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Abstract—Video-based egocentric activity recognition involves
fine-grained spatio-temporal human-object interactions. State-of-
the-art methods, based on the two-branch-based architecture, re-
ly on pre-calculated optical flows to provide motion information.
However, this two-stage strategy is computationally intensive,
storage demanding, and not task-oriented, which hampers it
from being deployed in real-world applications. Albeit there have
been numerous attempts to explore other motion representations
to replace optical flows, most of the methods were designed
for third-person activities, without capturing fine-grained cues.
To tackle these issues, in this letter, we propose a progressive
motion representation distillation (PMRD) method, based on
two-branch networks, for egocentric activity recognition. We
exploit a generalized knowledge distillation framework to train
a hallucination network, which receives RGB frames as input
and produces motion cues guided by the optical-flow network.
Specifically, we propose a progressive metric loss, which aims
to distill local fine-grained motion patterns in terms of each
temporal progress level. To further enforce the proposed dis-
tillation framework to concentrate on those informative frames,
we integrate a temporal attention mechanism into the metric
loss. Moreover, a multi-stage training procedure is employed for
the efficient learning of the hallucination network. Experimental
results on three egocentric activity benchmarks demonstrate the
state-of-the-art performance of the proposed method.

Index Terms—Egocentric activity recognition, knowledge dis-
tillation, two-branch networks, motion representation.

I. INTRODUCTION

EGOCENTRIC activity recognition is an emerging re-
search topic in computer vision, owing to the popu-

larization of wearable sensors and its widespread real-world
applications [1] [2], such as robot navigation, smart homes,
augmented reality, etc. Compared with the current common
studies of third-person activity [3] [4], egocentric activity
usually contains more complex fine-grained human-object in-
teractions in both spatial and temporal dimension. The perfor-
mance of a recognition method largely depends on whether the
relevant fine-grained spatio-temporal patterns can be extracted
and utilized. However, it is a challenging task to capture such
information because of many factors, such as the invisibility
of the camera wearer and the frequent egocentric motions [5].

Most of the recent studies employ a two-branch-based deep-
learning architecture for egocentric activity recognition, which
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has achieved promising results [6] [7]. The spatial branch
extracts appearance cues from RGB frames for noun classifi-
cation, while the temporal stream is trained to capture motion
cues from stacked optical-flow images for verb classification.
Then, the two separate branches are combined by late fusion to
identify the activities. However, conventional optical-flow esti-
mation approaches are computationally expensive and storage
demanding, due to the hundreds of optimization iterations for
each frame [8]. In addition, this two-stage strategy that first
computes optical flow and then feeds it into Convolutional
Neural Networks (ConvNets) for predicting activity classes
is potentially sub-optimal. The underlying reason for this
is that the conventional optical-flow estimation is not task-
oriented [9]. These drawbacks may hamper the two-branch-
based methods to be deployed in real-world applications, due
to the limitations of processing time and memory capacity.

To address this problem, researchers have made various
attempts to seek other motion representations to substitute
optical flow. Zhang et al. [10] proposed to utilize motion
vectors, in stead of the precise optical flow. However, speed
improvement is achieved by sacrificing recognition accuracy.
Zhu et al. [9] presented a motionNet to estimate motion based
on unsupervised learning, and further cascaded it with a tem-
poral stream CNN to generate activity labels. Piergiovanni et
al. [8] proposed a differentiable CNN layer, which implements
the iteration procedure of the traditional TV-L1 optical flow
approach [11]. Nevertheless, most of these representations
are designed for third-person activities, thus may not be
applicable for modelling the fine-grained temporal patterns
in egocentric activities. Although Crasto et al. [12] trained
a 3D CNN that mimics the optical-flow branch to produce
motion cues by taking RGB frames as input, this method only
takes global features into consideration and inevitably loses
local temporal details. Moreover, exploring both spatial and
temporal information implicitly through only one stream is
insufficient for recognizing fine-grained egocentric activities.

Since RGB and optical flow describe activities from the
appearance and motion aspects, respectively, they can be
regarded as the information from two different modalities. To
achieve task-oriented fine-grained motion information extrac-
tion, while avoiding pre-computation of optical flow during the
inference time, in this letter, the task is converted as follows.
We exploit both RGB and optical-flow data to train the two-
branch networks in the training stage, and only utilize the
RGB frames in the testing phase. Then, we tackle this issue by
exploring the theory of the teacher-student learning model [13]
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Fig. 1. The overall architecture and training paradigm of the
proposed method.

and a generalized distillation framework [14]. Specifically,
we propose a two-branch-based distillation framework, which
learns to distill motion representations into a hallucination net-
work guided by an optical-flow network. This also implies that
the hallucination network is trained to produce motion cues by
receiving RGB frames as input. To distill local fine-grained
motion patterns regarding each temporal level, we propose
a metric loss based on a progressive manner. In addition, a
temporal attention strategy is introduced into the metric loss,
which aims to force the teacher-student model to pay more
attention to conducting motion distillation based on the more
informative frames. The proposed metric loss is combined with
a generalized distillation loss to distill knowledge from both
the local and global perspectives. Furthermore, a multi-stage
training paradigm is employed to train the hallucination net-
work. Finally, the RGB network and the hallucination network
account for providing appearance and motion representations,
respectively, for egocentric activity recognition. The overall
network architecture and training paradigm are illustrated in
Fig. 1.

The main contributions of this letter can be summarized in
three ways. First, we propose a two-branch-based distillation
framework, which learns a hallucination network to produce
fine-grained motion cues by taking RGB frames as input.
Second, a progress-wise metric loss is proposed by inte-
grating temporal attention mechanism, to distill local motion
representations considering different temporal levels. Third,
experimental results on three public egocentric activity bench-
marks highlight that the proposed method achieves promising
performance.

II. METHODOLOGY

A. Overall Network Architecture

As illustrated in Fig. 1, the overall network is designed
based on a two-branch architecture. Each branch is developed
by combining ResNets [15] with LSTM cells. To further
localize the informative spatio-temporal regions, an attention
mechanism based on class activation map (CAM) [16] is
introduced into each branch, as in [6]. In addition, we employ
multiplicative interactions [17] in the convolutional layers of
the ResNets between the two branches to facilitate information
sharing. The multiplicative connections are implemented by

injecting the optical-flow signal into the residual unit of
the RGB or hallucination branch. In terms of the form of
input data, we sample a series of RGB frames from a video
clip for both the RGB and hallucination branches. For the
optical-flow branch, we collect an optical-flow volume by
stacking multiple consecutive optical-flow images around the
current frame as the input. This strategy ensures the temporal
synchronism between the RGB and optical-flow modalities.
In other words, the optical-flow volume can provide relevant
short-term motion patterns for each sampled RGB frame. The
training paradigm can be divided in two parts: the first part
(Steps 1 and 2) aims to learn the teacher model by separate
training and joint fine-tuning, using RGB and optical-flow
data; the second part (Steps 3 and 4) concentrates on learning
the student model, i.e., the hallucination network, leveraging
the proposed loss function.

B. Progressive Motion Representation Distillation

The hallucination network takes RGB frames as input and
is trained to distill motion information from the optical-
flow network at multiple levels, including both local and
global perspectives. The schematic diagram of the proposed
progressive motion representation distillation framework is
illustrated in Fig. 2. Specifically, given a convolutional feature
tensor extracted by ResNet as xt, where t is the time index
(t = 1, 2, ..., T ). Then, the corresponding latent embeddings
calculated by the LSTM cells for hallucination and optical-
flow networks are denoted as Eh

t and Eo
t , respectively.

To capture local knowledge at each time step, we adopt
a Euclidean distance-based metric loss in a progress-wise
manner, which can be defined as follows:

LM =

∥∥∥∥∥ 1

T

T∑
t=1

αt

(
Eo

t −Eh
t

)∥∥∥∥∥
2

2

, (1)

where αt is a weight indicating the contribution of the metric
loss at different time steps. We generate αt by employing a
self-attention-based strategy [18]. The latent embeddings Eh

t

are first fed into a multilayer perceptron. Then we utilize a
non-linear operation, e.g., the sigmoid activation function,
to obtain the temporal importance weights αt regarding the
whole video clip. This temporal attention-based strategy aims
to assign higher weights to those frames that contribute
more to the activity classification. The proposed metric loss
explicitly considers temporal ordering. Therefore, minimizing
LM implies distilling motion representations at each temporal
progress level.

For a global distribution perspective, motivated by the
teacher-student learning model explored in multimodal tasks,
we utilize a generalized distillation loss [19] for the prediction
layer. The specific distillation loss is defined as follows:

LD = λg
(
y, η

(
fh

(
Eh

T

)))
+ (1− λ) g

(
s, η

(
fh

(
Eh

T

)))
, (2)

where η is a softmax function and g (·) indicates a cross-
entropy loss. fh (·) maps the latent embeddings of the last time
step Eh

T to the logits of the hallucination branch. The param-
eter λ ∈ [0, 1] balances the importance between hard labels y
and the soft labels s in the distillation loss. The soft labels s
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Fig. 2. Illustration of the proposed progressive motion repre-
sentation distillation framework.

of the optical-flow network are calculated by η (fo (E
o
T ) /δ),

where the temperature parameter δ is employed to smooth the
logits vector. fo (·) transforms the latent embeddings Eo

T to
the logits of the optical-flow network.

The distance-based metric loss and the generalized distilla-
tion loss account for distilling motion cues from the local and
global aspects, respectively. Based on the proposed progressive
strategy, the final loss function is formulated by combining
these two loss terms as follows:

L = γLM + (1− γ)LD, (3)

where the parameter γ ∈ [0, 1] is used to balance the weights
of the two losses in the training phase.

C. Multi-stage Training Procedure

To avoid excessive heuristic-based searching of hyper-
parameters, we employ a multi-stage learning procedure.

Step 1. The RGB and optical-flow networks are first trained
separately, as in the classical two-branch-based architecture.
The ResNet, used in the RGB branch, is initialized with
the weights pre-trained on ImageNet. We follow the cross-
modality initialization strategy [20] to initialize the optical-
flow branch. Both these branches are trained by minimizing
the cross-entropy loss.

Step 2. To facilitate knowledge sharing between different
modalities, we introduce cross-branch connections into the
architecture. Specifically, after initializing the RGB and the
optical-flow networks with the weights learned in Step 1, we
jointly train the whole model with multiplicative connections
between the ResNets of these two branches.

Step 3. The hallucination network is trained to distill motion
patterns from the teacher model, i.e., the optical-flow network.
The optical-flow network learned in Step 2 receives optical-
flow data, and is frozen to provide a stable target for the
hallucination network. We initialize the hallucination network
with the weights of the optical-flow network and feed RGB
frames into it. Then, it receives interactions from the optical-
flow signal and is trained by optimizing the proposed loss
function defined in Eq. (3).

Step 4. We initialize the RGB network with the weights
learned from Step 2. The hallucination network is initialized

with the weights learned from Step 3. Then, we jointly fine-
tune these two branches by only taking RGB frames as input.
The hallucination network acts as the optical-flow network to
provide motion representations for activity recognition.

III. EXPERIMENTS

A. Datasets

We evaluate the proposed method on three public egocentric
activity-recognition data sets, including GTEA 61, GTEA 71
and EGTEA Gaze+ [21]. Both GTEA 61 and GTEA 71
contain 457 samples performed by 4 subjects. GTEA 61 and
GTEA 71 consist of 61 and 71 activity classes, respectively.
EGTEA Gaze+ is one of the large-scale data sets, involving
10,325 samples and 106 activity classes. These activity in-
stances lie in a long-tailed distribution. For the GTEA 61 and
GTEA 71 data sets, we adopt the experimental settings of
leave-one-subject-out cross-validation as in [7]. We report the
averaged accuracy over three splits for the EGTEA Gaze+ data
set.

B. Implementation Details

We choose ResNet-34 as the backbone CNN to extract
spatial features for each branch. The standard convLSTM
block with 512 hidden units is adopted for temporal encoding.
We uniformly sample 20 RGB frames from each video clip
and feed them into the RGB and hallucination networks,
in both training and testing phases. For each sampled RGB
frame, we construct an optical-flow volume by stacking 3
consecutive optical-flow images, i.e., 6 channels. Then we
feed the generated 20 optical-flow volumes into the optical-
flow network. For the training of the hallucination network in
Step 3, we adopt the SGD optimization algorithm [22] with
an initial learning rate of 0.001 and a momentum of 0.9 for
750 epochs. The weight parameters λ and γ in Eq. (2) and Eq.
(3) are set as 0.6 and 0.5, respectively. The batch size is set to
be 32. We utilize random horizontal flipping and multi-scale
corner cropping techniques for data augmentation during the
training stage. In the inference phase, we use the center crop
of each frame for activity classification.

C. Ablation Study

To evaluate the effectiveness of the proposed motion distilla-
tion method, we conduct ablation experiments using different
loss terms and configurations on the GTEA 61 and EGTEA
Gaze+ data sets. We report the results after the learning of
each stage, as presented in Table I.

1) Effect of the loss function: To investigate the contribu-
tion of each part of the proposed loss function, we conduct
experiments using the distance-based metric loss (Eq. (1)),
generalized distillation loss (Eq. (2)), and the combination of
them (Eq. (3)). The detailed results are presented in rows
4-6 of Table I. We can find that the generalized distillation
loss improves the performance over the metric loss. Although
the proposed metric loss is time-aware and explores local
knowledge, it is still insufficient to force the hallucination
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TABLE I. Ablation recognition accuracies (%) on the GTEA 61 and EGTEA Gaze+ data sets.

Ablation configurations Input Modality Loss GTEA 61 EGTEA Gaze+
1 Step 1, optical-flow branch Optical flow Cross-entropy 46.23 37.12
2 Step 1, RGB branch RGB Cross-entropy 65.52 50.38
3 Step 2, two-branch RGB+ Optical flow Cross-entropy 79.86 61.72
4 Step 3, hallucination branch RGB Eq. (1) 46.46 37.56
5 Step 3, hallucination branch RGB Eq. (2) 47.14 38.18
6 Step 3, hallucination branch RGB Eq. (3) w/ temporal attention 47.45 38.75
7 Step 3, hallucination branch RGB Eq. (3) w/o temporal attention 47.18 38.23
8 Step 4, two-branch RGB Cross-entropy 79.78 61.55

TABLE II. Comparison results on three egocentric activity data
sets.

Methods GTEA 61 GTEA 71 EGTEA Gaze+

DEA [21] 64.00 62.10 46.50
Action + object-Net [23] 73.02 73.24 -
Two-stream model [24] 51.58 49.65 41.84
Hidden two-stream [9] 54.62 51.83 45.21

TSN [20] 69.33 67.23 55.93
EleAttG [25] 66.67 60.83 57.01
Ego-RNN [6] 79.00 77.00 60.76

LSTA-two stream [7] 80.01 78.14 61.86
PMRD-RGB + hall (Ours) 79.78 78.18 61.55

network to generate discriminative representations. The dis-
tillation loss exploits both soft and hard labels, thus leading
to better performance for the classification task. Generally,
the combination of these two loss terms outperforms the
individual loss. Since metric loss and distillation loss are
designed for distilling motion information from local and
global perspectives, they have complementary contributions to
the learning of the hallucination network.

2) Effectiveness of the temporal attention in motion distil-
lation: We evaluate the performance of the proposed motion
representation distillation method, with and without temporal
attention. The comparison results are presented in rows 6-
7 of Table I. The performance gap demonstrates that the
temporal attention mechanism introduced into the metric loss
can guide the hallucination network to concentrate more on the
informative frames, thus resulting in more effective learning
of the model. We also choose several video clips to visual-
ly validate the effectiveness of the temporal attention-based
motion distillation strategy. Figure 3 shows the frames with
spatial attention maps and the corresponding temporal atten-
tion scores. These fine-grained egocentric activity sequences
usually contain cluttered backgrounds and multiple objects.
The temporal attention is introduced to assign higher scores
to the frames, which involve human-object interactions.

D. Comparison with State-of-the-Art Methods

The proposed method is compared with several state-of-the-
art approaches, and the results are presented in Table II. These
comparison methods include both traditional representations
such as DEA [21], and deep learning architectures, such
as the two-stream model [24] and the temporal segment
networks (TSN) [20]. The first two methods in Table II require
additional annotations, such as gaze information [21], object
location and hand segmentation [23]. EleAttG [25], Ego-RNN
[6], and LSTA-two stream [7] combine attention mechanisms
with RNN networks from different perspectives, to locate the

Fig. 3. Visualization of the spatial-temporal attention on two
video sequences.

relevant spatio-temporal regions. Hidden two-stream archi-
tecture [9] is based on a motionNet, which is proposed to
take consecutive RGB frames as input and estimates motion.
It can be observed that the proposed hallucination network,
combined with the RGB branch, achieves satisfactory results
on the three egocentric data sets. The performance of our
method is also comparable with the LSTA-two stream, which
exploits both RGB and optical flow modalities. This suggests
that our hallucination network can learn effectively, via the
progressive motion pattern distillation strategy. The appear-
ance cues extracted by the RGB branch, and the hallucinated
motion representations carry complementary information for
egocentric activity recognition.

IV. CONCLUSION

In this letter, we propose a two-branch-based progressive
motion representation distillation method for egocentric activ-
ity recognition. Different from the current common practice
of using pre-calculated optical flow to provide the motion
information for ConvNets, we leverage a generalized knowl-
edge distillation framework to teach a hallucination network
to produce discriminative motion cues, while only taking RGB
frames as input. Specifically, we propose a progress-wise met-
ric loss, which is integrated into a deep recurrent architecture,
i.e., LSTM cells, to distill local fine-grained motion patterns.
In addition, we introduce a temporal attention mechanism into
the teacher-student framework to focus on distilling motion
information on the informative frames. Furthermore, to avoid
inefficient heuristic-based searching, we utilize a multi-stage
learning paradigm for the training of the hallucination network.
Evaluation results on three egocentric activity data sets validate
that the proposed method can achieve favorable performance.
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