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A Local Deviation Constraint based Non-rigid

Structure from Motion Approach
Xia Chen, Zhan-Li Sun*, Kin-Man Lam, and Zhigang Zeng

Abstract

In many traditional non-rigid structure from motion (NRSFM) approaches, the estimation results of

part feature points may deviate from their true values significantly because only the overall estimation

error is considered in the models. Aiming at this issue, a local deviation-constrained based column-

space-fitting approach is presented in this paper to alleviate the estimation deviation. In our work, an

effective model is first constructed by two terms, i.e. the overall estimation error computed by a linear

subspace representation, and the constraint term based on the variance of reconstruction error for each

frame. Moreover, an Augmented Lagrange Multipliers (ALM) iterative algorithm is presented to solve

the optimization of the proposed model. Because both the overall estimation error and the local deviation

are utilized, the proposed method can achieve a good estimation performance and a relative uniform

estimation error distribution for different feature points. Experimental results on several widely used

synthetic sequences and real sequences demonstrate the effectiveness and feasibility of the proposed

algorithm.
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I. INTRODUCTION

Nowadays, recovering 3D object shapes from 2D images has become a valuable measure to

enhance the tasks in computer vision, such as face recognition [1]–[3], etc. As a fundamental

method of 3D reconstruction, non-rigid structure from motion (NRSFM) provides an approach

to jointly estimate 3D object shapes and the relative camera motions from the corresponding

2D points in a sequence of images. Because of the lack of prior information on 3D shape

deformation, NRSFM is still an intractable and underconstrainted problem.

In order to alleviate the uncertainty, more prior information and constraints have been gradually

explored in 3D reconstruction model. As a remarkable work, a matrix factorization method was

proposed in [4] to represent the unknown 3D shapes as a linear combination of a small number

K of 3D shape bases. In the matrix factorization method, the decomposed motion factor and

shape basis are constrained to be of a low-rank 3K. Due to its simplicity, many works have

been developed subsequently based on the low rank shape model. In [5], a closed form solution

was presented by combining both the rotation constraint and the low rank constraint. In [6],

a Gaussian prior is assumed for the shape coefficients, and the optimization is solved using

the expectation-maximization (EM) algorithm. Considering the approximate symmetry of facial

feature points, an effective depth estimation model was proposed in [7] based on the constraint

independent component analysis.

In [8], a non-rigid structure from motion factorization model is proposed by solving a very

small semi-definite programming and a nuclear-norm minimization problem. A reconstruction-

based metric learning method was presented in [9] to learn a discriminative distance metric for

unconstrained face verification. A sequential non-rigid structure from motion model was proposed

in [10] by utilizing the physical priors of object’s surface. When the non-rigid object has degen-

erate deformations, the extra degrees-of-freedom will yield spurious shape deformations due to

non-negligible noise in real applications. To deal with this problem, a low-rank shape deformation

model was proposed to represent 3D structures of degenerate deformations by considering both

the rank-deficient nature and the low-rank property [11]. In [12], a dense NRSFM model was

given as an energy-based formulation by incorporating the physical, discontinuity-preserving

deformation prior.

In order decrease the unknow parameters, the 3D point trajectories are modeled compactly
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as the Discrete Cosine Transform basis under the smoothing constraint [13]. Nevertheless, due

to the limitation of rank 3K, the high-frequency deformation cannot be well modeled for the

trajectory representation. In [14], a smoothly deforming 3D shape was modeled as a single point

moving along a smooth time-trajectory within a linear shape space. This representation provides

a better reconstruction of high-frequency deformation without relaxing the rank-3K constraint.

A column-space-fitting (CSF) method was developed to obtain the optimized solution [15].

Simulations on multiple sequences have demonstrated that the CSF algorithm can achieve a

very good estimation performance for deformed objects.

In most traditional non-rigid structure from motion (NRSFM) models, a good estimation

performance was generally achieved by minimizing the overall estimation error of feature points.

Because only the overall estimation error is considered, the estimation results of part feature

points may deviate from their true values far away. In order to solve this problem, a local

deviation-constrained based column-space-fitting approach is presented in this paper to decrease

the estimation deviation. In our work, an effective model is first constructed by two terms, i.e.

the overall estimation error computed by a linear subspace representation, and the constraint

term based on the variance of reconstruction error for each frame. Furthermore, an Augmented

Lagrange Multipliers (ALM) iterative algorithm is developed to optimize the proposed model.

Because both the overall estimation error and the local deviation are utilized, a good estimation

performance can be achieved for the proposed method. Moreover, the estimation errors are

uniform for different feature points. In addition, the convergence analysis is carried out for the

proposed algorithm.

The remainder of the paper is organized as follows. A detailed description of the proposed

method is presented in Section II. Experimental results are given in Section III. Finally, conclu-

sions are made in Section IV.

II. M ETHODOLOGY

A. Formulation of the LDS-CSF Model

Assume that[xt,j , yt,j]
T (t = 1, 2, · · · , T, j = 1, 2, · · · , n) is the 2D projection of thejth 3D

point observed on thetth image, then input 2D point tracks ofT images can be represented as
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a 2T × n observation matrixW, i.e.,

W =













x1,1 x1,2 · · · x1,n

y1,1 y1,2 · · · y1,n

...
...

. . .
...

xT,1 xT,2 · · · xT,n

yT,1 yT,2 · · · yT,n













. (1)

According to the linear subspace model,W can be factorized as:

W = MS = D(C⊗ I3)
︸ ︷︷ ︸

M

S = D(ΩdX
︸︷︷︸

C

⊗I3)

︸ ︷︷ ︸

M

S, (2)

whereM ∈ R2T×3K represents the camera motion matrix,S ∈ R3K×n denotes theK 3D shape

bases. The matricesD ∈ R2T×3T , C ∈ RT×K and I3 represent a block-diagonal rotation matrix,

a shape coefficient matrix and a3× 3 identity matrix, respectively. The operationC⊗ I3 is the

Kronecker product ofC and I3. The matrixΩd ∈ RT×d and the unknown factorX ∈ Rd×K

denote the DCT basis matrix and the corresponding coefficient matrix, respectively.

For the x and y coordinates of feature points on thetth frame, the reconstruction errors

(ext,j
, eyt,j

) of the jth feature point between the true values(xt,j , yt,j) and the estimated results

(x∗
t,j , y

∗
t,j) can be given by,

ext,j
= xt,j − x∗

t,j , (3)

and

eyt,j
= yt,j − y∗

t,j. (4)

respectively. Correspondingly, the mean value of the reconstruction errors forn feature points

can be computed as,

ext
=

1

n

n∑

j=1

ext,j
, (5)

and

eyt
=

1

n

n∑

j=1

eyt,j
. (6)

respectively. Furthermore, for thetth frame, the standard deviationsσtx andσty of reconstruction

errors can be computed as,

σtx =

(

1

n

n∑

j=1

(ext,j
− ext

)2

) 1

2

, (7)
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and

σty =

(

1

n

n∑

j=1

(eyt,j
− eyt

)2

)1

2

, (8)

respectively. For different feature points, we can see from (7) and (8) that the estimation results

are closer to the true values as a whole whenσtx andσty are smaller. Thus,σtx andσty can be

used as the indices to constraint the local deviation extent of the estimation results.

In terms of (2), the local deviation constraint-based column-space-fitting (LDS-CSF) model

can be formulated as,
min ‖W−W∗‖2F ,

s.t.
1

2T

T∑

t=1

(σ2

tx + σ2

ty) = 0
(9)

whereW∗ = MS.

B. Optimization Scheme of the LDS-CSF Model

For convenience, we first define some simplified notations before solving the model (9). Let

wj ∈ R2T×1 and sj ∈ R3K×1 denote thejth column of the 2D observation matrixW and 3D

shape basesS, respectively. The 2D reprojection errorrj of the jth column can be defined as,

rj = wj −Msj = wj −MM†wj . (10)

Furthermore, denote

f1 =
1

2

n∑

j=1

rT
j rj , (11)

and

f2 =
1

2n

n∑

j=1

(rj −
1

n

n∑

j=1

rj)
2. (12)

Then, the LDS-CSF model (9) can be rewritten as,

min f1

s.t. f2 = 0.
(13)

where

f1 =
1

2

n∑

j=1

rT
j rj , (14)
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f2 =
1

2n

n∑

j=1

(rj −
1

n

n∑

j=1

rj)
2. (15)

Initially, the rotation matrixD is computed via an Euclidean upgrade method.

It can be seen from (2) thatΩd is a predefined DCT basis matrix. Once the factorX is given,

the factorM can be determined. GivenM, the shape basissj can be estimated by,

sj = M†wj . (16)

It means thatX is the only parameter to be optimized.

In terms of Augmented Lagrange Multipliers (ALM) iterative algorithm [17]–[19], the LDS-

CSF model (13) can be reformulated as,

L(X) = f1 − λf2 +
ρ

2
f 2

2 , (17)

whereρ > 0 andλ are the weights of the penalty term and Lagrange multiplier, respectively.

According to the Gauss-Newton method, the first order partial derivative ofL with respective

to X can be given by,
∂L

∂X
=

∂f1

∂X
− λ

∂f2

∂X
+ ρf2

∂f2

∂X
(18)

Furthermore, the second order partial derivative ofL with respective toX can be computed as,

∂2L

∂X2
=

∂2f1

∂X2
− λ

∂2f2

∂X2
+ ρf2(

∂f2

∂X
)2 + ρf2

∂2f2

∂X2
(19)

According to (14), we can obtain the first order partial derivative and the second order partial

derivative off1, i.e.,

∂f1(X) =

n∑

j=1

rT
j ∂rj , (20)

∂2f1(X) ≈
n∑

j=1

∂rT
j ∂rj . (21)

In terms of (15), we can obtain the first order partial derivative and the second order partial

derivative off2, i.e.,

∂f2(X) =
1

n

n∑

j=1

(rj −
1

n

n∑

j=1

rj)
T (∂rj −

1

n

n∑

j=1

∂rj), (22)

∂2f2(X) ≈
1

n

n∑

j=1

(∂rj −
1

n

n∑

j=1

∂rj)
T (∂rj −

1

n

n∑

j=1

∂rj), (23)



7

Define

P⊥ = I−MM†, (24)

(10) can be rewritten as,

rj = P⊥wj . (25)

Then, we can obtain

∂rj = −Jjvec(∂x), (26)

where Jacobian matrices is defined as [15],

Jj = [sT
j ⊗ P⊥(B⊗ I3)]V. (27)

Furthermore, (20)-(23) can be rewritten as,

∂f1(X) = −

n∑

j=1

(JT
j rj)

T vec(∂X), (28)

∂2f1(X) ≈
n∑

j=1

(vec(∂X))T (JT
j Jj)vec(∂X), (29)

∂f2(X) =
1

n

n∑

j=1

(rj −
1

n

n∑

j=1

rj)
T (−Jj +

1

n

n∑

j=1

Jj)vec(∂X), (30)

∂2f2(X) ≈
1

n

n∑

j=1

(vec(∂X))T (Jj −
1

n

n∑

j=1

Jj)
T (Jj −

1

n

n∑

j=1

Jj)vec(∂X). (31)

Correspondingly, the gradientg and Hessian matrixH of L are given as follows,

g = g1 − λg2 + ρf2g2, (32)

H = H1 − λH2 + ρgT
2 g2 + ρf2H2, (33)

where

g1 = −

n∑

j=1

JT
j rj (34)

g2 =
1

n

n∑

j=1

(rj −
1

n

n∑

j=1

rj)
T (−Jj +

1

n

n∑

j=1

Jj) (35)

H1 =

n∑

j=1

JT
j Jj (36)
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H2 =
1

n

n∑

j=1

(Jj −
1

n

n∑

j=1

Jj)
T (Jj −

1

n

n∑

j=1

Jj) (37)

After obtainingg andH, the vectorized form of the adjustment matrix△X can be given by,

vec(△X)← (H + δI)−1g, (38)

whereδ is the damping coefficient. After obtaining△X, X can be updated as follows,

X← X−△X. (39)

In the ALM algorithm, the unknown parametersλ, ρ and X are optimized alternately. After

initiation, λ andρ are first fixed. Then, the matrixX is optimized via the Gauss-Newton iteration

algorithm, i.e. (38) and (39), untill

L(X)− L(X−△X) < ǫ0, (40)

whereǫ0 is a small enough value. Afterwards, the weightρ of the penalty term and the Lagrange

multiplier λ can be updated with the optimizedX. The pseudocode of the LDS-CSF algorithm

is given in Algorithm 1.

C. Convergence analysis

The convergence of Algorithm 1 is analyzed in this subsection. From (9) and (14), we can see

that f1 in (13) is exactly the cost function of CSF [14], [15]. Therefore, we only need address

the convergence off2i
andλi in (13) here. Referring to Theorem 2 of [17] and Theorem 3.4 of

[20], the Theorem 1 about convergence can be expressed as follows.

Theorem 1. If ρi → +∞ and
∑∞

i=1
ρ−1

i = +∞, the local deviation constraintf2i
obtained in

Algorithm 1 converges to the optimal value of (9), andλi converges to the optimal Lagrange

multiplier.

Proof. Assume thatf ∗
2 is the optimal value of (9), andλ∗ is the optimal Lagrange multiplier.

According to (9), Algorithm 1 and Lemma 3.2 in [20], we can obtain that






f ∗
2 = 0,

f2i
≥ 0,

λi+1 − λi = −ρif2i+1
≤ 0,

λ∗ ∈ ρif
∗
2 ,

λi+1 ∈ ρif2i+1
.

(42)
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Algorithm 1 The pseudocode of the LDS-CSF algorithm.
1: Set i = 0, ǫ1 = 5× 10−6, ǫ2 = 10−6.

2: Initialize λ0, ρ0 > 0, 0 < γ < 1, β > 1.

3: Initialize X0, S0, f0, f10
, f20

.

4: repeat

5: Using the Gauss-Newton algorithm to obtain the optimizedX by fixing λi andρi,

(Xi+1, L(X)i+1, f1i+1
, f2i+1

) = argmin L(Xi, λi, ρi) (41)

6: Updatingλi andρi by fixing X,

7: if f2i+1
< γf2i

then

8: λi+1 = λi − ρif2i+1

9: ρi+1 = ρi

10: else

11: λi+1 = λi

12: ρi+1 = βρi

13: end if

14: Updatei← i + 1

15: until f1 < ǫ1 & f2 < ǫ2

If ρi → +∞ andρi+1 > ρi,

ρ−2

i ‖λi+1 − λi‖
2

F = ρ−2

i ‖λ
∗ − λi‖

2

F − ρ−2

i ‖λi+1 − λ∗‖2F + 2ρ−2

i 〈λi+1 − λi, λi+1 − λ∗〉

= ρ−2

i ‖λ
∗ − λi‖

2

F − ρ−2

i ‖λi+1 − λ∗‖2F − 2
〈
f2i+1

, f2i+1
− f ∗

2

〉

= ρ−2

i ‖λ
∗ − λi‖

2

F − ρ−2

i ‖λi+1 − λ∗‖2F − 2
〈
f2i+1

, f2i+1

〉

≤ ρ−2

i ‖λ
∗ − λi‖

2

F − ρ−2

i ‖λi+1 − λ∗‖2F

≤ ρ−2

i ‖λ
∗ − λi‖

2

F − ρ−2

i+1
‖λ∗ − λi+1‖

2

F ,

(43)

where‖·‖2F denotes the Frobenius norm. By combining the third condition of (42) andρi+1 > ρi,

we know thatρ−2

i ‖λ
∗ − λi‖

2

F is non-increasing. Then, we have

+∞∑

i=1

ρ−2

i ‖λi+1 − λi‖
2

F < +∞. (44)
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Therefore, any value off2i
is a feasible solution of (9) on account of

‖f2i
‖2F = ρ−2

i ‖λi − λi−1‖
2

F → 0. (45)

Furthermore, using the same proof of Theorem 3.4 in [20], we have

‖f2i+1
− f ∗

2‖
2

F
+ ρ−2

i ‖λi+1 − λ∗‖2F

= ‖f2i
− f ∗

2‖
2

F − ‖f2i+1
− f2i

‖2
F

+ 2
〈
f2i+1

− f ∗
2 , f2i+1

− f2i

〉

+ ρ−2

i (‖λi − λ∗‖2F − ‖λi+1 − λi‖
2

F + 2 〈λi+1 − λ∗, λi+1 − λi〉)

= ‖f2i
− f ∗

2‖
2

F + ρ−2

i ‖λi − λ∗‖2F − ‖f2i+1
− f2i

‖2
F
− ρ−2

i ‖λi+1 − λi‖
2

F

+ 2
〈
f2i+1

− f ∗
2 , f2i+1

− f2i

〉
+ 2ρ−2

i 〈λi+1 − λ∗, λi+1 − λi〉 ,

(46)

Considering the fifth condition in (42), we can get,
〈
f2i+1

− f ∗
2 , f2i+1

− f2i

〉
+ ρ−2

i 〈λi+1 − λ∗, λi+1 − λi〉

=
〈
f2i+1

− f ∗
2 , f2i+1

− f2i

〉
+ ρ−2

i

〈
ρi(f2i+1

− f ∗
2 ),−ρif2i+1

〉

=
〈
f2i+1

− f ∗
2 , f2i+1

− f2i

〉
−
〈
f2i+1

− f ∗
2 , f2i+1

〉

= −
〈
f2i+1

− f ∗
2 , f2i

〉

= −
〈
f2i+1

, f2i

〉
≤ 0.

(47)

Thus,‖f2i+1
− f ∗

2 ‖
2

F
+ ρ−2

i ‖λi+1 − λ∗‖2F is non-increasing, which means that

‖f2i
− f ∗

2‖
2

F + ρ−2

i ‖λi − λ∗‖2F → 0. (48)

Then, we have that

lim
i→+∞

f2i
= f ∗

2 , lim
i→+∞

λi = λ∗, (49)

Therefore,f2i
andλi converge to the optimal values in Algorithm 1.

III. EXPERIMENTS

A. Experimental Data and Set-Up

The performance of the proposed method is evaluated on twelve widely used motion sequences.

Among these data, there are eight synthetic image sequences (jaws, walking, face2, face1, stretch,

pickup, yoga, drink) and four real-image sequences (dance, cubes, matrix, dinosaur). For these

sequences, the corresponding number of frames (T ) and the number of points tracked (n) are
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TABLE I

THE NUMBERS OF FRAMES(T ) AND THE NUMBERS OF POINT TRACKS(n) FOR SEVEN MOTION CAPTURE SEQUENCES.

Number Sequence T n

1 jaws 240 91

2 walking 260 55

3 face2 316 40

4 face1 74 37

5 stretch 370 41

6 pickup 357 41

7 yoga 307 41

8 drink 1102 41

9 dance 264 75

10 matrix 105 30

11 cubes 200 14

12 dinosaur 231 49

listed in Table I. Note that these sequences are publicly available from [8], [14]–[16]. Figures 1

and 2 show one frame of the eight synthetic image sequences and the four real-image sequences,

respectively.

In order to measure the estimation performance, the average mean-square errorerr3D of the

3D coordinates between the estimated 3D shape (S̃) and the true 3D shape (S) is used as the

performance index, i.e.,

err3D =
1

T

T∑

t=1

‖S̃t − St‖
2

F

‖St‖
2

F

. (50)

It should be pointed out that, due to the ambiguity of the camera motion, a Procrustes alignment

method is used to align the estimated 3D shape. Smallererr3D means that the estimations are

more accurate.

B. Comparisons to Recently Reported Results

In order to evaluate the effectiveness of the proposed method (LDS-CSF), we compare it

with several existing NRSFM algorithms, including the well-known the block matrix method

(denoted as BMM) [8], the rotation invariant kernel (denoted as RIK) [16], the column space
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jaws walking face2

face1 stretch pickup

yoga drink

Fig. 1. One frame of the eight synthetic image sequences.

fitting method (denoted as CSF) [14] and the CSF2 method [15]. In experiments, the parameters

of the various methods are set as the default values in the program package provided by the

corresponding authors. Table II shows the mean and standard deviation of 3D reconstruction

error of five methods for 12 sequences. In order to easily compare the performances of different

algorithms, the best result and the second-best result for each sequence are highlighted in red

and blue, respectively. It can be seen from Table II that the estimation errors of LDS-CSF

are smaller than that of other method in general. Further, Tables III shows the corresponding

decreasing percentages of LDS-CSF compared to BMM, RIK, and CSF2, respectively. From

Tables II and III, we can see that LDS-CSF has a better performance than BMM, RIK, CSF and

CSF2 for 12 sequence.

Taking the five frames offace1 as an example, Fig. 3 shows the comparisons of the true

values and the estimated values of the reconstructed feature points for the various methods. We

can see that the feature points estimated by LDS-CSF are closer to the true values than those
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dance cubes

matrix dinosaur

Fig. 2. One frame of the four real-image sequences.

estimated by the other four methods, which coincides with the performance indices of the 3D

reconstruction errors.

Moreover, Fig. 4 shows the reconstruction error comparisons of the feature points for one

frame of the sequenceface1 of the various methods. For the methods BMM, RIK, CSF, CSF2,

we can see from Fig. 4 that the reconstruction errors of one section of feature points are smaller,

but the reconstruction errors of the other section of feature points are larger. This indicates

that the estimation results of a part of feature points deviate from their true values far away.

Nevertheless, from Fig. 4, it can be seen that reconstruction errors of the LDS-CSF model are

more evenly distributed than that of other methods for different feature points. This means that

the proposed method can effectively decrease the local deviations.

IV. CONCLUSIONS

A local deviation-constrained based column-space-fitting approach is presented in this paper

to alleviate the estimation deviation. The proposed method is demonstrated to be able to achieve
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TABLE II

THE MEAN AND STANDARD DEVIATION (µ ± δ) OF 3D RECONSTRUCTION ERROR OF12 SEQUENCES FOR FIVE METHODS.

Sequence BMM RIK CSF CSF2 LDS-CSF

jaws 0.1456±0.0808 0.0306±0.0307 0.0048±0.0109 0.0259±0.0207 0.0096±0.0079

walking 0.0891±0.0510 0.1123±0.1015 0.1229±0.0553 0.0695±0.0423 0.0638±0.0294

face2 0.0213±0.0070 0.0262±0.0088 0.0235±0.0082 0.0209±0.0074 0.0203±0.0071

face1 0.0398±0.0155 0.0394±0.0136 0.0434±0.0208 0.0339±0.0110 0.0310±0.0087

stretch 0.0562±0.0143 0.0505±0.0160 0.0399±0.0160 0.0379±0.0135 0.0385±0.0134

pickup 0.1286±0.0929 0.1419±0.0848 0.1396±0.0868 0.1385±0.0969 0.1227±0.0772

yoga 0.0809±0.0554 0.0883±0.0551 0.0866±0.0532 0.0868±0.0540 0.0832±0.0531

drink 0.0169±0.0132 0.0163±0.0070 0.0132±0.0066 0.0131±0.0066 0.0131±0.0063

dance 0.1445±0.0636 0.1819±0.0653 0.1806±0.0651 0.1374±0.0640 0.1159±0.0412

cubes 0.4860±0.0774 0.0738±0.0344 0.1185±0.0464 0.0726±0.0319 0.0697±0.0294

matrix 0.3142±0.0683 0.3254±0.1062 0.3483±0.0863 0.3242±0.0993 0.3097±0.0926

dinosaur 0.1818±0.0534 0.2715±0.0774 0.4576±0.3115 0.4422±0.2908 0.1629±0.0756

a better estimation performance as a whole. Moreover, the local deviation constraint is verified

to be effective to enhance the estimation stability of different feature points. The experimental

results of the widely used synthetic image sequences and real image sequences have demonstrated

the effectiveness and feasibility of the proposed algorithm.
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