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Abstract—In this paper, an effective approach is proposed for the high-frequency deformation cannot be well modeled for
non-rigid structure from motion (NRSFM) to deal with the image  the trajectory representation. In [7], a Column Space Fitting
sequence with a complex deformation. In the proposed method, a (CSF) algorithm was developed to better model the 3D shape

3D structure is first divided into multiple local trajectory groups def fi ith f | f ts in th
by utilizing the distance weights of the pairwise points. For each eformation with a tew low-frequency components in the

local trajectory group, a weak estimator is constructed by means DCT domain. The smooth time trajectory of each point was
of the Kernel Shape Trajectory Approach (KSTA) due to its good considered as a point in a low-dimensional linear shape
performance for the complex deformation. In order to improve  gpace. Subsequently, an improved version, named CSF2, was
the estimation accuracy, a Feature Vector Selection (FVS) algo- renrted in [8] by means of thi€ complementary spaces of
rithm based adaptive rank selection strategy is designed to choose .
the approximately optimal rank parameter for KSTA. For each rank-3. In [9], a Kernel Shape Trajectory Approach (KSTA)
3D point, the final estimation is derived from the outputs of Was proposed to model complex and deformable 3D shapes.
the weak estimators by solving a sparse optimization problem. Furthermore, a Rotation Invariant Kernels (RIK) based method
The experimental results on several commonly used sequencesyas developed to deal with the data without temporal ordering
demonstrate the effectiveness and feasibility of the proposed [10]. In [11], a Block Matrix Method (BMM) was proposed
method. based on the simple low-rank prior, by solving a semi-definite
Index Terms—Non-rigid structure from motion, 3D image programming and a trace-norm minimization problem.
reconstruction, feature vector selection. In the real world, a fixed rank or smooth deformation is
hard to describe the shape space exactly. A Procrustean normal
I. INTRODUCTION distribution (PND) model based on Procrustes alignment was
_ ] _proposed in [12] to represent the distribution of shape defor-
D Uring the past decades, recovering 3D shape of an objggttions without any additional constraints or prior knowledge.
from 2D image sequence is a fundamental problem ifhe pND model can strictly separate the motion and the de-
computer vision. The reconstructed 3D structure may be V&ftmation components. In [13], a Procrustean Markov Process
helpful in many applications, such as face recognition [1ppp) approach was presented by incorporating a first-order
human-computer interaction [2], object detection [3], [4], et§yarkov model and the smoothness constraint in PND.
Non-rigid structure from motion (NRSFM) has been widely Inspired by the ensemble learning, many weak-estimation
used to simultaneously recover the 3D time-varying deform?rﬂegration methods were proposed to effectively improve
object and th(_e relative camera motion by utilizing the 2l performance of NRSFM. In [14], for each point on the
points of an image sequence. Although many remarkalgace, the global signature was defined via the eigenvectors
methods have been developed to the NRSFM problem, itd§ poth the bending and stretching shapes. Given the global
still a very difficult and complex problem, because of the lackignatures, a consensus segmentation algorithm was used to
of any prior information on the 3D structure deformation. gjvide the points into multiple clusters. Unlike the explicitly-
Recently, a large majority of prior knowledge and congjyided local patches, a consensus of non-rigid reconstruction
straints have been exploited to decrease the uncertalnty(@NR) algorithm was proposed in [15] by randomly selecting a
NRSFM. In [5], an unknown deformed 3D shape was assumgglye number of small trajectory sets from the complete input
to lie within a linear shape space spanned by a small numbgh ences. All individual reconstructions were obtained via
(K) of 3D basis shapes. Furthermore, an object independg gmMm. Then, for each 3D point, a strong reconstructor

basis based point trajectory approach (PTA) was proposed,jgs derived from the outputs of weak estimators via a sparse
[6] to describe the instantaneous 3D structure in a traJeCtCH]zStimization problem.

space. The number of the unknown variables was reduced by, this paper, a KSTA based integrated algorithm is re-
usi.ng the Disc_rete Cosine Transform (D_CT) as the predefinggrted to deal with the problem of NRSFM with complex
trajectory basis. However, due to the limitation of rark, 3 geformation. The main works of the proposed method can be

. . . _ o summarized as two aspects. For each extracted local trajectory
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The remainder of the paper is organized as follows. &" frame of the sequence. Then, the observation matyinf
detailed description of the proposed method is presentedtlei!” frame can be represented ag a n matrix,
Section Il. Experimental results are given in Section Ill.

Finally, conclusions are made in Section IV.

Il. METHODOLOGY
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Fig. 1. Flowchart of the proposed KSTA-based integrated Gifigroach
for NRSFM.

‘TZ:,1 x%}? xl:m (1)
yz,l yz,2 yz,n
Correspondingly, theF x n observation matrixD can be
obtained by stacking thé' frames together,

wW; =

T1,1 T1,2 T1,n
Yi,1 Y12 Yi,n
D — . . . (2)
Tr1 TF2 TFn
Yri1 YFr2 Yr.n

For convenience, denote; ; as thej" 2D point observed on
the i** image. Then, the trajectory of th&" point acrossF
frames can be represented a8fax 1 column vector, i.e.,

®3)

In order to reduce the complexity of deformations, multiple
local trajectory groups are separated from the observation
matrix D. In each trajectory group, the selected points should
be close to each other. Moreover, the trajectoriep tdature
points overF' images are similar.

Let D,, as them!" trajectory group containing point
trajectories, andy,, as the set of points in thex!” group.
The first trajectory in thent” group is chosen based on a
uniform distribution. The othep — 1 trajectories are chosen
by using the following weightv; [15],

A .
w; = €xp (_% Zj’egm ljj’) If.] ¢ grr“u
0 otherwise

where) is a predefined parameter. The symbgl represents
the pairwise Mahalanobis distance between tttepoint and
the 5/t point,

T
(lej, cee W, aWF,j)

(4)

(5)

F
L 23wy —wi
=1

wherel < j < n, 1 < j < p. Note that the grouping step
will continue until each point is included in at leagigroups.

B. The KSTA-Based Weak Estimator

Each extracted local trajectory group,, is used as the
input of the KSTA algorithm [9] to estimate the 3D deformed

Figure 1 shows the flowchart of the proposed KSTA basethapes ofp points. According to the nonlinear shape space
integrated CNR approach (CNR-KF) for NRSFM with commodel [9], D,, is factorized as follows,

plex deformation. There are four main steps in the proposed
method: extract local trajectory groups, construct the KST
based weak estimator, rank parameter selection with F\$, an M

integration of weak estimators. A detailed descriptionh&se \yhere theM € R2F*3K is a motion matrix, an® € R3Kx»

D =MS=R(Kcp®13)S,
—_ (6)

four steps is presented in the following subsections.

A. Local Trajectory Group Extraction

Assume that there are input 2D points tracked ovefF’'
images in a sequence. Dendteg;, vi;]7 (i =1,2,--- ,F;j =
1,2,---,n) as the 2D projection of thg*" 3D point in the

is a shape basis matrix includinj shape bases. ThR €
R2F>3F and 13 € R3*3 represent a rotation matrix and a
3 x 3 identity matrix, respectively. The operaterdenotes the
Kronecker product. The radial basis function (RBF) kernel
matrix Kep, € RI*K is derived from [7] by using the
Moore-Penrose pseudo-inverse, a kernel trick and a lok-ran
constraint. Thek., measures the similarity between a shape



matrix C € RF>*" and a basis shape matik c R¥*<, The C. Rank Parameter Selection with FVS
C describes a smooth time-trajectory withimadimensional  The rank parametek, i.e., the number of shape bases,

shape space, generally has a significant affect on the reconstructiofoper

C = QX (7)  mance of KSTA. Here, a FVS based rank parameter selection
approach is presented to automatically select the optimal o
an approximately optimal rank parameter for KSTA.
In order to produce an initial value oB, we perform
ngular value decomposition (SVD) &b,

whereQ,; € RF*? is a small numbet! of a predefined DCT
trajectory basis. As in [7], thel” row and thei*" column of
Q (v, ;) denotes the"-frequency cosine wave observed a%i

the timet,,
T __ T
g2 =), @ cch =uxvy, (15)
Wit = VF 2F ’ whereX = diag{\;; \2;...; Ar}. Denotes; (i = 1,2,--- , F)
. ) . as thei’” column of ¥. For ¢;, a functionf maps3 into a
wheret;, € [1, F],i € [1,d]. Thea,; = 1 for i = 1, otherwise Hilbert f .
o — V. ilbert feature spacéd, i.e.,
The X € R**" is the unknown coefficient of the shape f: ¥—H, (16)
trajectory. AndB is defined as, o; — f(oy).
B=[wt)” wt)T - w(tx)” ]Tx7 (9) LetK € RF*F as a Gauss kernel matrix fa&. The (i, j)*"

) entry k;; of K can be defined as follows,
wherew(t) (k= {1,2,--- , K}, tx € [1, F]) is the frequency '

cosine wave at an unknown tinig [9]. Let ¢/ andb? as the kij =17 (03)f(05) =L 15, (17)
t*" row of C and thek!" row of B, respectively. Then, the
(t,k)t" entry (cl, bi) of the non-linear kernel functiol
can be represented as,

A small numberK of Features Vectors (FVs) are selected
from X to form an approximation subspadey,

T T +||eF =7 ||? Pr={fo fo, o ) (18)
C, ,bp)=e Tl 7k 10 . o
e = K (10 where S = {s1,s2, -+ ,sK}. The S is the initial valuet
where||-||, denotes thd, norm. They is an unknown scale for B in KSTA. This subspace@ x is sufficient to capture the
parameter geometrical structure of the whobg. All column vectors in

The 3D shape bases can be obtaine®byM'D,,. Given X can be expressed as a linear combination of these selected
S, the matrixM in (6) can be solved by minimizing thevectors in (18), R
following residual error, fi=®x - a, (29)

2 herea; = [ai1, ain, -, ] T is the weighting factor.
M) = Dm—MMTDm 11) W i = |1, Qi s irc]” 1S U
J(M) H HF’ (11) Once S is available, the weighting factos; for o; can
wheret and ||-||  denote the Moore-Penrose pseudo-inveré® obtained by letting the estimated mappfmas close as
and the F norm, respectively. The unknown parametemgossible to the real mappirfg,

{X,tx,v} in (7), (9) and (10) can be optimized by using the 112

Gauss-Newton algorithm [9]. Finally, the unknown 3D shape fi — i

S can be given as, i T (20)
S=(Kep®13MTD,,. (12) Substitute (19) into (20), and then compute the one-order

partial derivative of (20) with respect ta;. By setting the

Note that the initial valu&, of X is estimated by using the arta| derivative as zero, the coefficiamt can be derived as
following smooth shape trajectories model (STA) within in gq|jows,

linear space [7], i = (BLB ) By, (1)
Dy, = MoS) = R(Co ® 13) Sp = R(24X0 ®13)So, i i
0So (Co®13)Sy (Q2aXo ®13)S (13) Then, substitute (21) into (20), we can get
Mo Co T T 15T f.
. o . . min — 1 q)K(‘I’KfK) Pili. (22)
whereM, € R2Fx3Ko ig an initialized motion matrix, and a; fif;

S € R3%Koxr js an initialized shape basis matrix including Consider all samples; in 3, the data sef can be obtained
K, shape bases. THg, € R"** 0 andX, € R are an  minimizing the following equation [16],

initialized shape coefficient matrix and an unknown coedfici .
; : ; ; T -15Tf.
matrix of the shape trajectory, respectively. The mattixcan min ( Z (1 _ f, P (P PK) «I)Kfl>> . (23)

be solved by minimizing the following residual error, fT's,
0, EX it
F(Mo) = HDm _ MOM(T)D’”HZ _ (14) LetJs andJs, define the global and local fitness of a given
F set S,
In (14), the only unknown paramet#f, can be estimated by Jg = % Z Js., (24)

using the Gauss-Newton algorithm [7]. 0ies



Js, = f?‘ﬁK(@}F(fK)_l‘I’}F(fi_ (25) D- Integration of Weak Estimators
fi fi Denote z;, € R'*™ as the zcoordinates of the strong
Then, (23) is equivalent to, estimator for thei®® sample. The translation ambiguity i
is eliminated by enforcing the centroid af at origin. Then,
msaX(JS)' (26) z; can be solved by deriving the median of all local trajectory

groups, which is equal to minimize the followiignorm [15],

Note that the maximum value of (26) is and the minimum r

value of (22) is0. . Vi E -1®I z!

The selection ofK FVs is an iterative process. A kernel ot Z H 0 ] - [ 1m0 } [ t; } 1 29)
function is first selected to obtain the kernel matixaccord-
ing to (17). Then, all local fithess are computed by using,(zéﬁ’here T
and setK as1. The sample that maximizes the global fitness Vi=[zn zp - Zim I
Jgs is chosen as the first feature vector (FV)SinMoreover, the t, = [ tin tiz o tim ]T , (30)
lowest local fitness is used to search for the next FV. The new T T T T

E:[El El ... EI } )

FV can reconstruct all the samples while leading to an even
larger global fitness. The selected FVs should be as orttedgowhere the elements im;,,, € R'*" is thez-coordinates of the

as possible. The iterations are repeated until, ith sample if the point is belong to the!" weak estimator
and zero otherwise. Thg,,, € R is the translation variable,
Js <porK>rt. (27)  which can eliminate the translation ambiguity in each weak

timator. Thel € R™*! is a vector with elements of one.

he E,, € R"*™ is a diagonal matrix of which the elements
is one if its index of row or column is belong ta!" local
trajectory group and zero otherwise. In order to solve (29)
efficiently, an auxiliary variable: is introduced [15]. The un-
known parameters can be obtained via the alternating @rect
method of multipliers (ADMM), a linear least squares and a

wherep andr are a given threshold and the maximum numb
of iterations, respectively. Finally, we can obtain the inem
of shape basig( and the initial value;, for B.

Similarly, the K, in the initialization step of KSTA is
estimated based on the singular valugs (i = 1, ..., F') of
D,.. The singular values; are first obtained via SVD,

D,,Df = UgZoVE, (28) soft thresholding.
Note that the reflection ambiguity in each groups has
where Xy = diag{Ao1; Ao2;.-.; Aor}. Then, Ky singular been solved by using an align step between the original and

values can be selected frolE, via the abovementionedrecovered 3D shapes in each KSTA-based weak estimator.
strategy. All feature vectors can be approximated as arinegherefore, there is no need to use a reflection ambiguity step

combination of thesd(, feature vectors. before integration.
The pseudocode of the adaptive rank parameter selection
algorithm for KSTA is given in Algorithm 1. Il. EXPERIMENTS

Algorithm 1 The pseudocode of the adaptive rank parameé’r Experimental Data and Set-Up

selection algorithm for KSTA.

TABLE |
Input: X THE NUMBERS OF FRAMES(F') AND THE NUMBERS OF POINT TRACKS(n)
OUtpUt: K, S FOR FIVE COMMONLY USED SEQUENCES AND ONE DENSE SET
1: SetK =0,5={},9=0,p, 7.
2: Compute the Gauss kernel matiik. Number | Sequence] F n
3: Set K = 1, and choose the sample that maximizes (26) 1 walking | 260 | S5

jaws 240 91
dance 264 75
FRGC 400 62

capoeira | 250 41

pace 201 | 1453

as the first feature vector (FV). Lel as the index of the
chosen sample, anl = {S sk }.
4: repeat
5. Compute (%L ®x)~! by the selected FV and the
partition inversion method.

3 gg?n?ﬁtﬁ}sbg;rtﬁesifsé?edctz\é’ FV ~ The performance of the proposed method is evaluated on
8: Choose the smaple that minimize (25) as the currepu\fe benchmark dat.a. with complex deformatmmlkmg,@ws,

FV. Let six as the index of the chosen sample, an nce, Face Recognition Grand Challenge (FRGC), capoara,

S =1{S sk} and one dense sphce. These sequences are publicly available
o if Jg<p, then from [6], [9], [17], [18]. For these sequences, thg corregpo
10: Ke—K+1, ing number of framesK) and the number of points tracked
11-  end if (7_1) are listed in Table I. Figure 2 shows one frame of these

R six image sequences.
12: until Js < por K >. Moreover, five sequencedance, drink, pickup, stretch, and
yoga) with three rotation angle$(°, 90°,120°) are also used

o|lu|lh~lwlN
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Fig. 2. One frame of six widely used motion sequences.

THE NUMBERS OF FRAMES(F') AND THE NUMBERS OF POINT TRACKS(n)
FOR FIVE MOTION CAPTURE SEQUENCES WITH VARIOUS DEGREES OF

TABLE Il

Fig. 3. One frame of the five widely used motion sequences waithtion
when the degree of rotation is setting as 60.

corresponding to the smallest estimation error is seleated

ROTATIONS.
the approximate optimum parameter valuerof
Number | Sequence| F | n Tables Il shows 3D reconstruction errogsof the nine
1 dance | 264 | 75 methods for six sequences, respectively. In order to eagity
2 drink | 1102 | 41 pare the performances of different algorithms, the besiltres
3 pickup | 357 | 41 and the second-best result for each sequence are higllighte
4 stretch 370 | 41 . .
5 Joua 307 a1 in red and blue, respectively. Compared to other methods,

we can see from Table lll that, the reconstruction errors of
CNR-KF are the smallest fawalking, dance, capoeira, and
pace sequences. All these four data contain large deformations
to test the performance to the data with some drastic rigigl complex deformations. Compared to CNR, a non-linear
motion. These sequences are publicly available from [13}odel is designed as a weak reconstructor. From Table I,
Table Il lists the corresponding number of framés) @nd e can see that the accuracy of 3D reconstruction using the
the number of points trackea) for five data. Figure 3 shows gnlinear model is obviously higher than that of using the
one frame of the five widely used motion sequences when fi§aar model for complex deformation. Fgaws and FRGC,
rotation angle is setting as 60. All simulations were conedc e performances of other eight algorithms are better than t
using MATLAB, running on an ordinary personal computer.ot CNR-KF because the deformations are relative small.

In order to measure the reconstruction performance, the Norgrom Table IV, we can see that the 3D reconstruction
malized error of the 3D coordinates is used as the performang, o, - of CNR-KF is generally lower than that of other

index, i.e., r _ 9 approaches for most sequences. Note that the deformations
c = 1 Z ISi — Sillp (31) in some sequences are not complicated. However, the most
F existing algorithms do not work well for some data with large

2 )
= ISilE
. ) rigid motion. Thus, the proposed algorithm is more robuahth
whereS; andS; denote the estimated 3D shape and the trygher algorithms for sequences with drastic rigid motion.
3D shape, respectively. The smallerthe higher accuracy of

the estimations.
C. Discussion

B. Comparisons to Recently Reported Results In order to test the effectiveness of the FVS algorithm based
In order to measure the effectiveness of the proposeahk selection strategy, we performed the experiments with

method (CNR-KF), we compare it with several existing simplified approach, i.e. the rank selection strategy is no

NRSFM algorithms, including the well-known KSTA [9],adopted in the proposed method, denoted as CNR-K. The

CNR [15], the column space fitting method (denoted as CSparameteiK is successively set ag,3,4,5,6} for CNR-K.

[7], an improved version of CSF (denoted as CSF2) [8], leet 1+ denote the corresponding mean for CNR-K on each

kernel-based method (denoted as RIK) [10], block matrsequence over ali.

method (denoted as BMM) [11], the procrustean normal dis- Table V and VI tabulate the 3D reconstruction erroof six

tribution method (denoted as PND2) [19] and the procrusteariginal sequences and five sequences with different ootati

markov process method (denoted as PMP) [13]. angles for CNR-KF and CNR-K wheK is set as different
Except for CNR, PMP, and PND2, the low rank parametemalues, respectively. The reconstruction errors of CNRaké&

K has a significant influence on the final estimation perfolswer than the mean errors of CNR-K for most sequences.

mance. For a fair comparison, the parameéteis successively Thus, the FVS can effectively select an approximately oatim

set as{1,2,---,13} for six methods. The parameter valuevalue ofK for KSTA.



TABLE Il
THE 3D RECONSTRUCTION ERROR OF SIX SEQUENCES FOR THE NINE METHODS

Sequence| KSTA RIK CSF2 CSF BMM CNR PND2 PMP CNR-KF
walking 0.0795 | 0.0754 | 0.0695 | 0.1050 | 0.0805 | 0.0397 | 0.0407 | 0.0424 0.0298
jaws 0.0069 | 0.0306 | 0.0259 | 0.0048 | 0.1448 | 0.0832 | 0.0272 | 0.0096 0.0350
dance 0.1730 | 0.1211 | 0.1397 | 0.1808 | 0.1360 | 0.0720 | 0.1247 | 0.1278 0.0549
FRGC 0.1891 | 0.1759 | 0.1909 | 0.1909 | 0.1147 | 0.1462 | 0.0731 | 0.0727 0.1277
capoeira | 0.2671 | 0.2745 | 0.3309 | 0.2258 | 0.2544 | 0.1708 | 0.3116 | 0.3132 0.1163
pace 0.1080 | 0.0910 | 0.1045 | 0.1165 | 0.0996 | 0.0728 | 0.0748 | 0.0752 0.0663

TABLE IV
THE 3D RECONSTRUCTION ERROR OF FIVE SEQUENCES WITH DIFFERENT ROTATION ANGLES FOR THE NENMETHODS.

Sequence| Degree | KSTA RIK CSF2 CSF BMM CNR PND2 PMP CNR-KF
60° 0.1436 | 0.1045| 0.1110 | 0.1646 | 0.1036 | 0.0797 | 0.1028 | 0.2952 0.0582
dance 90° 0.1641 | 0.1055| 0.1113 | 0.1749 | 0.1027 | 0.0682 | 0.0987 | 0.2711 0.0555
120° 0.1722 | 0.1189 | 0.1251 | 0.1731 | 0.0997 | 0.0669 | 0.1071 | 0.2401 0.0554
60° 0.0532 | 0.0597 | 0.0623 | 0.0619 | 0.0377 | 0.0431 | 0.0575 | 0.2302 0.0357
drink 90° 0.0398 | 0.0604 | 0.0476 | 0.0518 | 0.0372 | 0.0351 | 0.0420 | 0.0821 0.0280
120° 0.0497 | 0.0603 | 0.0600 | 0.0539 | 0.0360 | 0.0304 | 0.0411 | 0.1067 0.0295
60° 0.1745 | 0.2225| 0.1945 | 0.2825 | 0.1275| 0.1279 | 0.2084 | 0.5319 0.1260
pickup 90° 0.1376 | 0.1920 | 0.1826 | 0.2453 | 0.0794 | 0.0901 | 0.1366 | 0.2515 0.0917
120° 0.1513 | 0.1955| 0.1551 | 0.1793 | 0.1068 | 0.0963 | 0.1445 | 0.3316 0.1055
60° 0.0997 | 0.1109 | 0.1198 | 0.1415 | 0.0925 | 0.0944 | 0.1370 | 0.1828 0.0761
stretch 90° 0.0751 | 0.0955| 0.0951 | 0.0734 | 0.0752 | 0.0769 | 0.6442 | 0.1299 0.0537
120° 0.0889 | 0.0993 | 0.1096 | 0.0902 | 0.0883 | 0.0849 | 0.1002 | 0.1916 0.0789
60° 0.3018 | 0.2511 | 0.2578 | 0.3165 | 0.1513 | 0.1872 | 0.2205 | 0.3864 0.1205
yoga 90° 0.3469 | 0.1725| 0.1658 | 0.3165 | 0.1445| 0.1187 | 0.2068 | 0.2160 0.1503
120° 0.2022 | 0.2035| 0.1743 | 0.2361 | 0.1158 | 0.1110 | 0.2309 | 0.3341 0.0963

TABLE V
THE 3D RECONSTRUCTION ERROR OF SIX SEQUENCES WHENK IS SETTING SOME DIFFERENT VALUESAND THE CORRESPONDING MEAN(ut) FOR
CNR-K ON EACH SEQUENCE OVER ALLK .

CNR-K
Sequence =3 <=3 P K5 =5 m CNR-KF
walking 0.0371 | 0.0358 | 0.0325 | 0.0411 | 0.0469 | 0.0384 | 0.0298
jaws 0.0916 | 0.0965 | 0.0838 | 0.0933 | 0.0758 | 0.0879 | 0.0350
dance 0.0707 | 0.0541 | 0.0504 | 0.0528 | 0.0551 | 0.0562 | 0.0549
FRGC 0.1276 | 0.1280 | 0.1284 | 0.1284 | 0.1283 | 0.1281 | 0.1277
capoeira | 0.1792 | 0.1249 | 0.1204 | 0.1108 | 0.1033 | 0.1253 | 0.1153

pace 0.0715 | 0.0660 | 0.0660 | 0.0662 | 0.0661 | 0.0671 | 0.0663

TABLE VI
THE 3D RECONSTRUCTION ERROR OF FIVE SEQUENCES WITH DIFFERENT ROTATION ANGLES WHENK IS SETTING AS DIFFERENT VALUES AND THE
CORRESPONDING MEAN(1+) FORCNR-K ON EACH SEQUENCE OVER ALLK .

CNR-K
Sequence| Degree =3 =3 Py} <=5 =5 m CNR-KF
60° 0.0697 | 0.0571 | 0.0549 | 0.0578 | 0.0619 | 0.0601 | 0.0582
dance 90° 0.0769 | 0.0534 | 0.0484 | 0.0552 | 0.0535 | 0.0567 | 0.0555
120° 0.0958 | 0.0552 | 0.0519 | 0.0568 | 0.0535 | 0.0608 | 0.0554
60° 0.0393 | 0.0350 | 0.0329 | 0.0343 | 0.0323 | 0.0347 | 0.0357
drink 90° 0.0292 | 0.0330 | 0.0282 | 0.0240 | 0.0281 | 0.0284 | 0.0280
120° 0.0298 | 0.0403 | 0.0296 | 0.0328 | 0.0339 | 0.0331 | 0.0331
60° 0.1306 | 0.1881 | 0.1292 | 0.1228 | 0.1235| 0.1369 | 0.1260
pickup 90° 0.2294 | 0.2514 | 0.1570 | 0.1243 | 0.1475| 0.1754 | 0.0917
120° 0.1602 | 0.1827 | 0.1587 | 0.1384 | 0.4062 | 0.1468 | 0.1055
60° 0.0951 | 0.0564 | 0.0622 | 0.0559 | 0.0667 | 0.0659 | 0.0761
stretch 90° 0.0974 | 0.0679 | 0.0534 | 0.0479 | 0.0485 | 0.0606 | 0.0537
120° 0.0811 | 0.0686 | 0.0743 | 0.0687 | 0.0740 | 0.0732 | 0.0789
60° 0.1499 | 0.1255 | 0.1179 | 0.1269 | 0.1373 | 0.1310 | 0.1205
yoga 90° 0.1460 | 0.1550 | 0.1575 | 0.1766 | 0.1880 | 0.1639 | 0.1503
120° 0.1081 | 0.0981 | 0.1128 | 0.1147 | 0.1237 | 0.1111 | 0.0963




IV. CONCLUSIONS

In this paper, an effective approach is proposed for noia-rig
structure from motion to deal with the image sequence with a
complex deformation. The strategy of rank selection in each
local trajectory groups is verified to be effective to impediie
estimation accuracy. The experimental results based aralev
widely used sequences demonstrated that the proposedanetho
can decrease the estimation error of sequences with complex
deformations, or with large rigid motion.
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