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A Robust Point Set Registration Approach with
Multiple Effective Constraints

Abstract—How to accurately register point sets still re-
mains a challenging task, due to some unfavorable factors.
In this paper, a robust point set registration approach is
proposed based on the Gaussian mixture model (GMM)
with multiple effective constraints. The Gaussian mixture
model is established by wrapping a model point set to
a target point set, via a spatial transformation. Instead
of a displacement model, the spatial transformation is
decomposed as two types of transformations, an affine
transformation and a non-affine deformation. For the affine
transformation, a constraint term of the parameter vector is
applied to improve the robustness and efficiency. In order
to enforce the smoothness, the square norm of the kernel
Hilbert space is adopted as a coherent constraint for the
non-affine deformation. Moreover, the manifold regulariza-
tion is utilized as a constraint in the proposed model, to
capture the spatial geometry of point sets. In addition,
the expectation-maximization (EM) algorithm is developed
to solve the unknown variables of the proposed model.
Compared to the state-of-the-art approaches, the proposed
model is more robust to deformation and rotation, due
to the use of multiple effective constraints. Experimental
results on several widely used data sets demonstrate the
effectiveness of the proposed model.

Index Terms—Point set registration, Gaussian mixture
model, Expectation-Maximization algorithm.

I. INTRODUCTION

THe task of point set registration is to find the correspon-
dence between a model point set and a target point set,

and to recover the corresponding mapping transformation. As
a critical component, point set registration has been widely
applied to many computer vision tasks, including stereo system
[1], [2], image retrieval [3], [4], image registration [5], [6], etc.

So far, many effective works have been reported for point
pairwise registration. In many earlier studies, to make it
more tractable, point set registration was generally simplified
in some aspects, such as in terms of the mapping model,
outliers, noise, etc. Iterated closest point is one of the most
popular algorithms for rigid point set registration, because of
its simplicity and low computational complexity [7], [8]. As a
simple heuristic method, the correspondence of two point sets
was assigned by using the nearest-neighbor relationship in the
iterated closest point algorithm. In [9], as an generalization
of two-pattern case, an iterative solution was derived based
on the expectation-maximization (EM) [10], for global regis-
tration of multiple d-dimensional point patterns. For point set
registration, the model simplification may make the established
model significantly deviate from the true conditions in real-
world applications.

In order to obtain more robust solutions, some probabilistic
methods have been developed by using the soft assignment of
correspondences, which establishes correspondences between

all combinations of points, according to probabilities. In [11], a
thin-plate spline-based robust point matching algorithm (TPS-
RPM) was proposed to solve non-rigid mapping, as well as
the correspondences in the presence of noise and outliers.
The thin-plate spline was devised as the parameterizations
of the non-rigid spatial mapping and the soft assignment for
the correspondence, which was estimated by deterministic
annealing technique. As deterministic annealing is a heuris-
tics optimization method, the globally optimal solution may
not be achieved for TPS-RPM. To address this issue, an
asymmetric point matching (APM) algorithm was proposed in
[12] by eliminating the transformation variables in the TPS-
RPM objective function. Moreover, in order to improve the
performance, the parameter vector was weighted by a positive
semidefinite matrix and used a robustness constraint.

As an effective model, Gaussian mixture model (GMM) has
been widely applied on point set registration. In [13], point
set registration was reformulated as a problem of aligning
two Gaussian mixtures by minimizing a statistical discrepancy
measure. A line segment based automatic image registration
method was proposed in [14] using GMM and the EM
algorithm. In the image registration method, the probabilistic
point registration method is extended for line segments by
assuming an equal isotropic covariance and a constant prior
of outlier. Moreover, the corresponding line segments may
not share the same start points and end points. In [15], an
automatic multi-view registration method was reported for
multi-view point cloud registration based on the EM algorithm.
A robust estimator, named the L2-minimizing estimator, was
employed to build robust sparse and dense correspondences
[16]. A particular advantage of [16] is to handling significant
scale changes and rotations. In order to remove mismatches
from given putative image feature correspondences, an effi-
cient approach, termed as locality preserving matching, was
designed by maintaining the local neighborhood structures of
potential true matches [17].

For highly cluttered scenes, a rotation invariant non-rigid
point set matching algorithm was reported in [18], [19],
by matching the graphs that represent two point sets. The
graphs were constructed by minimum spanning tree (MST)-
induced triangulation and star graph. A point set registration
method, spatially constrained context-aware Gaussian fields
(SCGF), was proposed in [20], by means of a context-aware
representation and a graph Laplacian regularized Gaussian
fields. In [21], the local feature, shape context, was used to
assign the membership probabilities of the mixture model.
Moreover, the transformation between the two point sets was
specified in a reproducing kernel Hilbert space, and a sparse
approximation was adopted to achieve a fast implementation.

Gradually, the various constraints have been utilized to
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improve the performance of GMM. In [22], the points in the
target point set were considered as the GMM centroids, and
the points in the model point set as the data points generated
by the GMM. The coherence constraint, defined as the square
norm of reproducing the kernel Hilbert space, was proposed
to force the GMM centroids to move coherently as a group, to
preserve the topological structure of model point set. In order
to identify outliers, point set registration was formulated as
a mixture model with a set of latent variables in [23], [24].
Moreover, manifold regularization, a weighted transformation
by a graph Laplacian, was imposed on the transformation to
capture the intrinsic geometry of a specific shape or object.

Besides pairwise registration, groupwise registration is an-
other category of point set registration [25]. In [26], a group-
wise GMM-based registration approach was proposed to create
a statistical shape model, via alternately updating the mean
shape and registering it to the training shapes. A generative
groupwise registration approach, named joint registration of
multiple point clouds (JRMPC), was proposed by assuming
that multiple point sets are generated from a single GMM
[27], [28]. Two types of optimization methods, batch and
incremental EM algorithms, were developed to deal with point
sets contaminated by noise and outliers.

Nowadays, point set registration still remains a challenging
problem, because of the presence of many unfavorable factors
in real applications, such as deformation, rotation, etc. In this
paper, a robust point set registration approach is proposed
based on the Gaussian mixture model (GMM) with multiple
effective constraints. Inspired by [11], the transformation is
decomposed as a more specific model, i.e. an affine trans-
formation plus a non-affine deformation, instead of a gen-
eral displacement model [21]–[23]. In order to improve the
robustness and efficiency, the affine transformation is given
by a linear representation of its parameter vector with a
weighted constraint [12]. As a global geometric constraint, a
coherent constraint is applied on the non-affine deformation
to strengthen the smoothness. Referring to [23], [24], the
manifold regularization is considered in the proposed model,
to capture the intrinsic geometry of a specific shape or object.

As a major work of this paper, we propose an effective
multiple-constraint based GMM model for point set registra-
tion. Compared to the state-of-the-art approaches, the pro-
posed model has a more robust performance. Moreover, an
expectation-maximization algorithm is developed to solve the
unknown variables in the proposed model.

The rest of the paper is organized as follows. The proposed
model is introduced in Section II. Experimental results and re-
lated discussions are given in Section III. Finally, conclusions
are made in Section IV.

II. METHODOLOGY

There are two main components in the proposed method: a
GMM model with multiple constraints, and the corresponding
optimization process using the EM algorithm.

A. GMM Model based on Multiple Constraints
Given a model point set X = (x1, ...,xN )T ∈ RN×D

with N points in a D-dimensional space, and a target point

set Y = (y1, ...,yM )T ∈ RM×D with M points in a D-
dimensional space, the goal of point set registration is to
estimate a transformation T (X) to wrap the model point set
to the target point set.

Considering the points in X as GMM centroids, the points
in Y can be generated by the GMM. Assuming that the outlier
distribution is uniform, the mixture model can be formulated
as follows,

p(ym|µ) = γ
1
N

+
N∑

n=1

(1−γ)P (n)
1

(2πσ2)D/2
e−

‖ym−T (xn)‖2
2σ2 ,

(1)
where σ2 is the variance of the Gaussian distribution, and
γ is the percentage of outliers [22]. From (1), we can see
that the GMM centroid locations can be parameterized by a
set of unknown parameters, denoted as µ = {T, σ2, γ}. The
parameter set µ can be estimated by minimizing the following
negative log-likelihood function,

L(µ|Y) = −
M∑

m=1

lnP (ym|µ). (2)

After substituting (1) into (2), the negative log-likelihood
function can be rewritten as follows,

L(µ|Y) =
1

2σ2

M∑
m=1

N∑
n=1

P (n|ym, µold)||ym − T(xn)||2

+
MpD

2
lnσ2 −Mpln(1− γ)− (M −Mp)lnγ

,

(3)
where µold denotes the current parameter values, and

Mp =
M∑

m=1

N∑
n=1

P (n|ym,µold) ≤ M. (4)

In terms of the Tikhonov regularization framework, the trans-
formation T (X) can be defined as the initial position plus a
displacement function v(X), i.e.,

T (X) = X + v(X). (5)

In [22], the optimal v(X) was derived as a linear combination
of the kernel functions centered at the points X, i.e.,

v(X) = GW, (6)

where W is a matrix of coefficients, and G is a kernel matrix
with elements gij , as follows:

gij = e−
1
ε ||xi−xj ||2 , (7)

where ε is a tolerated error. In order to enforce the smoothness
of v, the square norm of a reproducing kernel Hilbert space
is used as a coherent constraint, and denoted as φ1(v), as
follows:

φ1(v) = ‖v‖2H = tr(WT GW), (8)

where tr(·) denotes the trace.
In (5), the displacement function v(X) is a general displace-

ment function with a coherent constraint. Referring to (5) and
[11], the spatial transformation T (X) can be decomposed as
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two types of transformations, an affine transformation Ta(X)
and a non-affine deformation v(X), i.e.,

T (X) = Ta(X) + v(X). (9)

Compared to (5), (9) is a more specific decomposition. Fur-
thermore, referring to [12], the affine transformation Ta(X)
can be given by,

Ta(X) = J(X)θ, (10)

where J(X) is the Jacobian matrix, and θ contains the param-
eters of scale variation, rotation and translation. In order to
improve the robustness and efficiency, θ is enforced by the
following constraint,

φ(θ) = θT Hθ − 2θ0
T Hθ, (11)

where H is a positive semidefinite matrix whose entries
represent the weights assigned to the elements of θ. For a 2D
affine transformation of one point xi, (10) has the following
form,

Ta(xi|θ) =
[

θ1 θ2

θ3 θ4

] [
x1

i

x2
i

]
+

[
θ5

θ6

]
= J(xi)θ, (12)

where the parameters θ = [θ1, · · · , θ6]T with [θ1, · · · , θ4]T

and [θ5, θ6]T being linear transformation and translation
parts, respectively. In [12], θ was set as a constant vector
[1 0 0 1 0 0]T . The constraint (11) provides a flexible trade-
off between the linear transformation and the translation.

Considering (6), (9) and (10), in the proposed method, the
spatial transformation model T (X) is devised as,

T (X) = J(X)θ + GW, (13)

with the constraint (11). Moreover, similar to [22], the coherent
constraint (8) is also applied on the non-affine deformation
v(X) to enforce the smoothness.

For CPD, the transformation learning focuses on how to
utilize the global geometric constraint on the point sets, to
obtain a smooth transformation. Referring to [23], [24], the
manifold regularization is also considered in the proposed
method, to capture the intrinsic geometry of a specific shape
or object, i.e.,

φ2(v) = tr(TT AT). (14)

Substitute (13) into (14), φ2(v) can be rewritten as,

φ2(v) = tr((Jθ + GW)T A(Jθ + GW)), (15)

In (15), A can be given by,

Aij = Gd
ij −Gij , (16)

where Gd = diag(ΣM
j=1Gij), i.e., the diagonal matrix whose

i-th entry is the sum of the weights of edges leaving xi [23].
Considering (3), (8), (11), and (15), the negative log-

likelihood function of the proposed model can be formulated,
as follows:

L(µ|Y,θ) =
1

2σ2

M∑
m=1

N∑
n=1

P (n|ym, µold)||ym − T(xn)||2

+
MpD

2
lnσ2 −Mpln(1− γ)− (M −Mp)lnγ

+
λ1

2
φ(θ) +

λ2

2
φ1(v) +

λ3

2
φ2(v),

(17)

where λ1, λ2, and λ3 are the coefficients of the respective
regularization terms.

B. The EM algorithm

For the negative log-likelihood function (17), the EM algo-
rithm is adopted to solve the unknown variables θ, γ, σ2, and
W. The optimization process is alternated between two steps:
an expectation step (E-step) and a maximization step (M-step).
1) Expectation step

Given the current parameters µold, the posterior probability
pmn can be defined as follows:

pmn = P (n|ym, µold). (18)

The posterior probability pmn indicates the degree of the
observed data point ym coinciding with the model point xn

under the current estimated transformation T . In terms of
Bayes rule, (18) can be rewritten as follows:

pmn =
P (ym|n, µold)P (n|µold)

P (ym|µold)

=
πmne−

‖ym−T(xn)‖2
2σ2

∑N
k=1 πmke−

‖ym−T(xk)‖2
2σ2 + γ(2πσ2)(D/2)

(1−γ)N

, (19)

where πmn is the membership probability of the GMM [21]. In
the expectation step, each element of the posterior probability
matrix P is computed via (19).
2) Maximization step

After obtaining the posterior probability matrix P, the latent
variables are estimated by the gradient descent algorithm.
Firstly, the derivative of L(µ|Y,µold,θ) with respect to θ can
be computed as follows:

∂L

∂θ
=

1
σ2

(JT Jθ − JT PGW) + 2λ1(Hθ −HT θ0)

+ 2λ3(JT AJ− ((GW)T AJ)T ).
(20)

Let ∂L
∂θ be zero, then we can obtain the estimated θ, as follows:

θ = (2λ1H + 2λ3JT AJ +
1
σ2

JT J)−1(
1
σ2

JT PGW

+ 2λ1HT θ0 − 2λ3((GW)T AJ)T ).
(21)

Given θ, the transformation T (X) can be estimated by (13).
Substituting θ and T (X) into (17), we obtain

L =
1

2σ2

M∑
m=1

N∑
n=1

pmn||ym − Jθ −GW||2

+
MpD

2
lnσ2 −Mpln(1− γ)− (M −Mp)lnγ

+
λ1

2
φ(θ) +

λ2

2
tr(WT GW)

+
λ3

2
tr((Jθ + GW)T A(Jθ + GW)).

(22)

Furthermore, we compute the derivatives of L, with respect
to γ, σ2 and W. Then, the derivatives are all set to zero, and
the unknown variables can be estimated as follows:

∂L

∂γ
=

Mp

1− γ
− M −Mp

γ
, (23)
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γ = 1− Mp

M
, (24)

∂L

∂W
= − 1

σ2
GP(Y−Jθ)+λ2GW+λ3GA(Jθ+GW), (25)

W = [PG + λ2σ
2 + λ3AGσ2]

−1
[PY− PJθ − λ3σ

2AJθ],
(26)

∂L

∂σ2
= − 1

2σ4
(tr(YT d(PT 1)Y)− tr((PY)T T)

− tr(TT d(P1)T)) +
MpD

2σ2
,

(27)

σ2 =
1

MpD
(tr(YT d(PT 1)Y)−tr((PY)T T)−tr(TT d(P1)T)).

(28)
The optimization process of the proposed model is summa-

rized in Algorithm 1.

Algorithm 1 The MC-RPM Algorithm.
1: Input: Model point set X, target point set Y, the initial

parameters λ1, λ2, λ3, ε;
2: Output: the transformation T (X);
3: Initialize: W = 0, σ2 = 1

DMN

∑M,N
m,n=1 ||ym − xn||2;

4: Compute G and A using (7) and (16), respectively;
5: Compute T (X) using (13);
6: repeat
7: E-step:
8: Update the matrix P by (19);
9: M-step:

10: Update θ with (21);
Compute T (X) with (13);
Update γ, W and σ2 by (24), (26) and (28), respec-
tively;

11: until convergence;
12: Compute the final T (X) with (13).

C. Similarity and difference of the related methods
The proposed method, denoted as MC, is related to three

point set registration algorithms, i.e. coherent point drift (CPD)
[22], manifold regularization method (MR) [23], [24], and
non-rigid point set registration by preserving global and local
structures (PR-GLS) [21]. Table I tabulates the similarity and
difference of four related methods.

The proposed method and three related methods are all
based on the GMM. In CPD, the parameter γ is set as a
constant to simplify the optimization. Except for CPD, the
parameter γ is adaptively optimized for other three methods
in the model optimization process.

The transformation T (X) is decomposed as the initial
position plus a displacement function v(X), i.e., (5), for CPD,
MR, and PR-GLS. Different from these three methods, T (X)
is decomposed as an affine transformation and a non-affine
deformation, i.e. (13), for MC.

For the four methods, different constraints are utilized in
the respective models. Considering the function and definition,
Table II shows a brief summary for three types of constraints.
The coherent constraint, i.e. (8), is used in all these four meth-
ods. The manifold regularization term is adopted in both MR

and MC. Nevertheless, different from MR, the transformation
(13) is considered in the manifold regularization term of MC,
instead of (5). In addition, different from other three methods,
the robustness constraint, i.e. (11), is applied on the parameter
vector θ for MC. Except for CPD, the local feature, shape
context, is utilized to compute the correspondence P for other
three methods.

III. EXPERIMENTAL RESULTS

A. Experimental data and set-up
The performance of the proposed method is evaluated on

four types of data, including the synthetic data from two
classical shapes [11], three sets of data with arbitrary shapes
[11], three sequences used for non-rigid structure from motion
(NSFM) [29], and four 3D sequences [29], [30].

To evaluate the performance of our proposed method, we
compare it to five state-of-the-art algorithms for point set
registration, including APM [12], CPD [22], MR [23], [24],
SCGF [20], and PR-GLS [21]. All simulations were conducted
in the Matlab environment, running on an ordinary personal
computer with dual 3.2-GHz CPUs and 4-GB memory.

In order to measure the estimation performance, the average
mean-squared error ε of the 2D coordinates between the
estimated 2D shape (T (X)) and the true 2D shape (Y) is used
as the performance index, i.e.,

ε =
1
M
‖T (X)− Y‖2F . (29)

A smaller ε means that the estimation of an algorithm is more
accurate.

For the proposed method, one problem is how to determine
the weighting coefficients λ1, λ2, and λ3 in (17). For other
methods, there are usually several weighting coefficients to
be optimized. As no training is required for point set regis-
tration, traditional parameter-selection methods, such as cross
validation, cannot be used to choose the optimal parameters.
Generally, most point set registration algorithms attempt to
find the optimal parameter values by trial and error. In the
experiments, the approximately optimal values for the weight-
ing coefficients are determined by the grid search for all the
methods.

B. Experimental comparisons
1) Experimental comparisons on the synthetic data
A series of synthetic data is designed to compare the

robustness of the various point registration algorithms. Two
classic shapes, a fish and a Chinese character Fu, are used as
the template shapes in the experiments.

As in [19], the Gaussian radial basis function is used
to generate non-rigid deformations with coefficients sampled
from a Gaussian distribution. The deformation parameter β
is varied from 0.02 to 0.2 to control the deformation extent
[12]. Figure 1 shows the template point sets (left column), and
some examples of target point sets with different deformation
extents. For each deformation parameter β, non-rigid defor-
mation is enforced on the model shape to generate 10 sets of
target points via varying the coefficients of random sampling.
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TABLE I
The similarity and difference of four related methods.

Method Gaussian mixture Transformation function T (X) Constraintsmodel (GMM)

CPD (a) GMM (1) the initial position plus a (a) coherent constraint (8);

(b) γ is set as a constant displacement function, i.e. (5) (b) compute the correspondence matrix P
via the Bayes rule.

PR-GLS (a) GMM (1) the initial position plus a

(a) coherent constraint (8);

(b) γ is optimized displacement function, i.e. (5)

(b) compute the membership probabil-
ities πmn via the local feature-shape
context; compute the correspondence
matrix P via the Bayes rule.

MR (a) GMM (1) the initial position plus a

(a) coherent constraint (8);

(b) γ is optimized displacement function, i.e. (5)

(b) manifold regularization (14);
(c) search for the initial correspondences
via the local feature-shape context; com-
pute the correspondence matrix P via
the Bayes rule.

MC (a) GMM (1) an affine transformation and

(a) coherent constraint (8);

(b) γ is optimized a non-affine deformation, i.e.

(b) manifold regularization (15);

(13)

(c) robustness constraint φ(θ), i.e. (11);
(d) compute the membership probabil-
ities πmn via the local feature-shape
context; compute the correspondence
matrix P via the Bayes rule.

TABLE II
A summary of three types of constraints.

Constraint Function Definition

coherent constraint

enforce the smoothness of υ(X) by
forcing the GMM centroids to move
coherently as a group, to preserve the
topological structure of the model point
set.

Eq. (8), the square norm of a repro-
ducing kernel Hilbert space for the
displacement function υ(X).

manifold regularization capture the intrinsic geometry of a Eq. (14), weight the transformation
specific shape or object. by a graph Laplacian A.

robustness constraint improve the robustness and Eq. (11), weight the parameter vector.
efficiency. θ by a positive semidefinite matrix H.

TABLE III
The mean and variance (µ± σ2) of the registration errors of six methods when the deformation parameter β is set as

different values for the fish point sets.

β CPD PR-GLS APM SCGF MR MC
0.02 4.4593e-06±1.2232e-11 8.2121e-06±2.9820e-11 0.0076±2.1482e-05 0.0019±3.8461e-06 2.3675e-05±3.4453e-11 5.8852e-06±1.6340e-11
0.04 7.9365e-06±4.0493e-11 1.0178e-05±5.6181e-11 0.0151±8.5928e-05 0.0022±8.0069e-06 1.1240e-04±2.0845e-08 8.1177e-06±4.2916e-11
0.06 6.5879e-06±4.7784e-11 6.9886e-06±8.3214e-11 0.0230±2.0230e-04 0.0033±5.6579e-06 3.5780e-04±2.3423e-07 9.4294e-06±3.7709e-11
0.08 1.1541e-05±6.4640e-11 1.1916e-05±5.3233e-11 0.0324±3.8236e-04 0.0030±3.9864e-06 0.0013±3.0413e-06 9.4754e-06±2.1879e-11
0.10 0.0013±5.9017e-06 8.4846e-06±2.4345e-11 0.0414±6.7955e-04 0.0058±4.5173e-05 0.0035±2.6987e-05 9.1648e-06±1.0531e-11
0.12 0.0023±1.0136e-05 2.1257e-05±6.1211e-10 0.0521±0.0010 0.0069±2.1458e-05 0.0078±1.0960e-04 1.2598e-05±4.4563e-11
0.14 0.0054±5.4866e-05 1.6715e-05±7.4998e-11 0.0636±0.0016 0.0127±0.0001 0.0122±1.3745e-04 1.2185e-05±5.4957e-11
0.16 0.0185±7.9725e-04 3.0822e-05±3.5776e-10 0.0790±0.0017 0.0195±0.0002 0.0149±1.4594e-04 1.4793e-05±6.6163e-11
0.18 0.0515±0.0020 0.0125±0.0014 0.0959±0.0023 0.0235±0.0003 0.0184±2.3816e-04 1.6655e-05±7.1878e-11
0.20 0.0566±0.0034 0.0236±0.0024 0.1136±0.0032 0.0327±0.0003 0.0230±2.6955e-04 1.5992e-05±6.0009e-11
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TABLE IV
The mean and variance (µ± σ2) of the registration errors of six methods when the deformation parameter β is set as

different values for the Chinese character Fu.

β CPD PR-GLS APM SCGF MR MC
0.02 7.1199e-06±2.8405e-11 1.0546e-05±1.0040e-10 0.0115±2.1482e-05 0.0021±6.0784e-06 0.0076±2.1482e-05 5.4227e-06±2.3634e-11
0.04 1.0047e-05±3.4787e-11 1.8691e-04±8.9630e-10 0.0232±2.1654e-04 0.0059±3.2488e-05 0.0151±8.5928e-05 7.2902e-06±2.1768e-11
0.06 8.4086e-06±8.9433e-11 6.7742e-04±4.3834e-06 0.0365±5.7457e-04 0.0035±2.2845e-06 0.0230±2.0230e-04 1.0991e-05±6.1716e-11
0.08 0.0034±2.5425e-05 0.0017±4.3631e-04 0.0609±0.0024 0.0100±8.674e-05 0.0324±3.8236e-04 1.2640e-05±4.1978e-11
0.10 0.0367±0.0050 0.0164±2.4345e-11 0.0776±0.0038 0.0107±0.0001 0.0414±6.7955e-04 1.6911e-05±1.0414e-11
0.12 0.0764±0.0159 0.0339±0.0019 0.1001±0.0044 0.0195±0.0005 0.0271±5.6589e-04 2.1578e-05±9.3018e-11
0.14 0.0959±0.0238 0.0571±0.0044 0.1293±0.0081 0.0208±0.0002 0.0382±5.3476e-04 0.0028±7.8077e-05
0.16 0.1400±0.0277 0.0893±0.0079 0.1566±0.0110 0.0253±0.0006 0.0496±6.9655e-04 0.0052±2.6486e-04
0.18 0.1837±0.0315 0.1123±0.0104 0.1769±0.0131 0.0296±0.0003 0.0474±5.1241e-04 0.0079±2.8597e-04
0.20 0.2219±0.0456 0.1611±0.0156 0.2174±0.0133 0.0504±0.0014 0.0565±0.0011 0.0168±0.0010

Fig. 1. The template point sets (left column), and some exam-
ples of target point sets with different deformation extents.

After ten trials, we compute the mean and variance (µ± σ2)
of the registration errors ε of ten sets of data.

Tables III and IV show the mean and variance (µ±σ2) of the
registration errors of the six methods, when the deformation
parameter β is set at different values. In order to easily
compare the performance of different algorithms, the best
result and the second-best result are highlighted in red and
blue, respectively. It can be seen from Tables III and IV that,
when β is less than 0.08, the registration errors of CPD and
MC are smaller than that of the other methods. Moreover, the
registration errors of PR-GLS, MR, and MC are smaller than
that of the other methods, when β is larger than or equal to
0.08. This indicates that, MC can achieve a better registration
performance for these two shapes with different deformation
extents, especially for larger deformation.

In order to test the robustness of the various methods against
rotation, the template point set is rotated at different angles,
to generate the target point sets. Figure 2 shows the template
point sets (left column), and some examples of target point
sets with different rotation angles.

Tables V and VI show the mean and variance (µ ± σ2) of
the registration errors of the six methods, when the rotation
angle δ is set at different values. Generally, the registration
errors of MC are smaller than that of the other methods for

Fig. 2. The template point set (left column), and some exam-
ples of target point sets with different rotation angles.

most sequences. Therefore, the performance of MC is better
than that of the other algorithms for these two shapes, rotated
by different angles.

2) Experimental comparisons on three irregular shapes

(c) shape 3(b) shape 2(a) shape 1
Fig. 3. Three pairs of template point sets (red) and target point
sets (blue) with irregular shapes.

Figure 3 shows three pairs of template point sets (red)
and target point sets (blue) with irregular shapes. Table VII
tabulates the registration errors of the six methods for three
irregular shapes. The registration errors of MR and MC
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TABLE V
The mean and variance (µ± σ2) of the registration errors of six methods when the rotation angle δ is set as different values

for the fish point sets.

δ CPD PR-GLS APM SCGF MR MC
30 1.9130e-05±3.6067e-07 1.2511e-05±6.2696e-11 0.0076±2.1482e-05 0.0018±1.3812e-06 2.4335e-04±1.7959e-08 1.0914e-05±6.3978e-11
60 0.0792±0.0166 0.0344±0.0022 0.0076±2.1482e-05 0.0031±8.5259e-07 0.0364±9.7027e-06 1.0316e-05±1.5987e-11
90 0.3441±3.9156e-04 0.2959±4.9891e-04 0.0076±2.1482e-05 0.0027±6.3074e-07 0.0372±1.9666e-05 1.0305e-05±3.1017e-11
120 0.3528±3.9156e-04 0.3727±8.1139e-04 0.0076±2.1482e-05 0.0072±6.5098e-05 0.0433±1.3273e-05 1.3148e-05±2.1707e-11
180 0.4045±5.3455e-04 0.4228±6.0702e-04 0.0076±2.1482e-05 0.4012±0.0164 0.0449±5.9404e-06 1.3588e-05±3.5255e-11

TABLE VI
The mean and variance (µ± σ2) of the registration errors of six methods when the rotation angle δ is set as different values

for the Chinese character Fu.

δ CPD PR-GLS APM SCGF MR MC
30 0.4045±5.3455e-04 6.5265e-06±1.2492e-11 0.0115±5.1650e-05 0.0024±4.8074e-07 0.0195±6.1853e-04 1.1526e-05±1.2787e-11
60 0.3399±0.0020 0.0773±0.0100 0.0115±5.1650e-05 0.0053±3.1456e-06 0.0436±1.2348e-05 1.2391e-05±4.2679e-11
90 0.3718±3.7017e-04 0.3463±5.9352e-04 0.0115±5.1650e-05 0.0117±5.8066e-05 0.0451±5.2152e-06 1.3371e-05±1.3654e-11

120 0.4526±5.6670e-04 0.3880±0.0011 0.0115±5.1650e-05 0.0089±0.0002 0.0456±6.1066e-06 1.4607e-05±3.5719e-11
180 0.5510±8.1384e-04 0.5380±8.2390e-04 0.0115±5.1650e-05 0.5612±0.0007 0.0473±1.9432e-05 0.3814±0.0415

TABLE VII
The registration errors of the six methods for three irregular

shapes.

Shape CPD PR-GLS APM SCGF MR MC
1 0.0252 0.0109 0.1020 0.0224 0.0095 0.0099
2 0.0181 0.0065 0.0452 0.0198 0.0042 0.0048
3 0.1670 0.0111 0.1817 0.0145 0.0334 0.0049

are obviously smaller than that of the other four methods.
Compared to MR, the registration errors of MC are slightly
larger for shapes 1 and 2, but obviously smaller for shape 3.

3) Experimental comparisons on the 2D sequences for
NSFM

Fig. 4. Some frames of three image sequences used for NSFM.

We also conducted the experiments on three motion se-
quences: FRGC, pickup and stretch, which are used for NSFM.
Figure 4 shows some frames of the three image sequences. In

these sequences, the relative camera motions include rotation,
deformation and translation. Thus, a comprehensive perfor-
mance of the various algorithms can be evaluated based on
these sequences.

As point set registration is performed between two frames,
ten frame pairs are extracted from each of the sequences.
Figure 5 (a)-(c) shows the registration errors of six methods
for the sequences FRGC, pickup and stretch, respectively.
Moreover, Table VIII tabulates the corresponding mean and
variance (µ± σ2) of the registration errors. We can see from
Fig. 5 and Table VIII that, the registration errors of SCGF,
MR, and MC are obviously smaller than that of the other
three methods. Compared to SCGF and MR, the registration
errors of MC are smaller for most frame pairs.

4) Experimental comparisons on 3D data

Fig. 6. The 2D scattered points of the template point set
(blue color) and the target point set (red color) for 3D horse
sequence.

Besides 2D data, we also performed the experimental com-
parisons on four 3D sequences, i.e. FRGC, pickup, stretch,
and horse (Fig. 6). Different from other three 3D sequences,
there are five frame pairs in the sequence horse. Figure 7
(a)-(d) shows the registration errors of six methods for four



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0 5 10
Frame pair number

0

0.005

0.01

0.015

0.02

0.025

0.03

ε

CPD
PR-GLS
APM
SCGF
MR
MC

0 5 10
Frame pair number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε

0 5 10
Frame pair number

0

0.1

0.2

0.3

0.4

0.5

0.6

ε

(a) FRGC (b) pickup (c) stretch

Fig. 5. The registration errors of six methods for three sequences used for NSFM.

TABLE VIII
The mean and variance (µ± σ2) of the registration errors of six methods for three sequences used for NSFM.

Sequence CPD PR-GLS APM SCGF MR MC
FRGC 0.0115±4.2900e-05 0.0127±4.1915e-05 0.0174±4.1229e-05 0.0070±3.6432e-06 0.0101±2.2120e-05 0.0071±5.2801e-06
pickup 0.2643±0.0218 0.3814±0.0539 0.3814±0.0539 0.1340±0.0051 0.0842±1.4986e-04 0.0582±0.0015
stretch 0.4054±0.0059 0.4110±0.0079 0.4360±0.0097 0.1834±0.0049 0.0881±3.7955e-04 0.0478±0.0011

TABLE IX
The mean and variance deviation (µ± σ2) of the registration errors of six methods for four 3D sequences.

sequence CPD PR-GLS APM SCGF MR MC
FRGC 0.0302±0.0023 0.0315±9.5642e-04 0.0616±0.0048 0.0650±0.0014 0.0131±3.4739e-05 0.0103±1.9094e-06
pickup 0.5008±0.0077 0.5516±0.0018 0.0784±0.0027 0.5926±0.0246 0.1947±0.0021 0.0613±0.0026
stretch 0.4977±0.0090 0.4828±0.0056 0.1074±0.0060 0.5557±0.0065 0.1280±0.0011 0.0614±0.0012
horse 1.0326±0.0052 0.6472±0.0160 0.6284±0.0058 0.9801±0.0148 0.4581±0.0308z 0.3721±0.0064

3D sequences, respectively. Moreover, Table IX tabulates the
corresponding mean and variance (µ± σ2) of the registration
errors. We can see from Fig. 7 and Table IX that, the
registration errors of APM, MR, and MC are generally smaller
than that of the other three methods. Compared to APM and
MR, the registration errors of MC are smaller for most frame
pairs.

C. Related discussions

1) The effectiveness of three types of constraints
In order to investigate the effectiveness of three types of

constraints, i.e. φ1(v), φ(θ), and φ2(v), in the proposed
model (17), we conducted the experiments to evaluate the
performance of our model, when the different constraint terms
are added into (17).

Taking the synthetic data from Fish and Fu, for example,
Table X shows the registration errors when deformation and
rotation are applied to the model shapes. The performance,
using φ1(v) only in our proposed model on the deformed
and rotated shapes, is first measured. For the synthetic data
with rotation, the registration errors are obviously decreased
when the constraint term φ2(v) is added to capture the spatial
geometry of the target point set. When φ(θ) is combined with
φ1(v), the registration errors are significantly lower than that
of using the single constraint φ1(v). Most of the registration
errors based on MC are mostly lower than that of using
one constraint term or two constraint terms. Therefore, the
constraint terms in (17) are all effective for point set register.
Moreover, a comprehensive performance can be achieved for
the proposed model.

As an example, Table XI shows the registration errors when
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Fig. 7. The registration errors of six methods for four 3D sequences.

TABLE X
The registration errors when different constraint terms are adopted in the proposed model for the synthetic data form Fish

and Fu with deformation and rotation.

Data φ1(v) φ1(v) + φ(θ) φ1(v) + φ2(v) MC
Fish-deformation 0.0236±0.0024 2.6121e-05±6.5053e-10 0.0325±0.0025 1.5992e-05±6.0009e-11
Fu-deformation 0.1611±0.0156 0.0208±0.0012 0.0916±0.0166 0.0168±0.0010

Fish-rotation 0.4228±6.0702e-04 0.3168±0.0186 0.0024±2.6121e-05 1.3588e-05±3.5255e-11
Fu-rotation 0.5380±8.2390e-04 0.5956±0.0011 0.0287±0.0082 0.3814±0.0415

TABLE XI
The registration errors when different constraint terms are

adopted in the proposed model for three sequences used for
NSFM.

Sequence φ1(v) φ1(v) + φ(θ) φ1(v) + φ2(v) MC
FRGC 0.0106 0.0057 0.0056 0.0056
pick-up 0.1568 0.0719 0.0328 0.0330
stretch 0.3937 0.0212 0.0226 0.0212

the different constraints are adopted in the proposed model
with one frame pair for each of the three sequences used for
NSFM. The registration errors of MC are mostly lower than
that of using one constraint term or two constraints.

2) Analysis of computational complexity
Referring to [16], the computational complexity is roughly

TABLE XII
The costs of updating the objective function and the

unknown parameters for the proposed method.

L(µ|Y, θ) W γ θ σ2

Eq. (17) Eq. (26) Eq. (24) Eq. (21) Eq. (28)
o(N2M + N3) o(N3) o(N2M) o(N3) o(N2 + MN)

TABLE XIII
The run times (RT, sec.) of different methods for one

synthetic data of fish.

method CPD PR-GLS APM SCGF MR MC
RT 0.7607 0.4149 1.1156 107.8571 0.8084 0.5338
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analyzed for four related methods, i.e. CPD, PR-GLS, MR,
and the proposed method, by considering the costs of updating
the objective function and the unknown parameters. For these
four methods, the unknown parameters are all solved via the
EM algorithm. As the dimension D (2 or 3) is far less than
M or N , for simplicity, the effect of D can be neglected in
the computational complexity analysis.

For the proposed method, Table XII tabulates the costs of
updating the objective function and the unknown parameters.
In total, the complexity of the proposed method can be
expressed as o(N2M + N3). Similarity, the complexities of
CPD, PR-GLS, and MR are o(M3 + NM2), o(N2M + N3),
and o(M2N+M3), respectively. In general, the computational
complexities of four methods are close to each other.

Moreover, take one synthetic data of fish for example, Table
XIII shows the run times of different methods. Except for
SCGF, the run times are close to each other for five methods.

IV. CONCLUSIONS

In this paper, a robust point set registration approach is
proposed based on the Gaussian mixture model by utilizing
three constraints, namely, the coherent constraint, the robust-
ness constraint, and the manifold regularization term. When
the transformation is decomposed as an affine transformation
and a non-affine deformation, the registration accuracies can
be improved by combining the coherent constraint with the ro-
bustness constraint or the manifold regularization term. Gener-
ally, the best performance can be achieved for most sequences
by combining three constraints simultaneously. Although more
constraints are utilized, the computational complexity of the
proposed method is close to several related methods, by
considering the costs of updating the objective function and
the unknown parameters. Experimental results on some widely
used data sets demonstrated that, compared to state-of-the-
art approaches, a better comprehensive performance can be
achieved by the proposed model.
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