
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—Brillouin optical time domain analyzer (BOTDA)
fiber sensors have shown strong capability in static long haul
distributed temperature/strain sensing. However, in applications
such as structural health monitoring and leakage detection, real-
time measurement is quite necessary. The measurement time of
temperature/strain in a BOTDA system includes data acquisition
time and post-processing time. In this work, we propose to use
hardware accelerated support vector regression (SVR) for the
post-processing of the collected BOTDA data. Ideal Lorentzian
curves under different temperatures with different linewidths are
used to train the SVR model to determine the linear SVR decision
function. The performances of SVR is evaluated under different
signal-to-noise ratios (SNRs) experimentally. After the model
coefficients are determined, algorithm-specific hardware
accelerators based on field programmable gate arrays (FPGAs)
are used to realize SVR decision function. During the
implementation, hardware optimization techniques based on loop
dependence analysis and batch processing are proposed to reduce
the execution latency. Our FPGA implementations can achieve up
to 42× speedup compared with software implementation on an i7-
5960x computer. The post-processing time for 96,100 BGSs along
38.44-km FUT is only 0.46 seconds with FPGA board ZCU104,
making the post-processing time no longer a limiting factor for
dynamic sensing. Moreover, the energy efficiency of our FPGA
implementation can reach up to 226.1× higher than software
implementation based on CPU.

Index Terms—Distributed optical fiber sensing, Brillouin
optical time domain analyzer (BOTDA), digital signal processing,
support vector machine (SVM), field programmable gate arrays
(FPGA), hardware implementation.

I. INTRODUCTION

ISTRIBUTED optical fiber sensors allow many points to be
measured simultaneously, and it is compatible to

ubiquitously deployed underground fiber system for
telecommunication purpose, therefore, they attract interest from
both industry and academic [1-4]. Distributed optical fiber
sensors mainly depends on scattering effects in optical fiber,
Brillouin optical time domain analyzer (BOTDA) based on
stimulated Brillouin scattering (SBS) was invented in 1990 [5],

it can measure strain as well as temperature. BOTDA sensors
rely on stimulated Brillouin scattering (SBS) of two counter-
propagating light waves, a continuous-wave (CW) signal and a
pulsed pump. The frequency offset between the pump and
probe is scanned around the Brillouin frequency shift (BFS) of
the fiber to reconstruct the Brillouin gain spectrum (BGS).
Since the change of BFS has a linear relationship with the
change of temperature and strain on the fiber, an important
operation in a BOTDA system is to find the BFS from the
measured BGS to determine temperature or strain information
along the fiber under test (FUT). In an ideal BGS, BFS is the
shift in peak gain frequency. However, acquired BGSs are
always contaminated by noises. Therefore, post-processing
algorithms are needed to accurately determine BFS from the
measured BGSs. The conventional wisdom to predict the BFS
information from the BGS is Levenberg-Marquardt algorithm
(LMA) curve fitting [6,7]. However, its complexity is often a
limiting factor in the sensing speed of a BOTDA system
especially for long sensing distance.

In recent years, the performances of BOTDA are improved
significantly due to the rapid developments of the technology.
The sensing distance of BOTDA can achieve hundreds of
kilometers [8], and the spatial resolution can be reduced to
millimeter level [9]. Longer sensing distance brings larger
amount of sensing data and finer resolution requires higher
sampling rate and smaller frequency scanning step which result
in denser sensing points. The sensing data volume keeps
increasing, which adds the computational load for post-
processing. In real scenario, to extract temperature/strain
information from the measured BGSs with low latency is quite
necessary. Several works have mentioned the challenges of
post-processing in real applications. In [10], a non-curve fitting
technique called cross-correlation method (XCM) was
proposed based on calculation of cross-correlation between an
ideal Lorentzian curve and the measured BGS to determine BFS.
In [11], a modified version of XCM is implemented on FPGA
to speed up the processing time at the cost of sensing accuracy.
Artificial neural network (ANN) is proposed for BOTDA
system to improve the sensing accuracy and processing speed
[12]. However, the training of ANN is difficult due to numerous
hyperparameters. Recently, we reported a machine learning
method called support vector classification (SVC) to extract
temperature information from measured BGSs with simple
training strategy and fast processing speed [13-15].

By far, most post-processing methods are implemented on
X86-based computers like windows desktop and Linux servers.

BOTDA Fiber Sensor System Based on FPGA
Accelerated Support Vector Regression

Huan Wu†, Hongda Wang†, Chester Shu, Senior Member, IEEE, Chiu-Sing Choy, Senior Member,
IEEE, and Chao Lu, Fellow, OSA
† These authors contribute equally to this work

D

 This work was supported by National Natural Science Foundation of
China (NSFC) under Grants 61435006, CUHK Group Research Scheme,
CUHK Direct Grant 4055090, Research Grants Council of Hong Kong
(RGC) project: RGC GRF CUHK 14204918 and PolyU 152658/16.

Huan Wu and Chao Lu are with Department of Electronic and
Information Engineering, The Hong Kong Polytechnic University,
Kowloon, Hong Kong. (email: hkpolyu.wu@poly.edu.hk;
chao.lu@polyu.edu.hk)

Hongda Wang, Chiu-Sing Choy and Chester Shu are with the
Department of Electronic Engineering, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong. (email: 1155039965@link.cuhk.edu.hk;
cschoy@ee.cuhk.edu.hk; ctshu@cuhk.edu.hk)

This is the Pre-Published Version.

The following publication H. Wu, H. Wang, C. Shu, C. -S. Choy and C. Lu, "BOTDA Fiber Sensor System Based on FPGA Accelerated Support Vector Regression,"
in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 3826-3837, June 2020 is available at https://doi.org/10.1109/TIM.2019.2936775.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

mailto:hkpolyu.wu@poly.edu.hk
mailto:1155039965@link.cuhk.edu.hk
mailto:cschoy@ee.cuhk.edu.hk

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

These methods normally rely on separate stages including
experimental data measurement, data storage, data transmission
and data post-processing. Due to the discontinuous workflow,
real time post-processing is challenging because additional cost
by data storage and transmission cannot be ignored, not to
mention the running time of the computation-intensive
algorithms. Thus, it is challenging to realize real-time
surveillance and monitoring based on software solutions. For
the applications which need extreme low latency, hardware
solutions are alternatives and can alleviate the difficulties
mentioned above [16]. Among the current hardware platforms,
FPGA and ASIC are two representatives which can provide
sufficient computation capability, moreover, FPGA and ASIC
are more compact which means they can be easily integrated
into a portable BOTDA system. Compared with ASIC, FPGA
has the advantages of reconfigurability and fast deployment
time especially with the help of high level synthesis [17]. The
computation capability of FPGA can outperform CPU by one
order of magnitude through massively parallelizing the
algorithm in an efficient manner [18]. However, not all the
algorithms can be easily implemented on FPGA because of the
inadaptability to fixed hardware structures. LMA curve fitting
is an iterative optimization method based on the error gradient
estimation, which requires matrix inversion during error
correction. From the hardware perspective, the iterative process
and matrix inversion are expensive to realize. For cross
correlation, the total multiply-accumulation (MAC) operations
required is proportional to the square of frequency number in
the BGS, thus pose a huge computation burden, therefore, in
[11], moving average and referential triangular pulse are
adopted to reduce the computational complexity at the expense
of BFS accuracy. The ANN proposed in [12] is also not very
suitable for efficient hardware implementation since the
sigmoid nonlinear activation function in each neuron can only
be approximated with a big look-up table or low-order
polynomial expansion. As for SVC [13-15], n-class SVC is
built upon n(n-1)/2 binary classifiers and each classifier has
unique number of support vectors, the irregular computation
pattern doesn’t fit a fixed hardware structure. What's more, n is
normally larger than 100 which generates more than 5000
independent binary classifiers, causing heavy storage
requirements and computation loads. Considering the
convenience and efficiency of algorithm to hardware migration,
we propose a novel method called support vector regression
(SVR) in our recent conference paper [19]. In this work, an in-
depth comparison with other methods regarding the algorithm
performances is included. Moreover, multiple optimization
strategies with high level synthesis are proposed and proved
experimentally. The main contributions of this work are as
follows:
1) A temperature prediction method based on SVR is proposed.
The experimental results prove that SVR can achieve
comparable performance with existing BFS extraction methods
like SVC, cross correlation, LMA Lorentzian curve fitting and
ANN.
2) Hardware implementations of SVR decision function are
realized on two FPGA boards. Optimizations to linear SVR

decision function through loop analysis and batch processing
are proposed to take advantages of high flexibility and
scalability of modern FPGA devices. These optimization
methods transform the decision function into matrix-matrix
multiplication and matrix-vector multiplication and parallelize
these operations by tiling the large matrix into smaller ones.
3) Post-processing time for 96,100 BGSs along 38.44-km FUT
can be completed in 0.46 seconds with Xilinx ZCU104 using
the proposed hardware optimization techniques. It achieves 42×
speedup compared with the software implementation running
on an i7-5960x computer. Meanwhile, the 26.5W power
consumption of ZCU104 is also much lower than the
conventional CPU, making the energy efficiency of our FPGA
implementation 221.6× higher than software implementation
based on LIBSVM [20].

The paper is organized as follows. Section II describes the
principle of SVR and its training process for temperature
extraction in a BOTDA system. Section III introduces the
experimental setup of BOTDA and evaluates the performance
of SVR under different SNRs experimentally. FPGA
optimizations and implementations of linear SVR decision
function are given in Section IV. Section V concludes this work.

II. PRINCIPLE OF SVR AND TRAINING PROCESS FOR
TEMPERATURE EXTRACTION IN A BOTDA SYSTEM

Suppose we have training data {(𝒙𝒙1,𝑦𝑦1), … , (𝒙𝒙𝑙𝑙 , 𝑦𝑦𝑙𝑙)}, where
𝒙𝒙𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 is training sample and 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅 is label. In linear case,
we construct a linear decision function to fit the training data:

 𝑓𝑓(𝒙𝒙) = ⟨𝒘𝒘,𝒙𝒙⟩ + 𝑏𝑏 (2.1)
where ⟨⋅, ⋅⟩ denotes the dot product, 𝒘𝒘 is the norm vector of the
linear function and 𝑏𝑏 is intercept. Traditional linear least-square
error regression derives a decision function by minimizing the
deviation between predicted value 𝑓𝑓(𝒙𝒙𝑖𝑖) and given value 𝑦𝑦𝑖𝑖 for
all training data. Unlike linear least-square error fitting, SVR
allows a tolerance degree to errors not greater than 𝜀𝜀 as shown
in Fig. 1(a). Only the data points outside the shaded region
contribute to the error and the deviations are penalized in a
linear fashion as shown in Fig. 1(b). The goal of SVR is to find
a function that fits current training data with a deviation no
larger than 𝜀𝜀, and at the same time as flat as possible. One way
to ensure this is to minimize the norm, i.e., ‖𝒘𝒘‖2 = ⟨𝒘𝒘,𝒘𝒘⟩. We
can write this problem as a convex optimization problem as
follows:

minimize: 1
2
‖𝒘𝒘‖2

subject to �𝑦𝑦𝑖𝑖 −
⟨𝒘𝒘, 𝑥𝑥⟩ − 𝑏𝑏 ≤ 𝜀𝜀

⟨𝒘𝒘, 𝑥𝑥⟩ + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 (2.2)

The above convex optimization problem is feasible in cases
where 𝑓𝑓(𝒙𝒙) actually exists and all pairs (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) are within 𝜀𝜀
precision. However, in most cases, not all (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) are within 𝜀𝜀
precision, then we can introduce slack variables ξ𝑖𝑖, 𝜉𝜉𝑖𝑖∗ to deal
with this problem. Hence, we get the following formulation:

 minimize: 1
2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑙𝑙

𝑖𝑖=1

 subject to �𝑦𝑦𝑖𝑖 −
⟨𝒘𝒘,𝒙𝒙⟩ − 𝑏𝑏 ≤ 𝜀𝜀 + ξ𝑖𝑖

⟨𝒘𝒘,𝒙𝒙⟩ + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗
 (2.3)

where ξ𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0, the constant 𝐶𝐶 > 0 determines the trade-off
between the flatness of 𝑓𝑓(𝑥𝑥) and the amount up to which
deviations larger than 𝜀𝜀 are tolerated. Equation (2.3) is known

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

as the primal problem of SVR algorithm and it can be
transformed to dual problem and solved by quadratic
programming [21]. The solution is as follows:
 𝐰𝐰 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝒙𝒙𝑖𝑖)𝑙𝑙

𝑖𝑖=1 (2.4)
 𝑓𝑓(𝒙𝒙) = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)⟨𝒙𝒙𝑖𝑖 ,𝒙𝒙⟩𝑙𝑙

𝑖𝑖=1 + 𝑏𝑏 (2.5)
where 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖∗ are the dual variables, ⟨𝒙𝒙𝑖𝑖 ,𝒙𝒙⟩ represents the
inner product between training sample 𝒙𝒙𝑖𝑖 and test sample 𝒙𝒙.
From Equation (2.5), we can see that once the model parameters
are identified, SVR only depends on 𝒙𝒙𝑖𝑖 with corresponding
(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) which are non-zero, these 𝒙𝒙𝑖𝑖 are called support
vectors and they are subsets of training data.

Fig. 1. (a) one-dimensional linear SVR for illustration, (b) linear loss function.

In our case, to process measured BGSs collected from a

BOTDA system, a high dimensional linear SVR is used,
normalized gain value at every frequency on the BGS forms
feature vector 𝒙𝒙𝑖𝑖, and corresponding temperature of the BGS is
label 𝑦𝑦𝑖𝑖 . The use of SVR includes two phases, the training phase
and testing phase as shown in Fig. 2. During the training phase,
the simulated ideal BGSs together with the corresponding
temperature labels serving as the training samples are used to
get linear decision function for temperature prediction. We
design the simulated ideal BGSs by using ideal Lorentzian
curve as the gain profile for the training of SVR:

 g(ν) = 𝑔𝑔𝐵𝐵

1+�(𝜈𝜈−𝜈𝜈𝐵𝐵)
Δ𝜈𝜈𝐵𝐵 2⁄ �

2 (2.6)

where 𝑔𝑔𝐵𝐵, 𝜈𝜈𝐵𝐵 and Δ𝜈𝜈𝐵𝐵 are the peak gain, BFS and bandwidth
of the BGS. Peak gain is set as 1, BFSs of the ideal BGSs from
a temperature range of 0℃ to 70℃ with 0.5℃ step are
determined using the temperature coefficient (0.975MHz/℃) of
the fiber under test (FUT). It should be mentioned that the
temperature range is determined by the application, in our case,
the room temperature is around 20℃ and part of the fiber is
heated to 50℃, therefore, we set the temperature range in [0,70].
The bandwidth of the BGS is determined by the pulse width /
spatial resolution, to accommodate pulse width from minimum
10ns to infinity (continuous wave), we set the bandwidth of the
ideal BGSs from 30MHz to 100MHz at a step of 2MHz. Finally,
we have 141 × 36 ideal BGSs to train the SVR. The frequency
range of ν is from 10.78GHz to 11.0GHz with 1MHz step,
therefore, we have 220 frequencies. After training, we get 1,136
support vectors in the SVR model. In the testing phase, the fixed
model predicts a continuous temperature value for each
normalized measured BGS collected from a BOTDA system.

Fig. 2. Training and testing phase of SVR.

III. BOTDA SETUP AND EXPERIMENTAL RESULTS

A. BOTDA Experimental Setup
The experimental setup of the BOTDA system is shown in

Fig. 3. The output of a tunable laser source is set around
1550nm and is split into two branches using a coupler. The CW
light in the upper branch is modulated by a Mach-Zehnder
modulator (MZM) driven by a pulse pattern generator (PPG) to
generate optical pump pulses. The bias controller after MZM is
to stabilize the applied voltage. The pump is then amplified by
an erbium-doped fiber amplifier (EDFA) and passes through a
polarization scrambler (PS) to eliminate polarization dependent
noise. In the lower branch, another high extinction ratio MZM
is driven by a radio frequency (RF) generator. The bias
controller is biased at Null point to generate a carrier suppressed
double-sideband probe signal. An optical attenuator (ATT) is
used to control the probe power followed by an isolator to block
the signal from the pump branch. The probe signal is detected
by a photodetector (PD) after the lower-frequency probe
sideband is selected by using a fiber Bragg grating (FBG) filter.
Local BGSs are reconstructed with RF scanned around the BFS
of FUT.

Fig. 3. BOTDA experimental setup. TLS: tunable laser source, PC: polarization
controller, PPG: pulse pattern generator, RF: radio frequency, PS: polarization
scrambler, MZM: Mach-Zehnder modulator, ATT: attenuator, FUT: fiber under
test, FBG: fiber-Bragg grating, PD: photodetector.

Ensemble average is commonly used to increase SNR since

signal is at least partially reproducible while noise is random
from one measurement to the next. Conventional BOTDA
systems widely adopt the ensemble average at the cost of longer
data acquisition time. Even though it greatly improves the
signal quality, it limits the BOTDA systems for dynamic
sensing. Both experimental and algorithmic methods have been
proposed to reduce the number of ensemble average [22,23].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig. 4. (a) 38.44-km FUT with last 400m heated to 50℃. (b) Measured BGS distribution along FUT. (c) zoom-in view of the last heated section. Temperature
distribution along FUT determined by (d) SVR, (e) SVC, (f) XC, (g) LCF and (h) ANN.

TABLE I PERFORMANCES OF SVR, SVC, XC, LCF AND ANN UNDER DIFFERENT SNRS
SNR
(dB)

MT
(s)

SVR SVC XC LCF ANN
STD RMSE MAE STD RMSE MAE STD RMSE MAE STD RMSE MAE STD RMSE MAE

4.5 2.7 2.087 2.343 1.89 1.852 1.861 1.479 2.021 2.339 1.852 1.964 1.985 1.605 2.12 2.133 1.701
6 5.4 1.578 1.584 1.264 1.556 1.562 1.241 1.655 1.783 1.432 1.563 1.61 1.276 1.783 1.789 1.439
8 17 1.262 1.295 1.037 1.127 1.161 0.919 1.225 1.29 0.996 1.122 1.159 0.928 1.321 1.357 1.078

10 33.8 0.785 0.803 0.634 0.73 0.86 0.661 0.783 0.878 0.694 0.732 0.864 0.701 0.858 0.917 0.74
12 88 0.582 0.588 0.469 0.537 0.749 0.596 0.619 0.645 0.472 0.527 0.639 0.514 0.568 0.717 0.583

Another limit for BOTDA dynamic sensing is post-
processing of collected BOTDA data. Total temperature/strain
sensing time of the BOTDA system can be expressed as
follows:
 𝑇𝑇 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑝𝑝𝑝𝑝 = �𝑇𝑇𝑐𝑐 ∙ 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑠𝑠�𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑝𝑝 (3.1)
where 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 is the data acquisition time and 𝑇𝑇𝑝𝑝𝑝𝑝 is post-
processing time, 𝑇𝑇𝑐𝑐 = 2𝑛𝑛𝑛𝑛/𝑐𝑐 is time of flight, 𝐿𝐿 is the length of
FUT, 𝑛𝑛 is the refractive index of the fiber and 𝑐𝑐 is light speed
in vacuum. 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 is the number of ensemble average, 𝑇𝑇𝑠𝑠 is the
frequency switching time of RF which is around hundreds of
milliseconds and 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the number of scanned frequencies.

B. Experimental Results
To evaluate the performance of SVR, we use the BOTDA

setup in Fig. 3 to measure the BGS distribution along 38.44-km
FUT. The last 400-m section of FUT is free from strain and put
in a temperature oven heated to 50℃ as shown in Fig. 4(a). The
sampling rate is 250MSample/s, corresponding to 96,100
sampling points for 38.44-km FUT. Fig. 4(b) shows the BGSs
distribution measured with 20ns pump pulse, 1024 times
averaging, and the sweeping frequency is from 10.78GHz to
11.0GHz with 1MHz frequency step. Fig. 4(c) is the zoom-in
view of the last heated section.

Next, the measured BGSs are processed by SVR. For
comparison, we also process the BGSs by SVC, cross
correlation (XC), LMA Lorentzian curve fitting (LCF), and
ANN, respectively, as shown in Fig. 4(d)-(h). The insets in Fig.
4 (d)-(h) depict the zoom-in view at the heated section. We can
see that the temperature information along FUT have been
successfully extracted by these algorithms. Then we investigate
the performances of these algorithms under different SNRs, the
pump pulse is fixed at 20ns and frequency scanning step at
1MHz. SNR is defined as the ratio between the mean amplitude

of Brillouin peak and its standard deviation. We collect the
BGSs from 4.5dB to 12dB by using 32 to 1024 times of
averaging. According to Equation (3.1), theoretical
measurement time varies from 2.7 seconds to 88 seconds when
averaging number increases from 32 to 1024. The performances
of these algorithms are evaluated by three merits, standard
deviation (STD), root mean square error (RMSE) and mean
absolute error (MAE). The performances of the five algorithms
under different SNRs are shown in Table I, we can see that
lower STD, RMSE and MAE can be achieved with higher SNR
for all these methods at the cost of longer measurement time
(MT). However, there is not a single method exhibiting
overwhelming performances over others for all SNRs. For
example, when SNR is 8dB, LCF achieves lowest uncertainty,
however, at 4.5dB, SVC shows lowest uncertainty. Another
phenomenon is that STD, RMSE and MAE may not be
consistent. For instance, at 12dB, LCF has lowest uncertainty
while SVR has lowest RMSE and MAE, it is because true
temperature is involved in calculating RMSE and MAE.
However, the true temperature is not strictly 50℃ at any fiber
location in the oven at any time, the uniformity of the oven we
use is about 0.5℃, which may introduce systematic error in this
process. Considering the systematic error and random error in
data acquisition, the performances of the five algorithms are
comparable. Overall, to enhance the performances of BOTDA
fiber sensors, the key is to improve the signal quality since the
improvement margin by different BFS extraction methods are
quite limited.

Even though various methods can be used to extract BFS
information, as analyzed previously, the adaptability of these
algorithms to hardware structures are different. SVR predicts
the result by regular matrix-vector multiplication and inner-
product as shown in Equation (2.5), which is very suitable to be
parallelized and pipelined from the hardware perspective. With

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

a dedicated FPGA accelerator, the processing speed of linear
SVR can be significantly improved.

IV. FPGA OPTIMIZATIONS AND IMPLEMENTATIONS OF SVR
In this section, a hardware architecture for the linear SVR

decision function is presented. In the following subsections,
part A introduces the direct implementation of linear SVR
decision function and discusses its drawbacks. In part B,
optimizations to the direct implementation by loop analysis are
proposed to reduce the latency. In part C, batch processing
method is proposed to further speed up the running time. In part
D, 96,100 measured BGSs from 38.44-km FUT are processed
by two FPGA boards, experimental results and comparison with
software implementation and other works are described. In part
E, we give an in-depth theoretical analysis and discussion for
FPGA acceleration with the proposed optimization techniques.

A. Direct Implementation of Linear SVR Decision Function
If we simplify (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) in decision function Equation (2.5)

as 𝛽𝛽𝑖𝑖 and expand the inner product to a sum-of-product term,
then we can have the reformulated decision function as follows:
 𝑓𝑓(𝒙𝒙) = ∑ 𝛽𝛽𝑖𝑖 ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗𝑀𝑀

𝑗𝑗=1
𝑁𝑁𝑠𝑠
𝑖𝑖=1 + 𝑏𝑏 (4.1)

where 𝑆𝑆𝑆𝑆 represents support vectors obtained from the training
process, 𝑁𝑁𝑠𝑠 is the number of support vectors and is 1136 as
given in Section II, 𝑀𝑀 is the dimension of input feature vector
and is equal to 220. The data path of Equation (4.1) can be
illustrated in Fig. 5 and the corresponding pseudocode is shown
in Algorithm 1. In Fig. 5, multiply-accumulate (MAC) 1
corresponds to the inner summation of Equation (4.1) and is
denoted as partial sum, while MAC 2 corresponds to the outer
summation and is denoted as final sum. The total MAC
operations in MAC 1 and MAC 2 are (𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀 + 𝑁𝑁𝑠𝑠)𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 ,
where 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 is the number of BGSs. To process 96,100
measured BGSs from 38.44-km FUT, about 2.4 × 1010
multiplications and 2.4 × 1010 summations are needed,
resulting in a heavy computation burden for real-time
processing.

Fig. 5. Data path of linear SVR, note that the bias term b in equation 4.1 is
omitted since it is used to initialize the register in MAC 2.

Algorithm 1: Original linear SVR without optimization
Input: feature vector 𝑥𝑥[𝑀𝑀]
Require: support vectors 𝑆𝑆𝑆𝑆[𝑁𝑁𝑠𝑠][𝑀𝑀], support vector corresponding
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias
Output: regression result 𝑓𝑓(𝑥𝑥)
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ← 0, f_sum ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
L1: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do

 L2: for j=0 to 𝑀𝑀 − 1 do
 square ← 𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗ 𝑥𝑥[𝑗𝑗];
 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] +square;
 end for
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖];
 f_sum ← f_sum+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖];
end for
𝑓𝑓(𝑥𝑥) ← f_𝑠𝑠𝑠𝑠𝑠𝑠;

In hardware design, parallel and pipeline are two common
techniques to improve the performance. However, the loop-
carried dependence in the inner loop L2 in Algorithm 1 causes
long pipeline initiation interval and inefficient hardware
utilization efficiency. Moreover, due to the existed dependence,
parallelism of this direct implementation cannot be achieved
without restructuring the code, thus the total latency is heavily
restricted. To accelerate the decision function and enable real-
time processing, optimizations must be performed to overcome
the limitations.

B. Loop Dependence Analysis and Optimizations
To remove the loop-carried dependence and parallelize the

partial sum computation, firstly, we need to perform loop
dependence analysis [24]. In Algorithm 1, the statements inside
L2 exhibit inter-dependence with respect to the iterator j, but
show no inter-dependence on iterator i. Thus, we seek to change
the execution order of L1 and L2 to remove the inter-
dependence. However, the nested loop is imperfect (perfect
nested loops mean the statements only exist inside the
innermost loop), we need to take a two-step optimization.
 Loop distribution: We find that the statements inside L2

do not depend on the statements between L1 and L2, this
means we can safely break loop L1 and distribute the
statements between L1 and L2 outside. After loop
distribution, a new loop L3 is formed which is only
responsible for the accumulation of final sum, while L1 and
L2 become a perfect nested loop and calculates the partial
sum.

 Loop interchange: In the perfect nested loop L1- L2, loop-
carried dependence prevents efficient pipeline strategy to be
applied because of the long execution latency of the
accumulator. The pipeline initiation interval is restricted by
the propagation delay of the adder, which is normally larger
than one clock cycle for floating point numbers. When
working in higher frequency, the propagation delay could
further consume more clock cycles, resulting in longer
pipeline initiation interval. In Algorithm 1, no inter-
dependence is observed between the statements inside L2
and the iterator i, therefore, we can interchange L1 and L2
to remove the dependence and make the nested loop
executed consecutively in each clock cycle. After loop
interchange, the partial sum is read and write
simultaneously with no conflict on the access addresses,
which indicates that the partial sum should be mapped to the
dual port RAM on FPGA.

Algorithm 2: Optimized linear SVR with loop distribution and interchange

Input: feature vector 𝑥𝑥[𝑀𝑀]
Require: support vectors 𝑆𝑆𝑆𝑆[𝑀𝑀][𝑁𝑁𝑠𝑠], support vector corresponding
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias
Output: regression result 𝑓𝑓(𝑥𝑥)
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ← 0, f_sum← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
L1: for i=0 to 𝑀𝑀− 1 do
 L2: for j=0 to 𝑁𝑁𝑠𝑠 − 1 do ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
 square← 𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗ 𝑥𝑥[𝑖𝑖];
 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗] + square;
 end for
end for
L3: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖];
 f_sum ← f_sum+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖];
end for
𝑓𝑓(𝑥𝑥) ← f_𝑠𝑠𝑠𝑠𝑠𝑠;

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

The pseudocode after loop distribution and loop interchange
is in shown Algorithm 2. Since the execution order of L1 and
L2 is changed, the support vector matrix also needs to be
transposed accordingly. The total execution latency in clock
cycles can be expressed as follows:

Latency = 𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀 + 𝑁𝑁𝑠𝑠 ∙ 𝑇𝑇𝑎𝑎 (4.2)
where 𝑇𝑇𝑎𝑎 is the propagation delay of the floating point adder in
clock cycles. Since the loop-carried dependence is removed by
loop optimizations, the operations including memory read,
compute and memory write are fully pipelined with initiation
interval of 1 clock cycle. Thus, no additional memory access
cost is involved in Equation (4.2). Only the total number of loop
iterations contributes to the latency of the nested loop. For loop
L3, the pipeline initiation interval is limited by the loop-carried
dependence of the accumulator, so the latency 𝑁𝑁𝑠𝑠 ∙ 𝑇𝑇𝑎𝑎 depends
on both the number of loop iterations and the propagation delay
of the accumulator in cycles. Compared with the original
implementation in Algorithm 1, our proposed loop optimization
method in Algorithm 2 has achieved a speedup of 7.75× at the
same DSP utilization rate, demonstrating a great improvement
of the pipeline efficiency.

Parallelization is another advantage after eliminating loop-
carried dependence by loop distribution and interchange. In
Algorithm 2 we know that 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗] and 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑗𝑗 + 1] are
calculated independently, thus we can unroll the loop L2
directly to increase the parallelism without changing the code
structure. After unrolling, massive parallelized MAC units can
be mapped to DSP slices on FPGA easily. Meanwhile, same
level of parallelism can also be applied to L3 with a cascaded
MAC structure to accelerate the accumulation. Assume we
unroll L2 and L3 with a factor of f simultaneously as indicated
in Algorithm 2, the total latency can be calculated as follows:
 Latency = 𝑁𝑁𝑠𝑠∙𝑀𝑀

𝑓𝑓�
Partial sum

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝑁𝑁𝑠𝑠
𝑓𝑓

+ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓)���������������
Final sum

 (4.3)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) ≈ �
𝑇𝑇𝑎𝑎 �log2

𝑁𝑁𝑆𝑆
𝑓𝑓
� , 𝑓𝑓 > 𝑁𝑁𝑆𝑆

2𝑓𝑓

𝑇𝑇𝑎𝑎 �log2
𝑁𝑁𝑆𝑆
𝑓𝑓
� + 2 � 𝑁𝑁𝑠𝑠

2𝑓𝑓2
� − 2, 1 < 𝑓𝑓 < 𝑁𝑁𝑆𝑆

2𝑓𝑓

where 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) is the latency of the adder tree inside L3 after
unrolling. 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) has different expressions with small and
large unroll factors, but in both cases it has little effect on total
latency, therefore it can be dropped safely in later analysis. The
corresponding hardware structure for calculating the partial
sum and final sum are shown in Fig. 7 and Fig. 8. According
to Fig. 7, the latency of partial sum after unrolling is inversely
proportional to the unroll factor f, since the parallel MAC array
processes the multiply-accumulate operations concurrently. In

Fig. 8, the latency of the final sum after unrolling consists of
three terms, i.e., latency of the cascaded MAC array, latency of
feeding each partial sum to the MAC array and latency of the
optimized adder tree, which are equal to 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 , 𝑁𝑁𝑠𝑠/𝑓𝑓 and
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓), respectively. The hardware structures will be further
discussed in detail in next part. Note that the latency for 𝑓𝑓 = 1
is calculated separately as Equation (4.2). To study the effect of
parallelization, we apply different unroll factors to loop L2 and
L3 in Algorithm 2. The target platform is Xilinx ZCU104 and
the working frequency is set to 200 MHz. All the input signals
and intermediate values use single-precision floating point data
type. The execution latency and speedup factor are collected
from Vivado HLS synthesis report, shown in Fig. 6(a). We can
see that the latency for one regression decreases fast as the
unroll factor increases, and the speedup almost scales linearly
when the unroll factors are relatively small (≤ 36). But if we
further increase the unroll factor, the linear scaling does not
hold and the acceleration effect is weakened. When the unroll
factor increases to 142, the real speedup is about 92×. This can
be explained by the following equation:

 Latency ≈ �

𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

, for small 𝑓𝑓
𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝑁𝑁𝑠𝑠
𝑓𝑓

, for large 𝑓𝑓
 (4.4)

For small unroll factor, the latency for final sum calculation
in Equation (4.3) is negligible compared with partial sum,
therefore the latency is approximately inversely proportional to
f. For large unroll factor, the latency of the adder chain within
L3 is comparable to that of the partial sum, so the linear scaling
does not hold anymore. The hardware consumption is shown in
Fig. 6(b), we can see the DSP consumption scales linearly with
the unroll factor, while the block-RAM (BRAM) consumption
doesn’t change much because the support vectors dominate
most of the BRAM usage. The look-up table (LUT) and flip-
flop (FF) consumptions are also proportional to the unroll
factor. The results prove that area-performance trade-off can be
easily achieved with the proposed optimization method.

Fig. 6. (a) Speedup and latency versus unroll factor, (b) hardware utilization
rate on ZCU104 versus unroll factor.

Fig. 7. Hardware structure for calculating the partial sum. The memory for support vector matrix and partial sum is partitioned to f individual blocks, respectively.
Meanwhile, f parallel MAC units keep updating the values of the partial sum iteratively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 8. Hardware structure for calculating the final sum. The coefficients for SVs are also partitioned to f blocks as partial sum to accommodate the parallel access
of the cascaded MAC array. The output of the adder chain is written to the intermediate auxiliary vector and accumulated through an optimized adder tree to
generate the final sum.

C. Batch Processing Method
From the experimental results in Fig. 6(a), we know that the

latency can be greatly reduced with the proposed two-step
optimization method and loop unroll, thus a notable speedup
can be achieved. However, the linear scaling relationship is not
valid for large unroll factors. If we want to achieve high
parallelism with a large unroll factor, the latency of 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 of the
long adder chain becomes prominent, since it is proportional to
the unroll factor f. Under this circumstance, very deep pipeline
stages of the adder chain in L3 will cause the MAC units under-
utilized.

Batch processing method is common for GPU based
acceleration, especially when used in the training of deep neural
networks (DNN) [25]. It can take advantage of the available on-
chip memory to store multiple inputs and process them
simultaneously in the pipeline. The hardware utilization
efficiency can be significantly improved since the arithmetic
units are no longer waiting for new inputs in idle state. In [26],
the authors further extended this idea to FPGA based deep
neural network (DNN) accelerator, and achieved an order of
magnitude improvement compared to existing methods.

To further improve the hardware utilization efficiency of L3
with large unroll factor, for the first time, we propose a batch
processing method for SVR to process a batch of input vectors
at a time. With batch processing, the nested loop L1 and L2 in
Algorithm 2 become a three-level nested loop L1, L2 and L3,
while the original L3 loop turns into a nested loop L4 and L5.
The pseudocode for batch processing is shown in Algorithm 3.
Note that no change to the existing computation structure is
required for batch processing, more on-chip memory for storing
batch of intermediate signals is the additional overhead. The
total latency of Algorithm 3 with a large unroll factor 𝑓𝑓 can be
calculated as follows:

Total latency ≈ 𝐵𝐵∙𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓���

Partial sum

+ 𝑓𝑓 ∙ 𝑇𝑇𝑎𝑎 + 𝐵𝐵∙𝑁𝑁𝑠𝑠
𝑓𝑓�������

Final sum

 (4.5)

where B is the batch size. If we divide the total latency by B,
the average latency of the adder chain inside L3 is now shared
by B inputs:

Average Latency ≈ 𝑁𝑁𝑠𝑠∙𝑀𝑀
𝑓𝑓

+ 𝑓𝑓∙𝑇𝑇𝑎𝑎
𝐵𝐵

+ 𝑁𝑁𝑠𝑠
𝑓𝑓

 (4.6)

When B increases, the average latency of the adder chain will
decrease and finally we can have the approximate average
latency as follows when B is large enough:

 Average Latency ≈ 𝑁𝑁𝑠𝑠(𝑀𝑀+1)
𝑓𝑓

 (4.7)
In Equation (4.7), we can see the latency is only dependent on
the unroll factor f, which exhibits an inversely proportional
relationship and the linear scaling of speedup holds.

Algorithm 3: Optimized linear SVR with loop distribution, loop interchange
and batch processing
Input: multiple feature vectors 𝑥𝑥[𝐵𝐵][𝑀𝑀]
Require: support vectors 𝑆𝑆𝑆𝑆[𝑀𝑀][𝑁𝑁𝑠𝑠], support vector corresponding
multipliers 𝛽𝛽[𝑁𝑁𝑠𝑠], bias
Output: classification results 𝑓𝑓(𝑥𝑥[𝐵𝐵])
Initialize: 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑁𝑁𝑠𝑠] ← 0, f_sum[𝐵𝐵] ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
L1: for k=0 to B−1 do
 L2: for i=0 to 𝑀𝑀− 1 do
 L3: for j=0 to 𝑁𝑁𝑠𝑠 − 1 do ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
 square[k]← 𝑆𝑆𝑆𝑆[𝑖𝑖][𝑗𝑗] ∗ 𝑥𝑥[𝑘𝑘][𝑖𝑖];
 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑗𝑗] ← 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑗𝑗] + square[k];
 end for
 end for
end for
L4: for k=0 to B−1 do
 L5: for i=0 to 𝑁𝑁𝑠𝑠 − 1 do ⊲ 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘][𝑖𝑖] ← 𝛽𝛽[𝑖𝑖] ∗ 𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠[𝑘𝑘][𝑖𝑖];
 f_sum[k]←f_sum[k]+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘][𝑖𝑖];
 end for
end for
𝑓𝑓(𝑥𝑥[𝐵𝐵]) ← f_𝑠𝑠𝑠𝑠𝑠𝑠[𝐵𝐵];

The hardware structure for calculating the three-level nested
loop L1-L2-L3 in Algorithm 3 is shown in Fig. 9. Compared
with Fig. 7, a larger memory is required to store the batch of
input feature vectors and partial sum matrix, while the parallel
MAC array remains the same. To enable multiple access to the
support vector matrix, array partition is performed to increase
the memory bandwidth and the partition factor is equal to the
unroll factor f. Moreover, the partitioned partial sum matrix is
mapped to the dual port RAM to enable simultaneous read and
write operations. In every clock cycle, f support vectors and one
element from input vectors are read to the parallel MAC array,
the accumulation results are written to the dual port RAM
concurrently. It takes totally 𝐵𝐵 ∙ 𝑁𝑁𝑠𝑠 ∙ 𝑀𝑀/𝑓𝑓 cycles to finish
updating the partial sum matrix. After this, the partial sum
matrix will be used to calculate the final sum.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 9. Hardware structure for calculating the partial sum matrix with batch processing. The memory for support vector matrix and partial sum matrix are partitioned
to f individual blocks, respectively. Meanwhile, f parallel MAC units keep updating the values of the partial sum iteratively.

Fig. 10. Hardware structure for calculating the final outputs with batch processing. The coefficients for SVs are also partitioned to f blocks as partial sum matrix to
accommodate the parallel access of the cascaded MAC array. The output of the adder chain is written to the intermediate auxiliary matrix and accumulated through
an optimized adder tree to generate the final output values.

The hardware structure of nested loop L4-L5 is presented in
Fig. 10, which increases the memory consumption for
intermediate auxiliary matrix on the basis of Fig. 8. Different
from the parallel MAC array in Fig. 9, the massive MAC units
are reconstructed to a cascaded MAC array. In every clock
cycle, f elements from partial sum matrix and coefficients
vector are fetched to the MAC array, while only one output is
generated to the intermediate auxiliary matrix at a time. The
long adder chain inside the MAC array is heavily pipelined to
ensure the initiation interval of 1 clock cycle. It takes 𝐵𝐵 ∙ 𝑁𝑁𝑠𝑠/𝑓𝑓
cycles to feed all the inputs to the MAC array, however, the
latency of the adder chain is not negligible since it is directly
proportional to the unroll factor f. After the intermediate
auxiliary matrix is completely updated, an optimized adder tree
will generate the final outputs in serial, the time consumption
𝐵𝐵 ∙ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓) of this adder tree is trivial since 𝑁𝑁𝑆𝑆/𝑓𝑓 is normally
very small for large unroll factors.

To verify the effectiveness of the proposed batch processing
method, we apply different batch sizes on Algorithm 3. The
unroll factor of 284 is chosen to maximize the use of the
available DSP resources on ZCU104. The latency and speedup
versus batch size is depicted in Fig. 11(a). We can see that the
latency decreases rapidly along with the increase of batch size,
and finally converges to about 900 clock cycles. Meanwhile,
the speedup increases along with the batch size, and the
maximum speedup achieved is 275× with batch size of 40. The
hardware utilization is shown in Fig. 11(b). We can see that the
DSP, BRAM and FF usage does not change much when the
batch size increases. Only the LUT consumption slightly
increases since the storage requirement for intermediate values

like partial sum matrix and intermediate auxiliary matrix is
proportional to batch size. The overall hardware utilization for
large batch size does not impose heavy burden to the resources,
which proves our proposed batch processing method is also area
efficient for hardware implementation.

Fig. 11. (a) Speedup and latency versus batch size, (b) hardware utilization
rate on ZCU104 versus batch size.

D. Implementation Results on ZC706 and ZCU104
Next, we implement linear SVR decision function on two

different FPGA platforms based on the proposed optimization
methods. Two FPGA boards are Xilinx ZC706 and ZCU104 as
shown in Fig. 12, the corresponding chips are Xilinx Zynq
XC7Z045 and Zynq UltraScale+ ZU7EV, respectively. The
post-implementation resource utilization is shown in Table II.
It can be observed that the resources are used adequately for
both platforms, while DSP and BRAM resources are the main
constraints since they determine the maximum parallelism
degree. The performances of two FPGA boards are shown in
Table III, which also includes a software implementation based
on widely used LIBSVM running on a windows desktop with
i7-5960x [27] CPU and 32 GB RAM. From Table III, we can

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

see that the software implementation with LIBSVM needs
19.41 seconds for the post-processing of 96,100 BGSs from
38.44-km FUT when it works at 3GHz, taking up 18~87.8% of
total measurement time. On the contrast, our implementation
with ZC706 can complete the post-processing in 1.98 seconds,
while the power consumption of the FPGA development board
is only 14.43W when it works at 100MHz, taking up 2.2~42.3%
of measurement time. Furthermore, the implementation with
ZCU104 completes the post-processing in 0.46 seconds when it
works at 200MHz, taking up 0.52~14.5% of measurement time.
The power consumption is 26.5W. The working frequency
difference between ZC706 and ZCU104 is due to the different
manufacturing technology by the two FPGAs, and advanced
technology can enable higher working frequency. The
equivalent performance of the three platforms are
2.48GFLOPS, 24.3GFLOPS and 104GFLOPS, respectively.
Since ZCU104 provides 1.92× DSP resources over ZC706, the
unroll factor for ZCU104 can double compared with ZC706.
The results prove that the hardware accelerators can achieve
real-time post-processing for the BOTDA data, which are 9.8×
and 42× faster than the software implementation. Meanwhile,
we also evaluate the energy efficiency as Equation (4.8), where
energy = power × running time. The two FPGA
implementations achieve 95.1× and 226.1× energy efficiency
compared with i7-5960x, which could save plenty of energy in
all-day monitoring environments.
Energy efficiency

=
Energy consumed by the target accelerator

Energy consumed by CPU

(4.8)

Fig. 12. FPGA boards of (a) Xilinx ZC706, (b) ZCU104.

TABLE II POST-IMPLEMENTATION RESOURCE UTILIZATION OF
ZC706 AND ZCU104

Xilinx ZC706 Xilinx ZCU104

Used Available Utilization
rate (%) Used Available Utilization

rate (%)
BRAM 290.5 545 53.30 286 312 91.67

DSP 710 900 78.89 1421 1728 82.23
LUT 111415 218600 50.97 149623 230400 64.94
FF 73213 437200 16.75 199529 460800 43.30

TABLE III PERFORMANCE COMPARISON BETWEEN SOFTWARE

IMPLEMENTATION AND TWO FPGA PLATFORMS
Platform Intel i7-5960x Xilinx ZC706 Xilinx ZCU104

Technology 22nm 28nm 16nm
Frequency 3.0 GHz 100 MHz 200 MHz

Power 140 W 14.43 W 26.50 W
Running time(sec) 19.41 1.98 0.46

𝑇𝑇𝑝𝑝𝑝𝑝 𝑇𝑇⁄ (%) 18~87.8% 2.2~42.3% 0.52~14.5%
Performance
(GFLOPS) 2.48 24.3 104

Energy efficiency 1x 95.1x 221.6x

We also compare the performances of our FPGA accelerator
with a recent work [11]. In [11], the authors adopt a cross
correlation-based method to extract the BFS information. Since
the computation complexity of cross correlation is proportional
to the square of frequency number of the input BGS, the authors
simplify the original algorithm through a moving average filter
to narrow the search region at the cost of reduced estimation
accuracy. The time consumption of processing 96100 BGSs in
[11] is 0.33s, corresponding to 14.7 GOPS equivalent
performance. Although our accelerator costs 0.13s longer than
[11], considering the absolute performance of our accelerator is
104 GFLOPS which is about 7× higher than [11], the increased
time consumption is trivial and will not pose any burden in real
applications. Besides, the floating point data type in our design
can provide much higher precision and dynamic range than
fixed point in [11], and the quantization process is also
eliminated. Moreover, our method does not involve any pre-
processing like interpolation and moving average as in [11] to
reduce the computation complexity, hence the overall workflow
is more concise. In summary, the performance of our BOTDA
fiber sensor accelerator is competitive regarding both the time
consumption and the absolute performance.

Besides, we list our accelerator and several recent FPGA
based support vector machine implementations in Table IV.
Although our SVR model is 10.4× and 12.2× larger than [28]
and [29], the average time consumption for a single
classification or regression of our accelerator is only 9% and
62% of [28] and [29]. [30] has similar model size with us since
it contains 5 independent classes, but its average time
consumption for a single classification is 52.2× longer than
ours.

TABLE IV COMPARISON WITH OTHER FPGA BASED SUPPORT
VECTOR MACHINE IMPLEMENTATIONS

 EMBC’13 [29] TCI’15 [30] JSPS’17 [28] Proposed

Device model Xilinx
XC4VSX35

Xilinx
XC5VLX110T

Xilinx
XC7Z020

Xilinx
XCZU7EV

Task Microarray
classification

Image
classification

Arrhythmia
detection

Temperature
extraction

Number of
support vectors 20 100 1274 1136

Feature
dimension 1024 500 18 220

Frequency
(MHz) 137.7 50 25 200

Time
consumption

(sec)
7.64 × 10−6 2.5 × 10−4 5.12 × 10−5 4.79 × 10−6

E. Theoretical Analysis and Discussions
In Part B and C, we have systematically optimized the

original linear SVR decision function for hardware
implementation. Loop distribution and loop interchange enable
efficient pipeline strategy to be used for partial sum calculation,
loop unroll further greatly reduces the latency through
parallelizing the MAC operations. Furthermore, the batch
processing method makes the latency of the long adder chain
shared by multiple inputs, which makes the linear scaling of
speedup holds approximately. These optimization techniques
make the SVR decision function very suitable to be mapped to
FPGA, which are also reflected in the hardware structures in
Fig. 9 and Fig. 10. If we further analyze Algorithm 3, we find

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

that we have actually transformed the partial sum matrix
calculation and final sum vector calculation to matrix-matrix
multiplication and matrix-vector multiplication as follows:

 (4.9)

(4.10)

For matrix-matrix multiplication in Equation (4.9), we tile
the support vector matrix into small blocks and the input vectors
multiply each block in serial. The partial sum matrix is also tiled
accordingly. For the matrix-vector multiplication in Equation
(4.10), the coefficients vector for support vectors also needs to
be partitioned to maintain same level of parallelism. As a result,
the two operations are both heavily parallelized, which could
take the advantage of massive DSP resources and dual port
RAMs on FPGA. To be more specific, the parallel MAC array
for matrix-matrix multiplication and cascaded MAC array for
matrix-vector multiplication are based on same amount of DSP
resources, making our implementation achieve very high
hardware utilization efficiency since almost no DSP resources
are idle during the computation.

V. CONCLUSION
In this paper, a new temperature prediction method for

BOTDA fiber sensor systems based on SVR is proposed. We
experimentally verify that SVR can achieve comparable
performances as SVC, XC, LCF and ANN under different
SNRs. From the hardware perspective, SVR is more hardware
friendly than other four methods without modifications and
complicated pre-processing. To accelerate the processing speed
of SVR, linear SVR decision function is optimized
systematically. The loop-carried dependence in loop iterations
is eliminated by loop distribution and loop interchange.
Therefore, the pipeline efficiency of the nested loop is greatly
improved. We also propose a batch processing method to
further decrease the latency. Using the proposed optimization
methods, linear SVR decision function is implemented on two
FPGA boards Xilinx ZC706 and ZCU104 to process 96,100
BGSs from 38.44-km FUT acquired from a BOTDA system.
Our hardware accelerator can achieve up to 42× speedup

compared with the software implementation with i7-5960x
CPU. The post-processing time for 96,100 BGSs along 38.44-
km FUT is only 0.46 seconds with ZCU104, which makes our
implementation capable of real-time prediction. Meanwhile, the
power consumption of FPGA is also much lower than a high-
end CPU, making the energy efficiency of our FPGA
implementation up to 226.1× higher than the software
implementation based on LIBSVM.

REFERENCES
[1] A. Barrias, J. R. Casas and S. Villalba, “A review of distributed optical

fiber sensors for civil engineering applications,” Sensors, vol. 16, no. 5,
pp. 748, 2016.

[2] E. Buchoud, V. Vrabie, J. Mars, G. D’Urso, A. Girard, S. Blairon and J.
Henault, “Quantification of submillimeter displacements by distributed
optical fiber sensor,” IEEE Trans. Instrum. Meas., vol. 65, no. 5, pp. 413-
422, 2016.

[3] M. J. Garcia, J. A. Ortega, J. A. Chavez, J. Salazar and A. Turo, “A novel
distributed fiber-optic strain sensor,” IEEE Trans. Instrum. Meas., vol. 51,
no. 4, pp. 685-690, 2002.

[4] C. Wang and K. Shida, “A low-cost double-fiber model distributed optical
fiber sensor,” IEEE Trans. Instrum., Meas., vol. 56, no. 4, pp. 1481-1481,
2007.

[5] T. Kurashima, T. Horiguchi and M. Tateda, “Distributed-temperature
sensing using stimulated Brillouin scattering in optical silica fibers,”
Opt. Lett., vol. 15, no. 18, pp. 1038-1040, 1990.

[6] C. Li and Y. Li, “Fitting of Brillouin spectrum based on LabVIEW,” Proc.
5th Int. Conf. Wireless Commun., Netw. Mobile Comput., pp. 1–4, 2009.

[7] C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt
algorithm in the Brillouin spectrum fitting,” Proc. of SPIE, vol. 7129, pp.
71291Y, 2008.

[8] M. Soto, S. Le Floch, L. Thevenaz, “Bipolar optical pulse coding for
performance enhancement in BOTDA sensors,” Opt. Exp., vol. 21, no. 14,
pp. 16390-16397, 2013.

[9] A. Denisov, M. A. Soto, L. Thevenaz, “Going beyond 1000000 resolved
points in a Brillouin distributed fiber sensors: theoretical analysis and
experiment demonstration”, Light Sci. Appl., vol. 5, no. 6, pp. e16074,
2016.

[10] M. A. Farahani, E. Castillo-Guerra and B. G. Colpitts, “Accurate
estimation of Brillouin frequency shift in Brillouin optical time domain
analysis sensors using cross correlation,” Opt. Lett., vol. 36, no. 21, pp.
4275-4277, 2011.

[11] M. Abbasnejad and B. Alizadeh, “FPGA-based implementation of a novel
method for estimating the Brillouin frequency shift in a BOTDA and
BOTDR sensors,” IEEE Sensors J., vol. 18, no. 5, pp. 2015-2022, 2018.

[12] A. K. Azad, L. Wang, N. Guo, H. Y. Tam and C. Lu, “Signal processing
using artificial neural network for BOTDA sensor system,” Opt. Exp, vol.
24, no. 6, pp. 6769-6782, 2016.

[13] H. Wu, L. Wang, N. Guo, C. Shu and C. Lu, “Brillouin optical time-
domain analyzer assisted by support vector machine for ultrafast
temperature extraction,” J. Lightw. Technol, vol. 35, no. 19, pp. 4159-
4167, 2017.

[14] H. Wu, L. Wang, N. Guo, C. Shu and C. Lu, “Support vector machine
assisted BOTDA utilizing combined Brillouin gain and phase information
for enhanced sensing accuracy,” Opt. Exp, vol. 25, no. 25, pp. 31210-
31220, 2017.

[15] H. Wu, L. Wang, Z, Zhao, C. Shu and C. Lu, “Support vector machine
based differential pulse-width pair Brillouin optical time domain analyzer,”
Photon. J., vol. 10, no. 4, pp. 1-11, 2018.

[16] G. Garcia, C. Jara, J. Pomares, A. Alabdo, L. Poggi and F. Torres, “A
survey on FPGA-based sensor systems: towards intelligent and
reconfigurable low-power sensors for computer vision, control and signal
processing,” Sensors, vol. 14, no. 4, pp. 6247-6278, 2014.

[17] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Computer-Aided Design Integr. Circuit Syst., vol. 30, no. 4,
pp. 473-491, 2011.

[18] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross and M. Chawathe,
"Accelerated image processing on FPGAs," IEEE Trans Image Process.,
vol. 12, no. 12, pp. 1543-1551, 2003.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[19] H. Wu, H. Wang, C. Shu, C. Choy and C. Lu, “Brillouin Optical Time
Domain Analyzer Fiber Sensor Based on FPGA Accelerated Support
Vector Regression,” Conf. on Opt. Fiber Commun. (OFC) 2019, paper
Th2A.18.

[20] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,”
ACM Trans. Intel. Sys. Tec., vol. 2, no. 3, pp. 27, 2011.

[21] L. Bottou and C. J. Lin, “Support vector machine solvers,” Large scale
kernel machines, vol. 3, no. 1, pp. 301-320, 2007.

[22] N. Guo, L. Wang, H. Wu, C. Jin, H. Tam and C. Lu, “Enhanced coherent
BOTDA system without trace averaging,” J. Lightw. Technol, vol. 36, no.
4, pp. 871-878, 2018.

[23] M. A. Soto, J. A. Ramírez and L. Thévenaz, “Intensifying the response of
distributed optical fibre sensors using 2D and 3D image restoration,” Nat.
Commun., vol. 7, pp. 10870, 2016.

[24] H. Wang, W. Shi and C. Choy, "Hardware design of real time epileptic
seizure detection based on STFT and SVM," IEEE Access., vol. 6, pp.
67277-67290, 2018.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” in Proc. ACM Int. Conf. Multi., 2014, pp. 675-–678.

[26] T. Posewsky and D. Ziener, "Efficient deep neural network acceleration
through FPGA-based batch processing," in International Conf. on
ReConFigurable Computing and FPGAs (ReConFig), Cancun, 2016, pp.
1-8.

[27] Intel® Core™ i7-5960X Processor Extreme Edition. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/82930/intel-core-
i7-5960x-processor-extreme-edition-20m-cache-up-to-3-50-ghz.html

[28] V. Tsoutsouras, K. Koliogeorgi, S. Xydis, and D. Soudris, “An
exploration framework for efcient high-level synthesis of support vector
machines: Case study on ECG arrhythmia detection for Xilinx Zynq
SoC,'' J. Signal Process. Syst., vol. 88, no. 2, pp. 127-147, 2017.

[29] H. M. Hussain, K. Benkrid and H. Seker, "Reconfiguration-based
implementation of SVM classifier on FPGA for Classifying Microarray
data," 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Osaka, 2013, pp.
3058-3061.

[30] M. Qasaimeh, A. Sagahyroon and T. Shanableh, "FPGA-Based Parallel
Hardware Architecture for Real-Time Image Classification," IEEE
Transactions on Computational Imaging, vol. 1, no. 1, pp. 56-70, March
2015.

https://ark.intel.com/content/www/us/en/ark/products/82930/intel-core-i7-5960x-processor-extreme-edition-20m-cache-up-to-3-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/82930/intel-core-i7-5960x-processor-extreme-edition-20m-cache-up-to-3-50-ghz.html

	I. INTRODUCTION
	II. Principle of SVR and Training Process for Temperature Extraction in a BOTDA System
	III. BOTDA Setup and Experimental Results
	A. BOTDA Experimental Setup
	B. Experimental Results

	IV. FPGA Optimizations and Implementations of SVR
	A. Direct Implementation of Linear SVR Decision Function
	B. Loop Dependence Analysis and Optimizations
	C. Batch Processing Method
	D. Implementation Results on ZC706 and ZCU104
	E. Theoretical Analysis and Discussions

	V. Conclusion
	References

