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An Effective Approach for Non-rigid Structure
From Motion with Complex Deformation

Xia Chen, Zhan-Li Sun*,Member, IEEE, Zhigang Zeng,Fellow, IEEE,
and Kin-Man Lam,Senior Member, IEEE

Abstract—In this paper, an effective approach is proposed for
non-rigid structure from motion (NRSFM) to deal with the image
sequence with a complex deformation. In the proposed method, a
3D structure is first divided into multiple local trajectory groups
by utilizing the distance weights of the pairwise points. For each
local trajectory group, a weak estimator is constructed by means
of the Kernel Shape Trajectory Approach (KSTA) due to its good
performance for the complex deformation. In order to improve
the estimation accuracy, a Feature Vector Selection (FVS) algo-
rithm based adaptive rank selection strategy is designed to choose
the approximately optimal rank parameter for KSTA. For each
3D point, the final estimation is derived from the outputs of
the weak estimators by solving a sparse optimization problem.
The experimental results on several commonly used sequences
demonstrate the effectiveness and feasibility of the proposed
method.

Index Terms—Non-rigid structure from motion, 3D image
reconstruction, feature vector selection.

I. I NTRODUCTION

DUring the past decades, recovering 3D shape of an object
from 2D image sequence is a fundamental problem in

computer vision. The reconstructed 3D structure may be very
helpful in many applications, such as face recognition [1],
human-computer interaction [2], object detection [3], [4], etc.
Non-rigid structure from motion (NRSFM) has been widely
used to simultaneously recover the 3D time-varying deformed
object and the relative camera motion by utilizing the 2D
points of an image sequence. Although many remarkable
methods have been developed to the NRSFM problem, it is
still a very difficult and complex problem, because of the lack
of any prior information on the 3D structure deformation.

Recently, a large majority of prior knowledge and con-
straints have been exploited to decrease the uncertainty of
NRSFM. In [5], an unknown deformed 3D shape was assumed
to lie within a linear shape space spanned by a small number
(K) of 3D basis shapes. Furthermore, an object independent
basis based point trajectory approach (PTA) was proposed in
[6] to describe the instantaneous 3D structure in a trajectory
space. The number of the unknown variables was reduced by
using the Discrete Cosine Transform (DCT) as the predefined
trajectory basis. However, due to the limitation of rank 3K,
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the high-frequency deformation cannot be well modeled for
the trajectory representation. In [7], a Column Space Fitting
(CSF) algorithm was developed to better model the 3D shape
deformation with a few low-frequency components in the
DCT domain. The smooth time trajectory of each point was
considered as a point in a low-dimensional linear shape
space. Subsequently, an improved version, named CSF2, was
reported in [8] by means of theK complementary spaces of
rank-3. In [9], a Kernel Shape Trajectory Approach (KSTA)
was proposed to model complex and deformable 3D shapes.
Furthermore, a Rotation Invariant Kernels (RIK) based method
was developed to deal with the data without temporal ordering
[10]. In [11], a Block Matrix Method (BMM) was proposed
based on the simple low-rank prior, by solving a semi-definite
programming and a trace-norm minimization problem.

In the real world, a fixed rank or smooth deformation is
hard to describe the shape space exactly. A Procrustean normal
distribution (PND) model based on Procrustes alignment was
proposed in [12] to represent the distribution of shape defor-
mations without any additional constraints or prior knowledge.
The PND model can strictly separate the motion and the de-
formation components. In [13], a Procrustean Markov Process
(PMP) approach was presented by incorporating a first-order
Markov model and the smoothness constraint in PND.

Inspired by the ensemble learning, many weak-estimation
integration methods were proposed to effectively improve
the performance of NRSFM. In [14], for each point on the
surface, the global signature was defined via the eigenvectors
on both the bending and stretching shapes. Given the global
signatures, a consensus segmentation algorithm was used to
divide the points into multiple clusters. Unlike the explicitly-
divided local patches, a consensus of non-rigid reconstruction
(CNR) algorithm was proposed in [15] by randomly selecting a
large number of small trajectory sets from the complete input
sequences. All individual reconstructions were obtained via
the BMM. Then, for each 3D point, a strong reconstructor
was derived from the outputs of weak estimators via a sparse
optimization problem.

In this paper, a KSTA based integrated algorithm is re-
ported to deal with the problem of NRSFM with complex
deformation. The main works of the proposed method can be
summarized as two aspects. For each extracted local trajectory
group, a weak estimator is constructed via the KSTA algorithm
due to its good performance for the complex deformation.
In order to adaptively find the approximately optimal rank
parameter, a Feature Vector Selection (FVS) based selection
strategy is devised to improve the estimation accuracy.
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The remainder of the paper is organized as follows. A
detailed description of the proposed method is presented in
Section II. Experimental results are given in Section III.
Finally, conclusions are made in Section IV.

II. M ETHODOLOGYI n p u t D
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Fig. 1. Flowchart of the proposed KSTA-based integrated CNRapproach
for NRSFM.

Figure 1 shows the flowchart of the proposed KSTA based
integrated CNR approach (CNR-KF) for NRSFM with com-
plex deformation. There are four main steps in the proposed
method: extract local trajectory groups, construct the KSTA-
based weak estimator, rank parameter selection with FVS, and
integration of weak estimators. A detailed description of these
four steps is presented in the following subsections.

A. Local Trajectory Group Extraction

Assume that there aren input 2D points tracked overF
images in a sequence. Denote[xij , yij ]

T (i = 1, 2, · · · , F ; j =
1, 2, · · · , n) as the 2D projection of thejth 3D point in the

ith frame of the sequence. Then, the observation matrixwi of
the ith frame can be represented as a2× n matrix,

wi =

[
xi,1 xi,2 · · · xi,n

yi,1 yi,2 · · · yi,n

]

. (1)

Correspondingly, the2F × n observation matrixD can be
obtained by stacking theF frames together,

D =










x1,1 x1,2 · · · x1,n

y1,1 y1,2 · · · y1,n

...
...

. . .
...

xF,1 xF,2 · · · xF,n

yF,1 yF,2 · · · yF,n










. (2)

For convenience, denotewi,j as thejth 2D point observed on
the ith image. Then, the trajectory of thejth point acrossF
frames can be represented as a2F × 1 column vector, i.e.,

(w1,j, · · · , wi,j , · · · , wF,j)
T

. (3)

In order to reduce the complexity of deformations, multiple
local trajectory groups are separated from the observation
matrix D. In each trajectory group, the selected points should
be close to each other. Moreover, the trajectories ofp feature
points overF images are similar.

Let Dm as themth trajectory group containingp point
trajectories, andgm as the set of points in themth group.
The first trajectory in themth group is chosen based on a
uniform distribution. The otherp − 1 trajectories are chosen
by using the following weightwj [15],

wj =

{

exp
(

− λ
2p

∑

j′∈gm
ljj′

)

ifj /∈ gm,

0 otherwise,
(4)

whereλ is a predefined parameter. The symbolljj′ represents
the pairwise Mahalanobis distance between thejth point and
the j′th point,

ljj′ ,

F∑

i=1

‖wi,j − wi,j′‖ , (5)

where1 ≤ j ≤ n, 1 ≤ j′ ≤ p. Note that the grouping step
will continue until each point is included in at leastg groups.

B. The KSTA-Based Weak Estimator

Each extracted local trajectory groupDm is used as the
input of the KSTA algorithm [9] to estimate the 3D deformed
shapes ofp points. According to the nonlinear shape space
model [9], Dm is factorized as follows,

Dm = MŜ = R(K c,b ⊗ I3)
︸ ︷︷ ︸

M

Ŝ,
(6)

where theM ∈ R
2F×3K is a motion matrix, and̂S∈ R

3K×p

is a shape basis matrix includingK shape bases. TheR ∈
R

2F×3F and I3 ∈ R
3×3 represent a rotation matrix and a

3×3 identity matrix, respectively. The operator⊗ denotes the
Kronecker product. The radial basis function (RBF) kernel
matrix Kc,b ∈ R

F×K is derived from [7] by using the
Moore-Penrose pseudo-inverse, a kernel trick and a low-rank
constraint. TheK c,b measures the similarity between a shape
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matrix C ∈ R
F×h and a basis shape matrixB ∈ R

K×d. The
C describes a smooth time-trajectory within ah-dimensional
shape space,

C = ΩdX, (7)

whereΩd ∈ R
F×d is a small numberd of a predefined DCT

trajectory basis. As in [7], thetthk row and theith column of
Ωd (ωtk,i) denotes theith-frequency cosine wave observed at
the timetk,

ωtk,i =
αi√
F

cos(
π(2tk − 1)(i− 1)

2F
), (8)

wheretk ∈ [1, F ], i ∈ [1, d]. The αi = 1 for i = 1, otherwise
αi =

√
2.

The X ∈ R
d×h is the unknown coefficient of the shape

trajectory. AndB is defined as,

B =
[

ω(t1)T ω(t2)T · · · ω(tK)T
]T

X, (9)

whereω(tk) (k = {1, 2, · · · , K}, tk ∈ [1, F ]) is the frequency
cosine wave at an unknown timetk [9]. Let cT

t andbT
k as the

tth row of C and thekth row of B, respectively. Then, the
(t, k)th entryκ(cT

t , bT
k ) of the non-linear kernel functionKc,b

can be represented as,

κ(cT
t , bT

k ) = e−γ‖cT
t −bT

k ‖2
2 , (10)

where‖·‖
2

denotes thel2 norm. Theγ is an unknown scale
parameter

The 3D shape bases can be obtained byŜ = M†Dm. Given
Ŝ, the matrix M in (6) can be solved by minimizing the
following residual error,

f(M) =
∥
∥Dm −MM †Dm

∥
∥

2

F
, (11)

where† and ‖·‖F denote the Moore-Penrose pseudo-inverse
and the F norm, respectively. The unknown parameters
{X, tk, γ} in (7), (9) and (10) can be optimized by using the
Gauss-Newton algorithm [9]. Finally, the unknown 3D shape
S can be given as,

S = (Kc,b ⊗ I3)M
†Dm. (12)

Note that the initial valueX0 of X is estimated by using the
following smooth shape trajectories model (STA) within in a
linear space [7],

Dm = M0Ŝ0 = R(C0 ⊗ I3)
︸ ︷︷ ︸

M0

Ŝ0 = R(ΩdX0
︸ ︷︷ ︸

C0

⊗I3)Ŝ0, (13)

where M0 ∈ R
2F×3K0 is an initialized motion matrix, and

Ŝ ∈ R
3K0×p is an initialized shape basis matrix including

K0 shape bases. TheC0 ∈ R
F×K0 and X0 ∈ R

d×K0 are an
initialized shape coefficient matrix and an unknown coefficient
matrix of the shape trajectory, respectively. The matrixM0 can
be solved by minimizing the following residual error,

f(M0) =
∥
∥
∥Dm −M0M†

0
Dm

∥
∥
∥

2

F
. (14)

In (14), the only unknown parameterX0 can be estimated by
using the Gauss-Newton algorithm [7].

C. Rank Parameter Selection with FVS

The rank parameterK, i.e., the number of shape bases,
generally has a significant affect on the reconstruction perfor-
mance of KSTA. Here, a FVS based rank parameter selection
approach is presented to automatically select the optimal or
an approximately optimal rank parameter for KSTA.

In order to produce an initial value ofB, we perform
singular value decomposition (SVD) onC,

CCT = UΣVT , (15)

whereΣ = diag{λ1; λ2; ...; λF }. Denoteσi (i = 1, 2, · · · , F )
as theith column ofΣ. For σi, a functionf mapsΣ into a
Hilbert feature spaceH , i.e.,

f : Σ −→ H,

σi −→ f(σi).
(16)

Let K ∈ R
F×F as a Gauss kernel matrix forΣ. The (i, j)th

entry kij of K can be defined as follows,

kij = fT (σi) f (σj) = fTσi
fσj

. (17)

A small numberK of Features Vectors (FVs) are selected
from Σ to form an approximation subspaceΦK ,

ΦK = {fs1
, fs2

, · · · , fsK
}, (18)

where S = {s1, s2, · · · , sK}. The S is the initial valuetk
for B in KSTA. This subspaceΦK is sufficient to capture the
geometrical structure of the wholeΣ. All column vectors in
Σ can be expressed as a linear combination of these selected
vectors in (18),

f̂i = ΦK ·αi, (19)

whereαi = [αi1, αi2, · · · , αiK ]T is the weighting factor.
Once S is available, the weighting factorαi for σi can

be obtained by letting the estimated mappingf̂i as close as
possible to the real mappingfi,

min
αi

∥
∥
∥fi − f̂i

∥
∥
∥

2

‖fi‖2
. (20)

Substitute (19) into (20), and then compute the one-order
partial derivative of (20) with respect toαi. By setting the
partial derivative as zero, the coefficientαi can be derived as
follows,

αi = (ΦT
KΦK)−1ΦK fi. (21)

Then, substitute (21) into (20), we can get

min
αi

1− fTi ΦK(ΦT
KΦK)−1ΦT

K fi
fTi fi

. (22)

Consider all samplesσi in Σ, the data setS can be obtained
by minimizing the following equation [16],

min
S

(
∑

σi∈Σ

(

1− fTi ΦK(ΦT
KΦK)−1ΦT

K fi
fTi fi

))

. (23)

Let JS andJSi
define the global and local fitness of a given

set S,

JS =
1

F

∑

σi∈Σ

JSi
, (24)
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JSi
=

fTi ΦK(ΦT
KΦK)−1ΦT

K fi
fTi fi

. (25)

Then, (23) is equivalent to,

max
S

(JS) . (26)

Note that the maximum value of (26) is1, and the minimum
value of (22) is0.

The selection ofK FVs is an iterative process. A kernel
function is first selected to obtain the kernel matrixK accord-
ing to (17). Then, all local fitness are computed by using (25),
and setK as1. The sample that maximizes the global fitness
JS is chosen as the first feature vector (FV) inS. Moreover, the
lowest local fitness is used to search for the next FV. The new
FV can reconstruct all the samples while leading to an even
larger global fitness. The selected FVs should be as orthogonal
as possible. The iterations are repeated until,

JS < ρ or K > τ. (27)

whereρ andτ are a given threshold and the maximum number
of iterations, respectively. Finally, we can obtain the number
of shape basisK and the initial valuetk for B.

Similarly, the K0 in the initialization step of KSTA is
estimated based on the singular valuesλ0i (i = 1, ..., F ) of
Dm. The singular valuesλ0i are first obtained via SVD,

DmDT
m = U0Σ0VT

0
, (28)

where Σ0 = diag{λ01; λ02; ...; λ0F }. Then, K0 singular
values can be selected fromΣ0 via the abovementioned
strategy. All feature vectors can be approximated as a linear
combination of theseK0 feature vectors.

The pseudocode of the adaptive rank parameter selection
algorithm for KSTA is given in Algorithm 1.

Algorithm 1 The pseudocode of the adaptive rank parameter
selection algorithm for KSTA.
Input: Σ
Output: K, S

1: SetK = 0, S = { }, g = 0, ρ, τ .
2: Compute the Gauss kernel matrixK.
3: Set K = 1, and choose the sample that maximizes (26)

as the first feature vector (FV). LetsK as the index of the
chosen sample, andS = {S sK}.

4: repeat
5: Compute (ΦT

KΦK)−1 by the selected FV and the
partition inversion method.

6: UpdateJSi
by the selected FV,

7: ComputeJS by the unselected FV,
8: Choose the smaple that minimize (25) as the current

FV. Let sK as the index of the chosen sample, and
S = {S sK}.

9: if JS < ρ, then
10: K ← K + 1,
11: end if
12: until JS < ρ or K > τ .

D. Integration of Weak Estimators

Denote z̄i ∈ R
1×n as the z-coordinates of the strong

estimator for theith sample. The translation ambiguity in̄zi

is eliminated by enforcing the centroid ofz̄i at origin. Then,
z̄i can be solved by deriving the median of all local trajectory
groups, which is equal to minimize the followingl1 norm [15],

min
zi,ti

F∑

i

∥
∥
∥
∥

[
yi

0

]

−
[

E −1⊗ I

1T 0T

] [
zT

i

ti

]∥
∥
∥
∥

1

(29)

where
yi =

[
zi|1 zi|2 · · · zi|m · · ·

]T
,

ti =
[

ti|1 ti|2 · · · ti|m · · ·
]T

,

E =
[

ET
1

ET
2
· · · ET

m · · ·
]T

,

(30)

where the elements inzi|m ∈ R
1×n is thez-coordinates of the

ith sample if the point is belong to themth weak estimator
and zero otherwise. Theti|m ∈ R is the translation variable,
which can eliminate the translation ambiguity in each weak
estimator. The1 ∈ R

n×1 is a vector with elements of one.
The Em ∈ R

n×n is a diagonal matrix of which the elements
is one if its index of row or column is belong tomth local
trajectory group and zero otherwise. In order to solve (29)
efficiently, an auxiliary variableu is introduced [15]. The un-
known parameters can be obtained via the alternating direction
method of multipliers (ADMM), a linear least squares and a
soft thresholding.

Note that the reflection ambiguity in each groups has
been solved by using an align step between the original and
recovered 3D shapes in each KSTA-based weak estimator.
Therefore, there is no need to use a reflection ambiguity step
before integration.

III. E XPERIMENTS

A. Experimental Data and Set-Up

TABLE I
THE NUMBERS OF FRAMES(F ) AND THE NUMBERS OF POINT TRACKS(n)

FOR FIVE COMMONLY USED SEQUENCES AND ONE DENSE SET.

Number Sequence F n

1 walking 260 55

2 jaws 240 91

3 dance 264 75

4 FRGC 400 62

5 capoeira 250 41

6 pace 201 1453

The performance of the proposed method is evaluated on
five benchmark data with complex deformation:walking, jaws,
dance, Face Recognition Grand Challenge (FRGC), capoeira,
and one dense setpace. These sequences are publicly available
from [6], [9], [17], [18]. For these sequences, the correspond-
ing number of frames (F ) and the number of points tracked
(n) are listed in Table I. Figure 2 shows one frame of these
six image sequences.

Moreover, five sequences (dance, drink, pickup, stretch, and
yoga) with three rotation angles (60◦, 90◦, 120◦) are also used
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walking jaws dance

FRGC capoeira pace

Fig. 2. One frame of six widely used motion sequences.

TABLE II
THE NUMBERS OF FRAMES(F ) AND THE NUMBERS OF POINT TRACKS(n)

FOR FIVE MOTION CAPTURE SEQUENCES WITH VARIOUS DEGREES OF

ROTATIONS.

Number Sequence F n

1 dance 264 75

2 drink 1102 41

3 pickup 357 41

4 stretch 370 41

5 yoga 307 41

to test the performance to the data with some drastic rigid
motion. These sequences are publicly available from [15].
Table II lists the corresponding number of frames (F ) and
the number of points tracked (n) for five data. Figure 3 shows
one frame of the five widely used motion sequences when the
rotation angle is setting as 60. All simulations were conducted
using MATLAB, running on an ordinary personal computer.

In order to measure the reconstruction performance, the nor-
malized error of the 3D coordinates is used as the performance
index, i.e.,

ε =
1

F

F∑

i=1

‖Si − S̃i‖
2

F

‖Si‖2F
, (31)

whereS̃i and Si denote the estimated 3D shape and the true
3D shape, respectively. The smallerε, the higher accuracy of
the estimations.

B. Comparisons to Recently Reported Results

In order to measure the effectiveness of the proposed
method (CNR-KF), we compare it with several existing
NRSFM algorithms, including the well-known KSTA [9],
CNR [15], the column space fitting method (denoted as CSF)
[7], an improved version of CSF (denoted as CSF2) [8], a
kernel-based method (denoted as RIK) [10], block matrix
method (denoted as BMM) [11], the procrustean normal dis-
tribution method (denoted as PND2) [19] and the procrustean
markov process method (denoted as PMP) [13].

Except for CNR, PMP, and PND2, the low rank parameter
K has a significant influence on the final estimation perfor-
mance. For a fair comparison, the parameterK is successively
set as{1, 2, · · · , 13} for six methods. The parameter value

dance drink pickup

stretch yoga

Fig. 3. One frame of the five widely used motion sequences withrotation
when the degree of rotation is setting as 60.

corresponding to the smallest estimation error is selectedas
the approximate optimum parameter value ofK.

Tables III shows 3D reconstruction errorsε of the nine
methods for six sequences, respectively. In order to easilycom-
pare the performances of different algorithms, the best result
and the second-best result for each sequence are highlighted
in red and blue, respectively. Compared to other methods,
we can see from Table III that, the reconstruction errors of
CNR-KF are the smallest forwalking, dance, capoeira, and
pace sequences. All these four data contain large deformations
or complex deformations. Compared to CNR, a non-linear
model is designed as a weak reconstructor. From Table III,
we can see that the accuracy of 3D reconstruction using the
nonlinear model is obviously higher than that of using the
linear model for complex deformation. Forjaws and FRGC,
the performances of other eight algorithms are better than that
of CNR-KF because the deformations are relative small.

From Table IV, we can see that the 3D reconstruction
error ε of CNR-KF is generally lower than that of other
approaches for most sequences. Note that the deformations
in some sequences are not complicated. However, the most
existing algorithms do not work well for some data with large
rigid motion. Thus, the proposed algorithm is more robust than
other algorithms for sequences with drastic rigid motion.

C. Discussion

In order to test the effectiveness of the FVS algorithm based
rank selection strategy, we performed the experiments with
a simplified approach, i.e. the rank selection strategy is not
adopted in the proposed method, denoted as CNR-K. The
parameterK is successively set as{2, 3, 4, 5, 6} for CNR-K.
Let µ denote the corresponding mean for CNR-K on each
sequence over allK.

Table V and VI tabulate the 3D reconstruction errorsε of six
original sequences and five sequences with different rotation
angles for CNR-KF and CNR-K whenK is set as different
values, respectively. The reconstruction errors of CNR-KFare
lower than the mean errors of CNR-K for most sequences.
Thus, the FVS can effectively select an approximately optimal
value ofK for KSTA.
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TABLE III
THE 3D RECONSTRUCTION ERRORε OF SIX SEQUENCES FOR THE NINE METHODS.

Sequence KSTA RIK CSF2 CSF BMM CNR PND2 PMP CNR-KF

walking 0.0795 0.0754 0.0695 0.1050 0.0805 0.0397 0.0407 0.0424 0.0298

jaws 0.0069 0.0306 0.0259 0.0048 0.1448 0.0832 0.0272 0.0096 0.0350

dance 0.1730 0.1211 0.1397 0.1808 0.1360 0.0720 0.1247 0.1278 0.0549

FRGC 0.1891 0.1759 0.1909 0.1909 0.1147 0.1462 0.0731 0.0727 0.1277

capoeira 0.2671 0.2745 0.3309 0.2258 0.2544 0.1708 0.3116 0.3132 0.1163

pace 0.1080 0.0910 0.1045 0.1165 0.0996 0.0728 0.0748 0.0752 0.0663

TABLE IV
THE 3D RECONSTRUCTION ERRORε OF FIVE SEQUENCES WITH DIFFERENT ROTATION ANGLES FOR THE NINE METHODS.

Sequence Degree KSTA RIK CSF2 CSF BMM CNR PND2 PMP CNR-KF

dance
60

◦ 0.1436 0.1045 0.1110 0.1646 0.1036 0.0797 0.1028 0.2952 0.0582
90

◦ 0.1641 0.1055 0.1113 0.1749 0.1027 0.0682 0.0987 0.2711 0.0555
120

◦ 0.1722 0.1189 0.1251 0.1731 0.0997 0.0669 0.1071 0.2401 0.0554

drink
60

◦ 0.0532 0.0597 0.0623 0.0619 0.0377 0.0431 0.0575 0.2302 0.0357
90

◦ 0.0398 0.0604 0.0476 0.0518 0.0372 0.0351 0.0420 0.0821 0.0280
120

◦ 0.0497 0.0603 0.0600 0.0539 0.0360 0.0304 0.0411 0.1067 0.0295

pickup
60

◦ 0.1745 0.2225 0.1945 0.2825 0.1275 0.1279 0.2084 0.5319 0.1260
90

◦ 0.1376 0.1920 0.1826 0.2453 0.0794 0.0901 0.1366 0.2515 0.0917
120

◦ 0.1513 0.1955 0.1551 0.1793 0.1068 0.0963 0.1445 0.3316 0.1055

stretch
60

◦ 0.0997 0.1109 0.1198 0.1415 0.0925 0.0944 0.1370 0.1828 0.0761
90

◦ 0.0751 0.0955 0.0951 0.0734 0.0752 0.0769 0.6442 0.1299 0.0537
120

◦ 0.0889 0.0993 0.1096 0.0902 0.0883 0.0849 0.1002 0.1916 0.0789

yoga
60

◦ 0.3018 0.2511 0.2578 0.3165 0.1513 0.1872 0.2205 0.3864 0.1205
90

◦ 0.3469 0.1725 0.1658 0.3165 0.1445 0.1187 0.2068 0.2160 0.1503
120

◦ 0.2022 0.2035 0.1743 0.2361 0.1158 0.1110 0.2309 0.3341 0.0963

TABLE V
THE 3D RECONSTRUCTION ERRORε OF SIX SEQUENCES WHENK IS SETTING SOME DIFFERENT VALUES, AND THE CORRESPONDING MEAN(µ) FOR

CNR-K ON EACH SEQUENCE OVER ALLK .

Sequence
CNR-K

CNR-KF
K=2 K=3 K=4 K=5 K=6 µ

walking 0.0371 0.0358 0.0325 0.0411 0.0469 0.0384 0.0298

jaws 0.0916 0.0965 0.0838 0.0933 0.0758 0.0879 0.0350

dance 0.0707 0.0541 0.0504 0.0528 0.0551 0.0562 0.0549

FRGC 0.1276 0.1280 0.1284 0.1284 0.1283 0.1281 0.1277

capoeira 0.1792 0.1249 0.1204 0.1108 0.1033 0.1253 0.1153

pace 0.0715 0.0660 0.0660 0.0662 0.0661 0.0671 0.0663

TABLE VI
THE 3D RECONSTRUCTION ERRORε OF FIVE SEQUENCES WITH DIFFERENT ROTATION ANGLES WHENK IS SETTING AS DIFFERENT VALUES, AND THE

CORRESPONDING MEAN(µ) FOR CNR-K ON EACH SEQUENCE OVER ALLK .

Sequence Degree
CNR-K

CNR-KF
K=2 K=3 K=4 K=5 K=6 µ

dance
60

◦ 0.0697 0.0571 0.0549 0.0578 0.0619 0.0601 0.0582
90

◦ 0.0769 0.0534 0.0484 0.0552 0.0535 0.0567 0.0555
120

◦ 0.0958 0.0552 0.0519 0.0568 0.0535 0.0608 0.0554

drink
60

◦ 0.0393 0.0350 0.0329 0.0343 0.0323 0.0347 0.0357
90

◦ 0.0292 0.0330 0.0282 0.0240 0.0281 0.0284 0.0280
120

◦ 0.0298 0.0403 0.0296 0.0328 0.0339 0.0331 0.0331

pickup
60

◦ 0.1306 0.1881 0.1292 0.1228 0.1235 0.1369 0.1260
90

◦ 0.2294 0.2514 0.1570 0.1243 0.1475 0.1754 0.0917
120

◦ 0.1602 0.1827 0.1587 0.1384 0.4062 0.1468 0.1055

stretch
60

◦ 0.0951 0.0564 0.0622 0.0559 0.0667 0.0659 0.0761
90

◦ 0.0974 0.0679 0.0534 0.0479 0.0485 0.0606 0.0537
120

◦ 0.0811 0.0686 0.0743 0.0687 0.0740 0.0732 0.0789

yoga
60

◦ 0.1499 0.1255 0.1179 0.1269 0.1373 0.1310 0.1205
90

◦ 0.1460 0.1550 0.1575 0.1766 0.1880 0.1639 0.1503
120

◦ 0.1081 0.0981 0.1128 0.1147 0.1237 0.1111 0.0963
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IV. CONCLUSIONS

In this paper, an effective approach is proposed for non-rigid
structure from motion to deal with the image sequence with a
complex deformation. The strategy of rank selection in each
local trajectory groups is verified to be effective to improve the
estimation accuracy. The experimental results based on several
widely used sequences demonstrated that the proposed method
can decrease the estimation error of sequences with complex
deformations, or with large rigid motion.
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