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Abstract

In many traditional non-rigid structure from motion (NRSFM) approaches, the estimation results of
part feature points may deviate from their true values significantly because only the overall estimation
error is considered in the models. Aiming at this issue, a local deviation-constrained based column-
space-fitting approach is presented in this paper to alleviate the estimation deviation. In our work, an
effective model is first constructed by two terms, i.e. the overall estimation error computed by a linear
subspace representation, and the constraint term based on the variance of reconstruction error for each
frame. Moreover, an Augmented Lagrange Multipliers (ALM) iterative algorithm is presented to solve
the optimization of the proposed model. Because both the overall estimation error and the local deviation
are utilized, the proposed method can achieve a good estimation performance and a relative uniform
estimation error distribution for different feature points. Experimental results on several widely used
synthetic sequences and real sequences demonstrate the effectiveness and feasibility of the proposed

algorithm.
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I. INTRODUCTION

Nowadays, recovering 3D object shapes from 2D images hasrizeeovaluable measure to
enhance the tasks in computer vision, such as face recognition [1]-[3], etc. As a fundamental
method of 3D reconstruction, non-rigid structure from motion (NRSFM) provides an approach
to jointly estimate 3D object shapes and the relative camera motions from the corresponding
2D points in a sequence of images. Because of the lack of prior information on 3D shape
deformation, NRSFM is still an intractable and underconstrainted problem.

In order to alleviate the uncertainty, more prior information and constraints have been gradually
explored in 3D reconstruction model. As a remarkable work, a matrix factorization method was
proposed in [4] to represent the unknown 3D shapes as a linear combination of a small number
K of 3D shape bases. In the matrix factorization method, the decomposed motion factor and
shape basis are constrained to be of a low-rakk Bue to its simplicity, many works have
been developed subsequently based on the low rank shape model. In [5], a closed form solution
was presented by combining both the rotation constraint and the low rank constraint. In [6],
a Gaussian prior is assumed for the shape coefficients, and the optimization is solved using
the expectation-maximization (EM) algorithm. Considering the approximate symmetry of facial
feature points, an effective depth estimation model was proposed in [7] based on the constraint
independent component analysis.

In [8], a non-rigid structure from motion factorization model is proposed by solving a very
small semi-definite programming and a nuclear-norm minimization problem. A reconstruction-
based metric learning method was presented in [9] to learn a discriminative distance metric for
unconstrained face verification. A sequential non-rigid structure from motion model was proposed
in [10] by utilizing the physical priors of object’s surface. When the non-rigid object has degen-
erate deformations, the extra degrees-of-freedom will yield spurious shape deformations due to
non-negligible noise in real applications. To deal with this problem, a low-rank shape deformation
model was proposed to represent 3D structures of degenerate deformations by considering both
the rank-deficient nature and the low-rank property [11]. In [12], a dense NRSFM model was
given as an energy-based formulation by incorporating the physical, discontinuity-preserving
deformation prior.

In order decrease the unknow parameters, the 3D point trajectories are modeled compactly



as the Discrete Cosine Transform basis under the smoothing constraint [13]. Nevertheless, due
to the limitation of rank &, the high-frequency deformation cannot be well modeled for the
trajectory representation. In [14], a smoothly deforming 3D shape was modeled as a single point
moving along a smooth time-trajectory within a linear shape space. This representation provides
a better reconstruction of high-frequency deformation without relaxing the rn&e®istraint.

A column-space-fitting (CSF) method was developed to obtain the optimized solution [15].
Simulations on multiple sequences have demonstrated that the CSF algorithm can achieve a
very good estimation performance for deformed objects.

In most traditional non-rigid structure from motion (NRSFM) models, a good estimation
performance was generally achieved by minimizing the overall estimation error of feature points.
Because only the overall estimation error is considered, the estimation results of part feature
points may deviate from their true values far away. In order to solve this problem, a local
deviation-constrained based column-space-fitting approach is presented in this paper to decrease
the estimation deviation. In our work, an effective model is first constructed by two terms, i.e.
the overall estimation error computed by a linear subspace representation, and the constraint
term based on the variance of reconstruction error for each frame. Furthermore, an Augmented
Lagrange Multipliers (ALM) iterative algorithm is developed to optimize the proposed model.
Because both the overall estimation error and the local deviation are utilized, a good estimation
performance can be achieved for the proposed method. Moreover, the estimation errors are
uniform for different feature points. In addition, the convergence analysis is carried out for the
proposed algorithm.

The remainder of the paper is organized as follows. A detailed description of the proposed
method is presented in Section Il. Experimental results are given in Section Ill. Finally, conclu-

sions are made in Section IV.

[I. METHODOLOGY
A. Formulation of the LDS-CSF Moddl

Assume thafz, ;, v, ;)7 (t =1,2,---,T,5=1,2,---,n) is the 2D projection of thgth 3D

point observed on th#h image, then input 2D point tracks ofl’ images can be represented as



a 2T x n observation matriV, i.e.,

11 X12 0 Tin
Y11 Y2 0 Ui
W = : DT : (1)
Ir1 Xr2 - TTn
Yrai Yrz2 - Y1

According to the linear subspace modél, can be factorized as:

W =MS=D(C®I;)S=D(2X®l;)S, )
N——— \6/
" M

whereM € R?T3K represents the camera motion matix¢ R3%*" denotes theé< 3D shape
bases. The matricad ¢ R*3T, C ¢ R™*K andl; represent a block-diagonal rotation matrix,
a shape coefficient matrix and3ax 3 identity matrix, respectively. The operati@ |3 is the
Kronecker product ofC andls;. The matrixQ2; € R7*¢ and the unknown factoX € R¥*K
denote the DCT basis matrix and the corresponding coefficient matrix, respectively.

For the z and y coordinates of feature points on thth frame, the reconstruction errors
(€x, ¢y, ;) Of the jth feature point between the true values;, y. ;) and the estimated results
(zf;,y¢;) can be given by,

Capy; = Ttj — x:,p 3
and

Cyr; — Ytj — ij' (4)
respectively. Correspondingly, the mean value of the reconstruction errors feature points

can be computed as,

S IR
€x, = g Z e:Eth (5)
j=1
and
1L
Cyr = E Z €y (6)
j=1

respectively. Furthermore, for thth frame, the standard deviationg ando,, of reconstruction

errors can be computed as,

e = <% Z(ert,j - Elﬁt)z) ’ (7)



and 1
1 n B ) 2 8
Oty = g Z(eyt,j - 6yt) ’ ( )
j=1
respectively. For different feature points, we can see from (7) and (8) that the estimation results
are closer to the true values as a whole whgnando,, are smaller. Thusy,, ando;, can be
used as the indices to constraint the local deviation extent of the estimation results.
In terms of (2), the local deviation constraint-based column-space-fitting (LDS-CSF) model

can be formulated as,
min [|W — W*||7,
T 9)
1
s.t. 5T Z(O’fm +0;)=0

t=1

whereW* = MS.

B. Optimization Scheme of the LDS CSF Model

For convenience, we first define some simplified notations before solving the model (9). Let
w; € R ands; € R¥*! denote thejth column of the 2D observation matrw and 3D

shape baseS, respectively. The 2D reprojection erroy of the jth column can be defined as,

rj:Wj—MSj:Wj—MMTWj. (10)
Furthermore, denote
1 n
fr=52_r5 (11)
j=1
and
I & I~
fr=gm > (== 1) (12)
7j=1 7j=1
Then, the LDS-CSF model (9) can be rewritten as,
min f1
(13)
S.t. f2 = 0.

where

1 n
fi=52_ 1" (14)
=1



fo= 12 —%Zr (15)

Initially, the rotation matrixD is computed via an Euclidean upgrade method.
It can be seen from (2) th&?, is a predefined DCT basis matrix. Once the fac¢fois given,

the factorM can be determined. GiveM, the shape basis; can be estimated by,

It means thai is the only parameter to be optimized.
In terms of Augmented Lagrange Multipliers (ALM) iterative algorithm [17]-[19], the LDS-

CSF model (13) can be reformulated as,
LX) = fi= Mo+ 51 (17)

wherep > 0 and \ are the weights of the penalty term and Lagrange multiplier, respectively.
According to the Gauss-Newton method, the first order partial derivativewith respective
to X can be given by,
oL _of \0f

an
X~ ax ax Trhax (18)

Furthermore, the second order partial derivative.ofvith respective toX can be computed as,
PL_Ph [\ Ph Oy P
OX?  ox? T ox? OX?
According to (14), we can obtain the first order partial derivative and the second order partial

+ f( ) + pfa (19)

derivative of 1, i.e.,

df1 (X Z rfor;, (20)

O (X Z oo, (21)

In terms of (15), we can obtain the first order partial derivative and the second order partial

derivative of f,, i.e.,

0100 = 23 ——Zr —%Zam, (22)

7j=1

0 fo(X) ~ Z&r ——Zar (or, ——Z&r (23)



Define
(20) can be rewritten as,

Then, we can obtain
8rj = —ijec(ﬁx),

where Jacobian matrices is defined as [15],
=[sf ® Pr(B® I3)]V.

Furthermore, (20)-(23) can be rewritten as,

n

0f1(X) ==> (3]r;) vec(dX),

7=1

P hH(X) ~ Z(vec(ax))T(JJTJj)veC@X),
0520X) = = 320y = 5 ) (3, + - 33 )uec(dX),

n

Z(vec (OXNT(J; ——ZJ (J; ——ZJ vec(0X).

j=1 J=1

% f2(X) ~

S|

Correspondingly, the gradiegtand Hessian matriid of L are given as follows,

g = g1 — A2+ pfago,
H=H, — My + pglga + pfaHo,

where

—iJ]Trj
j=1
1< I 1<
92252(0—52%) (—Jj+gz~]j)
j=1 Jj=1

7j=1
Hi=) 303
7j=1

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)



j=1
After obtainingg andH, the vectorized form of the adjustment matrixX can be given by,

vec(AX) «— (H+681)7 g, (38)

where/ is the damping coefficient. After obtainingX, X can be updated as follows,
X — X — AX. (39)

In the ALM algorithm, the unknown parameteks p and X are optimized alternately. After
initiation, A andp are first fixed. Then, the matriX is optimized via the Gauss-Newton iteration
algorithm, i.e. (38) and (39), untill

L(X) = L(X — AX) < e, (40)
wheree, is a small enough value. Afterwards, the weighdf the penalty term and the Lagrange

multiplier A can be updated with the optimizéd The pseudocode of the LDS-CSF algorithm
is given in Algorithm 1.

C. Convergence analysis

The convergence of Algorithm 1 is analyzed in this subsection. From (9) and (14), we can see
that f; in (13) is exactly the cost function of CSF [14], [15]. Therefore, we only need address
the convergence of,, and \; in (13) here. Referring to Theorem 2 of [17] and Theorem 3.4 of
[20], the Theorem 1 about convergence can be expressed as follows.

Theorem 1. If p; — +oo and> >, p;' = +oo, the local deviation constraint, obtained in
Algorithm 1 converges to the optimal value of (9), akdconverges to the optimal Lagrange
multiplier.

Proof. Assume thatf; is the optimal value of (9), and* is the optimal Lagrange multiplier.

According to (9), Algorithm 1 and Lemma 3.2 in [20], we can obtain that

(15 =0,
Ja, >0,
Ais1 — Ai = —pifo,, <0, (42)
A€ pifs,

Aiv1 € pifa,,-




Algorithm 1 The pseudocode of the LDS-CSF algorithm.
1: Seti =0, ¢, =5 x 1075, ¢, = 107,

2: Initialize g, po > 0,0< vy <1, 5> 1.

3: Initialize Xo, Sv, fo, fios f2o-

4: repeat

5:  Using the Gauss-Newton algorithm to obtain the optimixely fixing \; and p;,

(xi+17 L(x)i-i-lu f1i+17 f2i+1) = argmin L(x27 )‘i7 pl) (41)

6:  Updating\; andp; by fixing X,
7 if f2i+1 < rYf2z then

8 Aiv1 = Ai — pifai,
o Pi+1 = Pi

10. else

11: Aiy1 = A;

12: pi+1 = Bpi

13:  end if

14: Updatei «— 7+ 1

15: until fl < € & f2 < €9

If p; — 400 andp;11 > p;,
P i1 = Mills = oI = Xl — 22 e = AN + 20777 (Mg — Ay A — A7)
= 0 2N = Al = 2 2N = Nl = 2 (Fors o — 3)
= 0 IV = Xl % = o i = N5 = 2 (fouas fourn ) (43)
<o 2N = Nilly = P i — X[
< Pz’_ZH)\* - Az”iﬂ - Pi_+21||)\>k - )\z‘+1||§?>

where||-||% denotes the Frobenius norm. By combining the third condition of (42)sand> p;,

we know thatp; 2||\* — \;||3 is non-increasing. Then, we have

—+00

> i = Al < +oo. (44)

i=1
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Therefore, any value of,, is a feasible solution of (9) on account of

| fo: % = P2 lX = Nica || — 0. (45)

Furthermore, using the same proof of Theorem 3.4 in [20], we have
o = S35+ 272 IAis — A
= || fo, — f2*||?? — [ f2r0 — fo ; +2{(fory = 3, forss — f21)
7212 = A = Iien = Aill3 42 (isn = X% Aia = A) (46)
= 1o = S5l + 021N = A W5 = I foua = fo

_l_ 2 <f2i+1 - f2*7 f2i+1 - f22> _l_ 2p7,_2 <)\i+1 - )\*7 )\i-i-l - )\Z> )
Considering the fifth condition in (42), we can get,

(Fooir = 132 Fais = Fou) + 977 it = A Aisr — Ad)
= (fors = I3 Fovis = Fou) + 052 (pi(foips — 3), —Pif2isn)
= (foos = I3+ Fror = o) = {Fooir = I3 foisn) (47)
= —{fors = 5. f2r)
=~ (four, fa;) 0.

37 — i i1 — Nll%

Thus, || fo,,, — f2*||; + p; || Ais1 — A*|)% is non-increasing, which means that
Ifo: = f3 Ml + 2210 = X[ = 0. (48)
Then, we have that
dim o = f5, 0 lm A=A (49)

Therefore, f,, and \; converge to the optimal values in Algorithm 1.

[1l. EXPERIMENTS
A. Experimental Data and Set-Up

The performance of the proposed method is evaluated on twelve widely used motion sequences.
Among these data, there are eight synthetic image sequences (jaws, walking, face2, facel, stretch,
pickup, yoga, drink) and four real-image sequences (dance, cubes, matrix, dinosaur). For these

sequences, the corresponding number of frarfi§safid the number of points tracked)(are
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TABLE |

THE NUMBERS OF FRAMES(T') AND THE NUMBERS OF POINT TRACKS(n) FOR SEVEN MOTION CAPTURE SEQUENCES

Number | Sequence| T n

[N

jaws 240 | 91

walking 260 | 55

face2 316 | 40

facel 74 37

stretch 370 | 41

pickup 357 | 41

yoga 307 | 41

drink 1102 | 41

© |0 (N |0 |bdfw|DN

dance 264 | 75

=
o

matrix 105 | 30

cubes 200 | 14

=
[

dinosaur | 231 | 49

[y
N

listed in Table I. Note that these sequences are publicly available from [8], [14]-[16]. Figures 1
and 2 show one frame of the eight synthetic image sequences and the four real-image sequences,
respectively.

In order to measure the estimation performance, the average mean-squateexfoof the
3D coordinates between the estimated 3D sh&)ea(d the true 3D shapeS)is used as the

performance index, i.e.,

err3D = Z HShStHStHF (50)
t=1 F

It should be pointed out that, due to the ambiguity of the camera motion, a Procrustes alignment
method is used to align the estimated 3D shape. Smalle¥D means that the estimations are

more accurate.

B. Comparisons to Recently Reported Results

In order to evaluate the effectiveness of the proposed method (LDS-CSF), we compare it
with several existing NRSFM algorithms, including the well-known the block matrix method

(denoted as BMM) [8], the rotation invariant kernel (denoted as RIK) [16], the column space
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Fig. 1. One frame of the eight synthetic image sequences.

fitting method (denoted as CSF) [14] and the CSF2 method [15]. In experiments, the parameters
of the various methods are set as the default values in the program package provided by the
corresponding authors. Table Il shows the mean and standard deviation of 3D reconstruction
error of five methods for 12 sequences. In order to easily compare the performances of different
algorithms, the best result and the second-best result for each sequence are highlighted in red
and blue, respectively. It can be seen from Table Il that the estimation errors of LDS-CSF
are smaller than that of other method in general. Further, Tables Il shows the corresponding
decreasing percentages of LDS-CSF compared to BMM, RIK, and CSF2, respectively. From
Tables Il and 1ll, we can see that LDS-CSF has a better performance than BMM, RIK, CSF and
CSF2 for 12 sequence.
Taking the five frames ofacel as an example, Fig. 3 shows the comparisons of the true

values and the estimated values of the reconstructed feature points for the various methods. We

can see that the feature points estimated by LDS-CSF are closer to the true values than those
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matrix

Matrix Sequence
30 polnts, 93 frames and K = 3

Fig. 2. One frame of the four real-image sequences.

estimated by the other four methods, which coincides with the performance indices of the 3D
reconstruction errors.

Moreover, Fig. 4 shows the reconstruction error comparisons of the feature points for one
frame of the sequendacel of the various methods. For the methods BMM, RIK, CSF, CSF2,
we can see from Fig. 4 that the reconstruction errors of one section of feature points are smaller,
but the reconstruction errors of the other section of feature points are larger. This indicates
that the estimation results of a part of feature points deviate from their true values far away.
Nevertheless, from Fig. 4, it can be seen that reconstruction errors of the LDS-CSF model are
more evenly distributed than that of other methods for different feature points. This means that

the proposed method can effectively decrease the local deviations.

I[V. CONCLUSIONS

A local deviation-constrained based column-space-fittipgreach is presented in this paper

to alleviate the estimation deviation. The proposed method is demonstrated to be able to achieve



TABLE Il

14

THE MEAN AND STANDARD DEVIATION (N + §) OF 3D RECONSTRUCTION ERROR OH2 SEQUENCES FOR FIVE METHODS

Sequence| BMM RIK CSF CSF2 LDS-CSF
jaws 0.1456£0.0808 | 0.0306:0.0307 | 0.0048t0.0109 | 0.0259+0.0207 | 0.0096+0.0079

walking | 0.08910.0510| 0.1123t0.1015 | 0.1229+0.0553 | 0.0695:0.0423 | 0.0638:0.0294
face2 0.0213t0.0070 | 0.0262:0.0088 | 0.0235:0.0082 | 0.0209+0.0074 | 0.0203:0.0071
facel 0.0398t0.0155 | 0.0394£0.0136 | 0.0434£0.0208 | 0.0339+:0.0110 | 0.031G0.0087
stretch | 0.0562+0.0143 | 0.0505+0.0160 | 0.0399+0.0160 | 0.0379:0.0135 | 0.0385t0.0134
pickup | 0.1286:0.0929 | 0.1419:0.0848 | 0.13960.0868 | 0.1385:0.0969 | 0.1227A-0.0772
yoga 0.0809:0.0554 | 0.0883t0.0551 | 0.0866t0.0532 | 0.0868+:0.0540 | 0.0832:0.0531
drink 0.0169£0.0132 | 0.0163:0.0070 | 0.0132+0.0066 | 0.01310.0066 | 0.013H-0.0063
dance | 0.1445t0.0636 | 0.1819:0.0653 | 0.1806+0.0651 | 0.1374+0.0640 | 0.1159+0.0412
cubes | 0.4860:0.0774 | 0.0738£0.0344 | 0.1185:0.0464 | 0.0726£0.0319 | 0.0697A-0.0294
matrix | 0.3142:0.0683 | 0.3254:0.1062 | 0.3483t0.0863 | 0.3242+0.0993 | 0.3097:-0.0926

dinosaur | 0.1818t0.0534 | 0.2715t0.0774 | 0.4576£0.3115 | 0.4422£0.2908 | 0.1629t0.0756

a better estimation performance as a whole. Moreover, the local deviation constraint is verified
to be effective to enhance the estimation stability of different feature points. The experimental
results of the widely used synthetic image sequences and real image sequences have demonstrated

the effectiveness and feasibility of the proposed algorithm.
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