, PC: polarization 
controller, PPG: pulse pattern generator, RF: radio frequency, PS: polarization 
scrambler, MZM: Mach-Zehnder modulator, ATT: attenuator, FUT: fiber under 
test, FBG: fiber-Bragg grating, PD: photodetector. 

 
Ensemble average is commonly used to increase SNR since 

signal is at least partially reproducible while noise is random 
from one measurement to the next. Conventional BOTDA 
systems widely adopt the ensemble average at the cost of longer 
data acquisition time. Even though it greatly improves the 
signal quality, it limits the BOTDA systems for dynamic 
sensing. Both experimental and algorithmic methods have been 
proposed to reduce the number of ensemble average [22,23].  
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Fig. 4. (a) 38.44-km FUT with last 400m heated to 50℃. (b) Measured BGS distribution along FUT. (c) zoom-in view of the last heated section. Temperature 
distribution along FUT determined by (d) SVR, (e) SVC, (f) XC, (g) LCF and (h) ANN.  
 

TABLE I PERFORMANCES OF SVR, SVC, XC, LCF AND ANN UNDER DIFFERENT SNRS 
SNR 
(dB) 

MT 
(s) 

SVR SVC XC LCF ANN 
STD RMSE MAE STD RMSE MAE STD RMSE MAE STD RMSE MAE STD RMSE MAE 

4.5 2.7 2.087 2.343 1.89 1.852 1.861 1.479 2.021 2.339 1.852 1.964 1.985 1.605 2.12 2.133 1.701 
6 5.4 1.578 1.584 1.264 1.556 1.562 1.241 1.655 1.783 1.432 1.563 1.61 1.276 1.783 1.789 1.439 
8 17 1.262 1.295 1.037 1.127 1.161 0.919 1.225 1.29 0.996 1.122 1.159 0.928 1.321 1.357 1.078 

10 33.8 0.785 0.803 0.634 0.73 0.86 0.661 0.783 0.878 0.694 0.732 0.864 0.701 0.858 0.917 0.74 
12 88 0.582 0.588 0.469 0.537 0.749 0.596 0.619 0.645 0.472 0.527 0.639 0.514 0.568 0.717 0.583 

Another limit for BOTDA dynamic sensing is post-
processing of collected BOTDA data. Total temperature/strain 
sensing time of the BOTDA system can be expressed as 
follows:  
          𝑇𝑇 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑝𝑝𝑝𝑝 = �𝑇𝑇𝑐𝑐 ∙ 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑠𝑠�𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑝𝑝      (3.1) 
where 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  is the data acquisition time and 𝑇𝑇𝑝𝑝𝑝𝑝  is post-
processing time, 𝑇𝑇𝑐𝑐 = 2𝑛𝑛𝑛𝑛/𝑐𝑐 is time of flight, 𝐿𝐿 is the length of 
FUT, 𝑛𝑛 is the refractive index of the fiber and 𝑐𝑐 is light speed 
in vacuum. 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 is the number of ensemble average, 𝑇𝑇𝑠𝑠 is the 
frequency switching time of RF which is around hundreds of 
milliseconds and 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the number of scanned frequencies. 

B. Experimental Results 
To evaluate the performance of SVR, we use the BOTDA 

setup in Fig. 3 to measure the BGS distribution along 38.44-km 
FUT. The last 400-m section of FUT is free from strain and put 
in a temperature oven heated to 50℃ as shown in Fig. 4(a). The 
sampling rate is 250MSample/s, corresponding to 96,100 
sampling points for 38.44-km FUT. Fig. 4(b) shows the BGSs 
distribution measured with 20ns pump pulse, 1024 times 
averaging, and the sweeping frequency is from 10.78GHz to 
11.0GHz with 1MHz frequency step. Fig. 4(c) is the zoom-in 
view of the last heated section. 

Next, the measured BGSs are processed by SVR. For 
comparison, we also process the BGSs by SVC, cross 
correlation (XC), LMA Lorentzian curve fitting (LCF), and 
ANN, respectively, as shown in Fig. 4(d)-(h). The insets in Fig. 
4 (d)-(h) depict the zoom-in view at the heated section. We can 
see that the temperature information along FUT have been 
successfully extracted by these algorithms. Then we investigate 
the performances of these algorithms under different SNRs, the 
pump pulse is fixed at 20ns and frequency scanning step at 
1MHz. SNR is defined as the ratio between the mean amplitude 

of Brillouin peak and its standard deviation. We collect the 
BGSs from 4.5dB to 12dB by using 32 to 1024 times of 
averaging. According to Equation (3.1), theoretical 
measurement time varies from 2.7 seconds to 88 seconds when 
averaging number increases from 32 to 1024. The performances 
of these algorithms are evaluated by three merits, standard 
deviation (STD), root mean square error (RMSE) and mean 
absolute error (MAE). The performances of the five algorithms 
under different SNRs are shown in Table I, we can see that     
lower STD, RMSE and MAE can be achieved with higher SNR 
for all these methods at the cost of longer measurement time 
(MT). However, there is not a single method exhibiting 
overwhelming performances over others for all SNRs. For 
example, when SNR is 8dB, LCF achieves lowest uncertainty, 
however, at 4.5dB, SVC shows lowest uncertainty. Another 
phenomenon is that STD, RMSE and MAE may not be 
consistent. For instance, at 12dB, LCF has lowest uncertainty 
while SVR has lowest RMSE and MAE, it is because true 
temperature is involved in calculating RMSE and MAE. 
However, the true temperature is not strictly 50℃ at any fiber 
location in the oven at any time, the uniformity of the oven we 
use is about 0.5℃, which may introduce systematic error in this 
process. Considering the systematic error and random error in 
data acquisition, the performances of the five algorithms are 
comparable. Overall, to enhance the performances of BOTDA 
fiber sensors, the key is to improve the signal quality since the 
improvement margin by different BFS extraction methods are 
quite limited.  

Even though various methods can be used to extract BFS 
information, as analyzed previously, the adaptability of these 
algorithms to hardware structures are different. SVR predicts 
the result by regular matrix-vector multiplication and inner-
product as shown in Equation (2.5), which is very suitable to be 
parallelized and pipelined from the hardware perspective. With 
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a dedicated FPGA accelerator, the processing speed of linear 
SVR can be significantly improved. 

IV. FPGA OPTIMIZATIONS AND IMPLEMENTATIONS OF SVR 
In this section, a hardware architecture for the linear SVR 

decision function is presented. In the following subsections, 
part A introduces the direct implementation of linear SVR 
decision function and discusses its drawbacks. In part B, 
optimizations to the direct implementation by loop analysis are 
proposed to reduce the latency. In part C, batch processing 
method is proposed to further speed up the running time. In part 
D, 96,100 measured BGSs from 38.44-km FUT are processed 
by two FPGA boards, experimental results and comparison with 
software implementation and other works are described. In part 
E, we give an in-depth theoretical analysis and discussion for 
FPGA acceleration with the proposed optimization techniques. 

A. Direct Implementation of Linear SVR Decision Function 
If we simplify (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) in decision function Equation (2.5) 

as 𝛽𝛽𝑖𝑖 and expand the inner product to a sum-of-product term, 
then we can have the reformulated decision function as follows:  
                  𝑓𝑓(𝒙𝒙) = ∑ 𝛽𝛽𝑖𝑖 ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗𝑀𝑀

𝑗𝑗=1
𝑁𝑁𝑠𝑠
𝑖𝑖=1 + 𝑏𝑏                     (4.1) 

where 𝑆𝑆𝑆𝑆 represents support vectors obtained from the training 
process, 𝑁𝑁𝑠𝑠  is the number of support vectors and is 1136 as 
given in Section II,  𝑀𝑀 is the dimension of input feature vector 
and is equal to 220. The data path of Equation (4.1) can be 
illustrated in Fig. 5 and the corresponding pseudocode is shown 
in Algorithm 1. In Fig. 5, multiply-accumulate (MAC) 1 
corresponds to the inner summation of Equation (4.1) and is 
denoted as partial sum, while MAC 2 corresponds to the outer 
summation and is denoted as final sum. The total MAC 
operations in MAC 1 and MAC 2 are (𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀 + 𝑁𝑁𝑠𝑠)𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 , 
where 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵  is the number of BGSs. To process 96,100 
measured BGSs from 38.44-km FUT, about 2.4 × 1010 
multiplications and 2.4 × 1010  summations are needed, 
resulting in a heavy computation burden for real-time 
processing.  

 
Fig. 5. Data path of linear SVR, note that the bias term b in equation 4.1 is 
omitted since it is used to initialize the register in MAC 2. 
 

 

Algorithm 1: Original linear SVR without optimization 
Input: feature vector 𝑥𝑥[𝑀𝑀] 
Require: support vectors 𝑆𝑆𝑆𝑆[𝑁𝑁𝑠𝑠][𝑀𝑀], support vector corresponding 
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias 
Output: regression result 𝑓𝑓(𝑥𝑥) 
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ←  0, f_sum ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
L1: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do 

  L2: for j=0 to 𝑀𝑀 − 1 do 
          square ←  𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗  𝑥𝑥[𝑗𝑗]; 
          𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] +square; 
       end for 
       𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]; 
       f_sum ←  f_sum+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖]; 
end for 
𝑓𝑓(𝑥𝑥) ← f_𝑠𝑠𝑠𝑠𝑠𝑠; 

In hardware design, parallel and pipeline are two common 
techniques to improve the performance. However, the loop-
carried dependence in the inner loop L2 in Algorithm 1 causes 
long pipeline initiation interval and inefficient hardware 
utilization efficiency. Moreover, due to the existed dependence, 
parallelism of this direct implementation cannot be achieved 
without restructuring the code, thus the total latency is heavily 
restricted. To accelerate the decision function and enable real-
time processing, optimizations must be performed to overcome 
the limitations. 

B. Loop Dependence Analysis and Optimizations 
To remove the loop-carried dependence and parallelize the 

partial sum computation, firstly, we need to perform loop 
dependence analysis [24]. In Algorithm 1, the statements inside 
L2 exhibit inter-dependence with respect to the iterator j, but 
show no inter-dependence on iterator i. Thus, we seek to change 
the execution order of L1 and L2 to remove the inter-
dependence. However, the nested loop is imperfect (perfect 
nested loops mean the statements only exist inside the 
innermost loop), we need to take a two-step optimization. 
 Loop distribution: We find that the statements inside L2 

do not depend on the statements between L1 and L2, this 
means we can safely break loop L1 and distribute the 
statements between L1 and L2 outside. After loop 
distribution, a new loop L3 is formed which is only 
responsible for the accumulation of final sum, while L1 and 
L2 become a perfect nested loop and calculates the partial 
sum. 

 Loop interchange: In the perfect nested loop L1- L2, loop-
carried dependence prevents efficient pipeline strategy to be 
applied because of the long execution latency of the 
accumulator. The pipeline initiation interval is restricted by 
the propagation delay of the adder, which is normally larger 
than one clock cycle for floating point numbers. When 
working in higher frequency, the propagation delay could 
further consume more clock cycles, resulting in longer 
pipeline initiation interval. In Algorithm 1, no inter-
dependence is observed between the statements inside L2 
and the iterator i, therefore, we can interchange L1 and L2 
to remove the dependence and make the nested loop 
executed consecutively in each clock cycle. After loop 
interchange, the partial sum is read and write 
simultaneously with no conflict on the access addresses, 
which indicates that the partial sum should be mapped to the 
dual port RAM on FPGA. 
 

 

Algorithm 2: Optimized linear SVR with loop distribution and interchange 

Input: feature vector 𝑥𝑥[𝑀𝑀] 
Require: support vectors 𝑆𝑆𝑆𝑆[𝑀𝑀][𝑁𝑁𝑠𝑠], support vector corresponding 
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias 
Output: regression result 𝑓𝑓(𝑥𝑥) 
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ← 0, f_sum← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
L1: for i=0 to 𝑀𝑀− 1 do 
      L2: for j=0 to 𝑁𝑁𝑠𝑠 − 1 do                           ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 
           square←  𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗  𝑥𝑥[𝑖𝑖]; 
           𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗] + square; 
       end for 
end for 
L3: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do                                  ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 
      𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]; 
       f_sum ←  f_sum+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖]; 
end for 
𝑓𝑓(𝑥𝑥) ← f_𝑠𝑠𝑠𝑠𝑠𝑠; 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

The pseudocode after loop distribution and loop interchange 
is in shown Algorithm 2. Since the execution order of L1 and 
L2 is changed, the support vector matrix also needs to be 
transposed accordingly. The total execution latency in clock 
cycles can be expressed as follows: 

Latency = 𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀 + 𝑁𝑁𝑠𝑠 ∙ 𝑇𝑇𝑎𝑎                                (4.2) 
where 𝑇𝑇𝑎𝑎 is the propagation delay of the floating point adder in 
clock cycles. Since the loop-carried dependence is removed by 
loop optimizations, the operations including memory read, 
compute and memory write are fully pipelined with initiation 
interval of 1 clock cycle. Thus, no additional memory access 
cost is involved in Equation (4.2). Only the total number of loop 
iterations contributes to the latency of the nested loop. For loop 
L3, the pipeline initiation interval is limited by the loop-carried 
dependence of the accumulator, so the latency 𝑁𝑁𝑠𝑠 ∙ 𝑇𝑇𝑎𝑎 depends 
on both the number of loop iterations and the propagation delay 
of the accumulator in cycles. Compared with the original 
implementation in Algorithm 1, our proposed loop optimization 
method in Algorithm 2 has achieved a speedup of 7.75× at the 
same DSP utilization rate, demonstrating a great improvement 
of the pipeline efficiency. 

Parallelization is another advantage after eliminating loop-
carried dependence by loop distribution and interchange. In 
Algorithm 2 we know that 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗]  and 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗 + 1]  are 
calculated independently, thus we can unroll the loop L2 
directly to increase the parallelism without changing the code 
structure. After unrolling, massive parallelized MAC units can 
be mapped to DSP slices on FPGA easily. Meanwhile, same 
level of parallelism can also be applied to L3 with a cascaded 
MAC structure to accelerate the accumulation. Assume we 
unroll L2 and L3 with a factor of f simultaneously as indicated 
in Algorithm 2, the total latency can be calculated as follows: 
         Latency = 𝑁𝑁𝑠𝑠∙𝑀𝑀

𝑓𝑓�
Partial sum

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝑁𝑁𝑠𝑠
𝑓𝑓

+ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓)���������������
Final sum

          (4.3) 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) ≈ �
𝑇𝑇𝑎𝑎 �log2

𝑁𝑁𝑆𝑆
𝑓𝑓
� ,                                    𝑓𝑓 > 𝑁𝑁𝑆𝑆

2𝑓𝑓

𝑇𝑇𝑎𝑎 �log2
𝑁𝑁𝑆𝑆
𝑓𝑓
� + 2 � 𝑁𝑁𝑠𝑠

2𝑓𝑓2
� − 2, 1 < 𝑓𝑓 < 𝑁𝑁𝑆𝑆

2𝑓𝑓

   

where 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) is the latency of the adder tree inside L3 after 
unrolling. 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓)  has different expressions with small and 
large unroll factors, but in both cases it has little effect on total 
latency, therefore it can be dropped safely in later analysis. The 
corresponding hardware structure for calculating the partial 
sum and final sum are shown in Fig. 7 and Fig. 8.  According 
to Fig. 7, the latency of partial sum after unrolling is inversely 
proportional to the unroll factor f, since the parallel MAC array 
processes the multiply-accumulate operations concurrently. In 

Fig. 8, the latency of the final sum after unrolling consists of 
three terms, i.e., latency of the cascaded MAC array, latency of 
feeding each partial sum to the MAC array and latency of the 
optimized adder tree, which are equal to 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 , 𝑁𝑁𝑠𝑠/𝑓𝑓 and 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓), respectively. The hardware structures will be further 
discussed in detail in next part. Note that the latency for 𝑓𝑓 = 1 
is calculated separately as Equation (4.2). To study the effect of 
parallelization, we apply different unroll factors to loop L2 and 
L3 in Algorithm 2. The target platform is Xilinx ZCU104 and 
the working frequency is set to 200 MHz. All the input signals 
and intermediate values use single-precision floating point data 
type. The execution latency and speedup factor are collected 
from Vivado HLS synthesis report, shown in Fig. 6(a). We can 
see that the latency for one regression decreases fast as the 
unroll factor increases, and the speedup almost scales linearly 
when the unroll factors are relatively small (≤ 36). But if we 
further increase the unroll factor, the linear scaling does not 
hold and the acceleration effect is weakened. When the unroll 
factor increases to 142, the real speedup is about 92×. This can 
be explained by the following equation:   

  Latency ≈ �

𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

,                        for small 𝑓𝑓
𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝑁𝑁𝑠𝑠
𝑓𝑓

, for large 𝑓𝑓
              (4.4) 

For small unroll factor, the latency for final sum calculation 
in Equation (4.3) is negligible compared with partial sum, 
therefore the latency is approximately inversely proportional to 
f.  For large unroll factor, the latency of the adder chain within 
L3 is comparable to that of the partial sum, so the linear scaling 
does not hold anymore. The hardware consumption is shown in 
Fig. 6(b), we can see the DSP consumption scales linearly with 
the unroll factor, while the block-RAM (BRAM) consumption 
doesn’t change much because the support vectors dominate 
most of the BRAM usage. The look-up table (LUT) and flip-
flop (FF) consumptions are also proportional to the unroll 
factor. The results prove that area-performance trade-off can be 
easily achieved with the proposed optimization method. 

 
Fig. 6. (a) Speedup and latency versus unroll factor, (b) hardware utilization 
rate on ZCU104 versus unroll factor.

 

 
Fig. 7. Hardware structure for calculating the partial sum. The memory for support vector matrix and partial sum is partitioned to f individual blocks, respectively. 
Meanwhile, f parallel MAC units keep updating the values of the partial sum iteratively. 
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Fig. 8. Hardware structure for calculating the final sum. The coefficients for SVs are also partitioned to f blocks as partial sum to accommodate the parallel access 
of the cascaded MAC array. The output of the adder chain is written to the intermediate auxiliary vector and accumulated through an optimized adder tree to 
generate the final sum.    

C. Batch Processing Method 
From the experimental results in Fig. 6(a), we know that the 

latency can be greatly reduced with the proposed two-step 
optimization method and loop unroll, thus a notable speedup 
can be achieved. However, the linear scaling relationship is not 
valid for large unroll factors. If we want to achieve high 
parallelism with a large unroll factor, the latency of 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 of the 
long adder chain becomes prominent, since it is proportional to 
the unroll factor f. Under this circumstance, very deep pipeline 
stages of the adder chain in L3 will cause the MAC units under-
utilized.  

Batch processing method is common for GPU based 
acceleration, especially when used in the training of deep neural 
networks (DNN) [25]. It can take advantage of the available on-
chip memory to store multiple inputs and process them 
simultaneously in the pipeline. The hardware utilization 
efficiency can be significantly improved since the arithmetic 
units are no longer waiting for new inputs in idle state. In [26], 
the authors further extended this idea to FPGA based deep 
neural network (DNN) accelerator, and achieved an order of 
magnitude improvement compared to existing methods.  

To further improve the hardware utilization efficiency of L3 
with large unroll factor, for the first time, we propose a batch 
processing method for SVR to process a batch of input vectors 
at a time. With batch processing, the nested loop L1 and L2 in 
Algorithm 2 become a three-level nested loop L1, L2 and L3, 
while the original L3 loop turns into a nested loop L4 and L5. 
The pseudocode for batch processing is shown in Algorithm 3. 
Note that no change to the existing computation structure is 
required for batch processing, more on-chip memory for storing 
batch of intermediate signals is the additional overhead. The 
total latency of Algorithm 3 with a large unroll factor 𝑓𝑓 can be 
calculated as follows: 

Total latency ≈ 𝐵𝐵∙𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓���

Partial sum

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝐵𝐵∙𝑁𝑁𝑠𝑠
𝑓𝑓�������

Final sum

  (4.5) 

where B is the batch size. If we divide the total latency by B, 
the average latency of the adder chain inside L3 is now shared 
by B inputs:  

Average Latency ≈ 𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

+ 𝑓𝑓∙𝑇𝑇𝑎𝑎
𝐵𝐵

+ 𝑁𝑁𝑠𝑠
𝑓𝑓

          (4.6) 

When B increases, the average latency of the adder chain will 
decrease and finally we can have the approximate average 
latency as follows when B is large enough: 

                    Average Latency ≈ 𝑁𝑁𝑠𝑠(𝑀𝑀+1)
𝑓𝑓

                        (4.7) 
In Equation (4.7), we can see the latency is only dependent on 
the unroll factor f, which exhibits an inversely proportional 
relationship and the linear scaling of speedup holds. 
 
Algorithm 3: Optimized linear SVR with loop distribution, loop interchange 
and batch processing 
Input: multiple feature vectors 𝑥𝑥[𝐵𝐵][𝑀𝑀] 
Require: support vectors 𝑆𝑆𝑆𝑆[𝑀𝑀][𝑁𝑁𝑠𝑠],  support vector corresponding 
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias 
Output: classification results 𝑓𝑓(𝑥𝑥[𝐵𝐵]) 
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ← 0, f_sum[𝐵𝐵] ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
L1: for k=0 to B−1 do 
      L2: for i=0 to 𝑀𝑀− 1 do 
            L3: for j=0 to 𝑁𝑁𝑠𝑠 − 1 do                  ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 
                square[k]←  𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗  𝑥𝑥[𝑘𝑘][𝑖𝑖]; 
                𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑗𝑗] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑗𝑗] + square[k]; 
            end for 
      end for 
end for 
L4: for k=0 to B−1 do 
      L5: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do                        ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 
            𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘][𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑖𝑖]; 
            f_sum[k]←f_sum[k]+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘][𝑖𝑖]; 
      end for 
end for 
𝑓𝑓(𝑥𝑥[𝐵𝐵]) ← f_𝑠𝑠𝑠𝑠𝑠𝑠[𝐵𝐵]; 
 

The hardware structure for calculating the three-level nested 
loop L1-L2-L3 in Algorithm 3 is shown in Fig. 9. Compared 
with Fig. 7, a larger memory is required to store the batch of 
input feature vectors and partial sum matrix, while the parallel 
MAC array remains the same. To enable multiple access to the 
support vector matrix, array partition is performed to increase 
the memory bandwidth and the partition factor is equal to the 
unroll factor f. Moreover, the partitioned partial sum matrix is 
mapped to the dual port RAM to enable simultaneous read and 
write operations. In every clock cycle, f support vectors and one 
element from input vectors are read to the parallel MAC array, 
the accumulation results are written to the dual port RAM 
concurrently. It takes totally 𝐵𝐵 ∙ 𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀/𝑓𝑓  cycles to finish 
updating the partial sum matrix. After this, the partial sum 
matrix will be used to calculate the final sum. 
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Fig. 9. Hardware structure for calculating the partial sum matrix with batch processing. The memory for support vector matrix and partial sum matrix are partitioned 
to f individual blocks, respectively. Meanwhile, f parallel MAC units keep updating the values of the partial sum iteratively. 

 
Fig. 10. Hardware structure for calculating the final outputs with batch processing. The coefficients for SVs are also partitioned to f blocks as partial sum matrix to 
accommodate the parallel access of the cascaded MAC array. The output of the adder chain is written to the intermediate auxiliary matrix and accumulated through 
an optimized adder tree to generate the final output values.    

The hardware structure of nested loop L4-L5 is presented in 
Fig. 10, which increases the memory consumption for 
intermediate auxiliary matrix on the basis of Fig. 8. Different 
from the parallel MAC array in Fig. 9, the massive MAC units 
are reconstructed to a cascaded MAC array. In every clock 
cycle, f elements from partial sum matrix and coefficients 
vector are fetched to the MAC array, while only one output is 
generated to the intermediate auxiliary matrix at a time. The 
long adder chain inside the MAC array is heavily pipelined to 
ensure the initiation interval of 1 clock cycle. It takes 𝐵𝐵 ∙ 𝑁𝑁𝑠𝑠/𝑓𝑓 
cycles to feed all the inputs to the MAC array, however, the 
latency of the adder chain is not negligible since it is directly 
proportional to the unroll factor f. After the intermediate 
auxiliary matrix is completely updated, an optimized adder tree 
will generate the final outputs in serial, the time consumption 
𝐵𝐵 ∙ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) of this adder tree is trivial since 𝑁𝑁𝑆𝑆/𝑓𝑓 is normally 
very small for large unroll factors. 

To verify the effectiveness of the proposed batch processing 
method, we apply different batch sizes on Algorithm 3. The 
unroll factor of 284 is chosen to maximize the use of the 
available DSP resources on ZCU104. The latency and speedup 
versus batch size is depicted in Fig. 11(a). We can see that the 
latency decreases rapidly along with the increase of batch size, 
and finally converges to about 900 clock cycles. Meanwhile, 
the speedup increases along with the batch size, and the 
maximum speedup achieved is 275× with batch size of 40. The 
hardware utilization is shown in Fig. 11(b). We can see that the 
DSP, BRAM and FF usage does not change much when the 
batch size increases. Only the LUT consumption slightly 
increases since the storage requirement for intermediate values 

like partial sum matrix and intermediate auxiliary matrix is 
proportional to batch size. The overall hardware utilization for 
large batch size does not impose heavy burden to the resources, 
which proves our proposed batch processing method is also area 
efficient for hardware implementation. 

 
Fig. 11. (a) Speedup and latency versus batch size, (b) hardware utilization 
rate on ZCU104 versus batch size. 

D. Implementation Results on ZC706 and ZCU104 
Next, we implement linear SVR decision function on two 

different FPGA platforms based on the proposed optimization 
methods. Two FPGA boards are Xilinx ZC706 and ZCU104 as 
shown in Fig. 12, the corresponding chips are Xilinx Zynq 
XC7Z045 and Zynq UltraScale+ ZU7EV, respectively. The 
post-implementation resource utilization is shown in Table II. 
It can be observed that the resources are used adequately for 
both platforms, while DSP and BRAM resources are the main 
constraints since they determine the maximum parallelism 
degree. The performances of two FPGA boards are shown in 
Table III, which also includes a software implementation based 
on widely used LIBSVM running on a windows desktop with 
i7-5960x [27] CPU and 32 GB RAM. From Table III, we can 
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see that the software implementation with LIBSVM needs 
19.41 seconds for the post-processing of 96,100 BGSs from 
38.44-km FUT when it works at 3GHz, taking up 18~87.8% of 
total measurement time. On the contrast, our implementation 
with ZC706 can complete the post-processing in 1.98 seconds, 
while the power consumption of the FPGA development board 
is only 14.43W when it works at 100MHz, taking up 2.2~42.3% 
of measurement time. Furthermore, the implementation with 
ZCU104 completes the post-processing in 0.46 seconds when it 
works at 200MHz, taking up 0.52~14.5% of measurement time. 
The power consumption is 26.5W. The working frequency 
difference between ZC706 and ZCU104 is due to the different 
manufacturing technology by the two FPGAs, and advanced 
technology can enable higher working frequency. The 
equivalent performance of the three platforms are 
2.48GFLOPS, 24.3GFLOPS and 104GFLOPS, respectively. 
Since ZCU104 provides 1.92× DSP resources over ZC706, the 
unroll factor for ZCU104 can double compared with ZC706. 
The results prove that the hardware accelerators can achieve 
real-time post-processing for the BOTDA data, which are 9.8× 
and 42× faster than the software implementation. Meanwhile, 
we also evaluate the energy efficiency as Equation (4.8), where  
energy = power × running time.  The two FPGA 
implementations achieve 95.1× and 226.1× energy efficiency 
compared with i7-5960x, which could save plenty of energy in 
all-day monitoring environments. 
Energy efficiency

=
Energy consumed by the target accelerator

Energy consumed by CPU 
 

(4.8) 
 

 
Fig. 12. FPGA boards of (a) Xilinx ZC706, (b) ZCU104. 
 

TABLE II POST-IMPLEMENTATION RESOURCE UTILIZATION OF 
ZC706 AND ZCU104 

 
Xilinx ZC706 Xilinx ZCU104 

Used Available Utilization 
rate (%) Used Available Utilization 

rate (%) 
BRAM 290.5 545 53.30 286 312 91.67 

DSP 710 900 78.89 1421 1728 82.23 
LUT 111415 218600 50.97 149623 230400 64.94 
FF 73213 437200 16.75 199529 460800 43.30 

 

 
TABLE III PERFORMANCE COMPARISON BETWEEN SOFTWARE 

IMPLEMENTATION AND TWO FPGA PLATFORMS      
Platform Intel i7-5960x Xilinx ZC706 Xilinx ZCU104 

Technology 22nm 28nm 16nm 
Frequency 3.0 GHz 100 MHz 200 MHz 

Power 140 W 14.43 W 26.50 W 
Running time(sec) 19.41 1.98 0.46 

𝑇𝑇𝑝𝑝𝑝𝑝 𝑇𝑇⁄  (%) 18~87.8% 2.2~42.3% 0.52~14.5% 
Performance 
(GFLOPS) 2.48 24.3 104 

Energy efficiency 1x 95.1x 221.6x 
 

We also compare the performances of our FPGA accelerator 
with a recent work [11]. In [11], the authors adopt a cross 
correlation-based method to extract the BFS information. Since 
the computation complexity of cross correlation is proportional 
to the square of frequency number of the input BGS, the authors 
simplify the original algorithm through a moving average filter 
to narrow the search region at the cost of reduced estimation 
accuracy. The time consumption of processing 96100 BGSs in 
[11] is 0.33s, corresponding to 14.7 GOPS equivalent 
performance. Although our accelerator costs 0.13s longer than 
[11], considering the absolute performance of our accelerator is 
104 GFLOPS which is about 7× higher than [11], the increased 
time consumption is trivial and will not pose any burden in real 
applications. Besides, the floating point data type in our design 
can provide much higher precision and dynamic range than 
fixed point in [11], and the quantization process is also 
eliminated. Moreover, our method does not involve any pre-
processing like interpolation and moving average as in [11] to 
reduce the computation complexity, hence the overall workflow 
is more concise. In summary, the performance of our BOTDA 
fiber sensor accelerator is competitive regarding both the time 
consumption and the absolute performance. 

Besides, we list our accelerator and several recent FPGA 
based support vector machine implementations in Table IV.  
Although our SVR model is 10.4× and 12.2× larger than [28] 
and [29], the average time consumption for a single 
classification or regression of our accelerator is only 9% and 
62% of [28] and [29]. [30] has similar model size with us since 
it contains 5 independent classes, but its average time 
consumption for a single classification is 52.2× longer than 
ours.  

TABLE IV COMPARISON WITH OTHER FPGA BASED SUPPORT 
VECTOR MACHINE IMPLEMENTATIONS 

 EMBC’13 [29] TCI’15 [30] JSPS’17 [28] Proposed 

Device model Xilinx 
XC4VSX35 

Xilinx 
XC5VLX110T 

Xilinx 
XC7Z020 

Xilinx 
XCZU7EV 

Task Microarray 
classification 

Image 
classification 

Arrhythmia 
detection 

Temperature 
extraction 

Number of 
support vectors 20 100 1274 1136 

Feature 
dimension 1024 500 18 220 

Frequency 
(MHz) 137.7 50 25 200 

Time 
consumption 

(sec) 
7.64 × 10−6 2.5 × 10−4 5.12 × 10−5 4.79 × 10−6 

 

E. Theoretical Analysis and Discussions 
In Part B and C, we have systematically optimized the 

original linear SVR decision function for hardware 
implementation. Loop distribution and loop interchange enable 
efficient pipeline strategy to be used for partial sum calculation, 
loop unroll further greatly reduces the latency through 
parallelizing the MAC operations. Furthermore, the batch 
processing method makes the latency of the long adder chain 
shared by multiple inputs, which makes the linear scaling of 
speedup holds approximately. These optimization techniques 
make the SVR decision function very suitable to be mapped to 
FPGA, which are also reflected in the hardware structures in 
Fig. 9 and Fig. 10. If we further analyze Algorithm 3, we find 
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that we have actually transformed the partial sum matrix 
calculation and final sum vector calculation to matrix-matrix 
multiplication and matrix-vector multiplication as follows: 

 

 (4.9) 

(4.10) 
 

For matrix-matrix multiplication in Equation (4.9), we tile 
the support vector matrix into small blocks and the input vectors 
multiply each block in serial. The partial sum matrix is also tiled 
accordingly. For the matrix-vector multiplication in Equation 
(4.10), the coefficients vector for support vectors also needs to 
be partitioned to maintain same level of parallelism. As a result, 
the two operations are both heavily parallelized, which could 
take the advantage of massive DSP resources and dual port 
RAMs on FPGA. To be more specific, the parallel MAC array 
for matrix-matrix multiplication and cascaded MAC array for 
matrix-vector multiplication are based on same amount of DSP 
resources, making our implementation achieve very high 
hardware utilization efficiency since almost no DSP resources 
are idle during the computation. 

V. CONCLUSION 
In this paper, a new temperature prediction method for 

BOTDA fiber sensor systems based on SVR is proposed. We 
experimentally verify that SVR can achieve comparable 
performances as SVC, XC, LCF and ANN under different 
SNRs. From the hardware perspective, SVR is more hardware 
friendly than other four methods without modifications and 
complicated pre-processing. To accelerate the processing speed 
of SVR, linear SVR decision function is optimized 
systematically. The loop-carried dependence in loop iterations 
is eliminated by loop distribution and loop interchange. 
Therefore, the pipeline efficiency of the nested loop is greatly 
improved. We also propose a batch processing method to 
further decrease the latency. Using the proposed optimization 
methods, linear SVR decision function is implemented on two 
FPGA boards Xilinx ZC706 and ZCU104 to process 96,100 
BGSs from 38.44-km FUT acquired from a BOTDA system. 
Our hardware accelerator can achieve up to 42× speedup 

compared with the software implementation with i7-5960x 
CPU. The post-processing time for 96,100 BGSs along 38.44-
km FUT is only 0.46 seconds with ZCU104, which makes our 
implementation capable of real-time prediction. Meanwhile, the 
power consumption of FPGA is also much lower than a high-
end CPU, making the energy efficiency of our FPGA 
implementation up to 226.1× higher than the software 
implementation based on LIBSVM. 
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