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Post-Streaming Wastage Analysis – A Data 
Wastage Aware Framework in Mobile Video 

Streaming 
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Abstract—Mobile video streaming is now ubiquitous among mobile users. This work investigates a less studied and yet significant 
problem in mobile video streaming – data wastage, i.e., some downloaded video data may not be played back but discarded by 
video players due to early departure or video skip, thus the bandwidth consumed in transferring them is wasted. Our 
measurements show that data wastage is significant in practice, e.g., 25.2%~51.7% of video data downloaded are in fact wasted. 
Moreover, substantial data wastage exists not only in current commercial streaming platforms, but also in state-of-the-art adaptive 
streaming systems proposed in the literature. This work develops a new Post-Streaming Wastage Analysis (PSWA) framework to 
tackle this problem by converting existing adaptive streaming algorithms into data wastage aware versions. PSWA enables the 
streaming vendors to explicitly control the tradeoff between data wastage and quality-of-experience (QoE). Extensive evaluations 
show that PSWA can reduce data wastage significantly (e.g., 80%) without any adverse impact on QoE. Moreover, it has strong 
robustness to perform consistently across a wide range of networks. PSWA can be readily implemented into current streaming 
platforms, and thus offers a practical solution to data wastage for mobile streaming services. 

Index Terms—Video Streaming; Mobile Network; Data Wastage; Quality-of-experience. 

——————————      —————————— 

1 INTRODUCTION
OBILE video streaming has quickly become a key ap-
plication in the mobile Internet [1]. For many mobile 

users, watching videos using their smartphone has become 
a daily activity. With so many sources of videos, it is not 
surprising that not all the videos are watched from start to 
finish. In fact, due to common viewing behaviors such as 
early departure and video skip (i.e., changing to a different 
playback point), a significant portion of videos were not 
watched completely by viewers [2-4]. For example, Fina-
more et al. [2] measured the video access logs on YouTube 
and found that 60% of videos were watched for no more 
than 20% of their whole duration. However, a side-effect 
of early departure and video skip is that some of the down-
loaded video data are discarded and the bandwidth con-
sumed in transferring them is thus wasted. We call this data 
wastage in the rest of the paper.  

At first glance, such data wastage may not appear to be 
a significant issue. However, current on-demand video 
streaming (VoD) has practically all migrated to some forms 

of HTTP-based bitrate adaptive transfer protocol (e.g., 
DASH [5]). Common to these protocols is the use of HTTP 
over TCP to transfer the video data as fast as TCP allows. 
Therefore, if the TCP throughput is higher than the se-
lected video bitrate then the client will fetch video data 
ahead of their playback schedules and store them in the lo-
cal buffer. This can improve streaming performance signif-
icantly, as the buffered data can be used to absorb mobile 
networks’ bandwidth fluctuations to prevent playback re-
buffering. However, the same fetch-ahead buffering mech-
anism would also increase data wastage significantly if the 
viewer terminates or skips video playback before all 
downloaded data are rendered.  

Our measurements of existing adaptive streaming algo-
rithms showed that 25.2%~51.7% of video data down-
loaded were wasted. This level of data wastage has two 
far-reaching consequences. First, today’s mobile data ser-
vices purchased by users generally have a hard data cap, 
e.g., 10 GB per month [6]. If the data usage exceeds the
given data quota, mobile users have to purchase additional
data quota at a much higher price. Therefore, given the sig-
nificant data wastage, a substantial portion of the data
quota would be wasted in transferring video data which
are never watched. Second, data wastage consumes pre-
cious bandwidth resources from the streaming vendor’s
network (e.g., CDN), which are often charged by volume
of data transferred. Given the immense cost of the infra-
structure, even a tiny percentage of wasted bandwidth can
be financially significant to streaming vendors. For exam-
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ple, Chen et al. [7] measured that the cost due to data wast-
age could be tens to hundreds of millions of dollars each 
year.  

One method to reduce data wastage is to limit the video 
client buffer size. Taking it to the extreme, if the player 
buffers no more than one video segment at any time then 
the worst-case data wastage will only be one segment. 
However, the client buffer exists for an important reason – 
to buffer data such that video playback can be sustained 
during periods of low bandwidth so that playback rebuff-
ering can be avoided. Too small a buffer will likely lead to 
frequent rebuffering and significant Quality-of-Experience 
(QoE) degradation, which can be an even bigger problem 
than data wastage. This is especially important in the mo-
bile network where rapid and substantial bandwidth fluc-
tuations are the norm rather than the exception. 

Therefore, the fundamental question is whether a feasi-
ble tradeoff between QoE and data wastage exists in to-
day’s mobile networks, and if so, how to achieve a desired 
wastage-QoE tradeoff in a streaming platform. This work 
is the first attempt to provide an answer to these questions 
by developing a new Post-Streaming Wastage Analysis 
(PSWA) framework to allow the streaming vendor to ex-
plicitly control the tradeoff between data wastage and QoE. 
Specifically, PSWA introduces two wastage-aware param-
eters that can be easily incorporated into existing adaptive 
streaming algorithms, so that fine-grained control of wast-
age-QoE tradeoffs can be enabled. By analyzing the 
streaming trace data from past video sessions, PSWA au-
tomatically optimizes the wastage-aware parameters and 
then applies them to future video sessions to minimize 
data wastage while maintaining high QoE. 

Extensive evaluations showed that PSWA can reduce 
data wastage by 31.6%~79.9% even without any QoE loss. 
In addition, it could reduce data wastage even further by 
small tradeoffs in QoE (e.g., 4% drop in QoE improves data 
wastage reduction to 44.4%~90.2%). Moreover, PSWA per-
forms consistently across a wide range of networks. There-
fore, it offers an immediate and practical solution to reduce 
data wastage in current and future streaming platforms. 

This work has three major contributions. First, since 
data wastage and QoE are inherently conflicting objectives, 
reducing wastage may result in QoE loss. However, QoE 
is critical to streaming services and the tolerance for QoE 
loss differs among different streaming vendors. PSWA ad-
dresses this challenge by providing streaming vendors 
with an interface called acceptable QoE loss ratio to allow 
them to specify their QoE preference. Specifically, they can 
set the QoE loss ratio to any values within 0%~100% where 
0% means no QoE loss. According to the ratio, PSWA min-
imizes data wastage and meanwhile ensures the actual 
QoE degradation not exceed the ratio. To the best of our 
knowledge, PSWA is the first system that can control data 
wastage based on the streaming vendor’s QoE preference. 

Second, PSWA breaks the one-size-fits-all approach 
commonly adopted by the existing data wastage solutions 
[7-11] and optimizes wastage-aware parameters according 
to the specific network condition. This enables PSWA to 
not only outperform the existing approaches significantly, 

but also have strong robustness to achieve consistent per-
formance across a wide range of network environments. 

Last but not least, PSWA is designed to complement (as 
opposed to replacing) the existing adaptive streaming al-
gorithms by converting them into wastage-aware versions 
while keeping their original adaptation logic intact. This 
offers an immediate and ready solution for the streaming 
platforms already in service. Although this work focuses 
on adaptive on-demand streaming, PSWA is a generic 
framework that can potentially be extended to other 
streaming services, such as non-adaptive streaming, 360-
degree video streaming, live streaming, etc. 

The rest of the paper is organized as follows: Section 2 
reviews the related work; Section 3 investigates the data 
wastage problem in mobile video streaming; Section 4 pre-
sents the design of the PSWA framework; Section 5 evalu-
ates the performance of PSWA by trace-driven simulations 
and real experiments, and Section 6 summarizes the study 
and outlines some future work. 

2 RELATED WORK 
Much work has been done in video streaming in recent 
years. A comprehensive review of the area is beyond the 
scope of this work. We refer interested readers to the stud-
ies by Seufert et al. [12], Juluri et al. [13], Kua et al. [14] and 
Bentaleb et al. [15] for survey and comparison of existing 
streaming algorithms. 

Existing streaming algorithms were primarily designed 
to improve QoE performance. Much of the intelligence of 
a streaming algorithm is in selecting the most appropriate 
video bitrate level from the ones available at the server 
such that playback continuity and high video quality can 
be maintained. As data wastage does not impact QoE di-
rectly, it is no surprise that data wastage is often neglected 
in the design of streaming algorithms. Nevertheless, with 
the almost ubiquitous deployment of HTTP-based video 
streaming, data wastage can no longer be an afterthought. 
An early measurement study by Finamore et al. [2] ana-
lyzed YouTube and found that data wastage is significant, 
e.g., during peak hours, 25%~39% of bandwidth was 
wasted by desktop users and 35%~48% by mobile users.  

Chen et al. [7] looked into the data wastage problem in 
Tencent Video [16] and found that over 20% of bandwidth 
was wasted due to video data delivered but unwatched. To 
reduce data wastage, they developed a server-side Behav-
ior-Based (henceforth called BB) streaming strategy. BB 
was designed for the scenario where the network is al-
ready fully utilized. It reduced data wastage through lim-
iting the transmission rate to 1.05 times of the video bitrate 
(as opposed to as fast as TCP allows) during the viewing 
browsing phase (this phase generally exists at the begin-
ning of videos with high departure rate [17]). The band-
width saved in this phase can then be reallocated to other 
streaming clients to improve their QoE. However, BB was 
designed only for non-adaptive streaming so it may not be 
directly applicable to today’s adaptive streaming plat-
forms (e.g., DASH [5]). 
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Fig. 1. Statistics for viewing ratio and download ratio. 

In a recent study, Yarnagula et al. [8] proposed SARA to 
reduce data wastage for adaptive video streaming. SARA 
was deployed in the video clients and designed for reduc-
ing data wastage through limiting the amount of data in 
the buffer with a pre-defined buffer threshold (i.e., 20s). 
Specifically, when the client buffer occupancy reaches the 
buffer threshold, the request for downloading the next seg-
ment will be delayed until the buffer occupancy falls below 
the threshold. In another study, Chen et al. [9] proposed an 
energy-aware rate adaptation algorithm that controls data 
wastage in the same way as SARA but sets the buffer 
threshold to 30s. However, our empirical study (c.f. Section 
3.2) showed that merely limiting the buffer size would 
lead to more rebuffering events which degrade QoE per-
formance. 

In another direction, both Li et al. [10] and Huang et al. 
[11] proposed to use Lyapunov optimization theory to de-
sign bandwidth allocation strategies for the base station 
with the goal to reduce the total data wastage for all mobile 
users served by the base station. However, in practice, their 
proposed strategies require mobile operators to modify the 
link-layer implementation of the base stations, which is far 
from simple in today’s mobile infrastructures.  

In comparison, the PSWA proposed in this study tackles 
all the limitations in these existing solutions and is able to 
effectively control data wastage in mobile networks. 

3 DATA WASTAGE IN MOBILE VIDEO STREAMING 
In this section, we measure data wastage in HTTP-based 
on-demand streaming (VoD). We first investigate the two 
common viewing behaviors (early departure and video 
skip) and then employ trace-driven simulation to measure 
data wastage from state-of-the-art adaptive streaming al-
gorithms. 

3.1 Early Departure and Video Skip  
We first look into early departure through a real-world em-
pirical trace dataset [18]. The notion of data wastage is that 
some downloaded video data are not watched but dis-
carded. Therefore, to measure data wastage, we should 
first measure the proportion of each video being watched 
and downloaded at the time of early departure. In the da-
taset, for video session i, 0≤i<N, we obtained the video 
physical duration, denoted by Li, the amount/duration of 
video data downloaded, denoted by Di, and the viewing 
duration, denoted by Vi.  

 
Fig. 2. Statistics for video skip number and skip span. 

To quantify early departure, we define viewing ratio i as 
the ratio of video played back (in duration) to the video 
physical duration for video session i, i.e., 

  i i iV L  (1) 

Similarly, we define download ratio i as the ratio of video 
downloaded (in duration) to the video physical duration, 
i.e., 

 i i iD L   (2) 

The left chart in Fig. 1 plots the distributions of the two 
ratios in the empirical dataset. It is evident that a signifi-
cant proportion of video sessions ended early, with an 
overall average viewing ratio of 42.6%. In comparison, the 
download ratio is substantially higher, with an overall av-
erage of 63.1%. This suggests that a significant proportion 
of the video data was downloaded but not played back. We 
further divided all the video sessions into three subsets 
based on their video physical duration, i.e., short (<5 mins), 
medium (5~50 mins), and long (>50 mins), and then plotted 
their viewing ratio distribution in the right chart in Fig. 1.  

We observed that their viewing ratios differ signifi-
cantly. For example, viewers tend to leave relatively early 
when watching long-length videos (i.e., >50 minutes), 
whereas tend to watch completely when watching me-
dium-length videos (i.e., 5~50 minutes). More detailed 
analysis for early departure can be found in Appendix A.1. 

Next, we investigate video skip using an empirical model 
from [17]. The left chart in Fig. 2 plots the proportion of the 
mean skip number in each video session. We can observe 
that 62.5% of video sessions have video skips (i.e., except 
“= 0”) and the proportion of skip number “>=4” is signifi-
cantly higher than others. This is intuitive because if a 
viewer is not interested in the current video content, the 
viewer will naturally skip several times to keep looking for 
points of interest. The right graph in Fig.2 shows the pro-
portion of skip span. The key observation is that nearly 80% 
of the skips are within 5 mins, and the proportion of long 
skip span (>30 min) is very small. Overall, in addition to 
early departure, video skip is also a very common viewer 
behavior that can cause data wastage. Next we will meas-
ure data wastage in streaming platforms based on these 
viewer behavior models. 
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Table 1 
     Statistics of Seven Throughput Trace Datasets. 

 Dataset 
Characteristics #1 #2 #3 #4 #5 #6 #7 

Throughput 
(Mbps) 

5.57 4.71 3.29 2.87 1.21 12.1 3.12 

Coefficient of 
Variation  

0.44 0.39 0.74 0.53 0.83 0.69 0.59 

Network  
type 

3G 3G 3G 3G 3G LTE WiFi 

Collection  
location 

L1 L1 L2 L3 L4 L5 L6 

Service  
provider 

S1 S2 S1 S1 S3 S2 S4 

3.2 Data Wastage Measurement 
We employed trace-driven simulations to measure data 
wastage in realistic network settings where the simulator 
replicates the bottleneck link by replaying TCP throughput 
trace data obtained from real production mobile networks. 
We used a total of 60 weeks of TCP throughput trace data 
(~ 100,000 video sessions) covering 3G, 4G/LTE and Wi-Fi 
networks. The trace data are publicly available [20-22] and 
we summarized their key statistics in Table 1. Viewing be-
havior traces (e.g., early departure, video skip) were de-
rived from the empirical datasets introduced in Section 3.1. 
The available video bitrates follow the Apple profile [19] 
augmented by four additional bitrates at 10 Mbps, 12 Mbps, 
16 Mbps, and 20 Mbps. The rest of the streaming parame-
ters are summarized in Table 2. Please refer to Appendix 
A.2 for more details of the simulation settings. 

We implemented seven state-of-the-art streaming algo-
rithms which include two throughput-based bitrate adap-
tive algorithms – LBG [23] and Stagefright [24], two buffer-
based bitrate adaptive algorithms – BBA [25] and SARA [8], 
two hybrid throughput-buffer-based bitrate adaptive algo-
rithms – RobustMPC (henceforth called MPC) [26] and 
Pensieve [27], and one non-adaptive algorithm BB [7]. It’s 
worth noting that SARA and BB were originally designed 
with controlling data wastage in mind while all others 
were non-wastage-aware algorithms. 

To quantify data wastage, we define a metric to com-
pute the amount of data wastage in video session i, de-
noted by Wi, from the difference between video data 
downloaded and viewed: 

 
, ,

,
, ,

0 0 ,i j i j

i j
i i j i j

d v i j

v
W d s

l   

    (3) 

where di,j, si,j, li,j, vi,j are the downloaded data amount, seg-
ment size, full segment duration, segment duration viewed 
for segment j respectively. Similarly, we can compute the 
ratio of data wastage for session i, denoted by Ri, from 

 
, ,

,
, ,

0 0,

1
i j i j

i j
i i j i j

v di j

v
R s d

l   

     (4) 

 

Table 2 
 Evaluation Settings. 

Parameters Values 
Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6, 10, 12, 16, 20} 

Mbps [19] 
Segment duration 2s 

Video duration Empirical distribution (30s to 10800s) 
Session number ~ 100,000 

Initial bitrate 0.2 Mbps 
 
In addition to data wastage, for video session i, we also 
measured mean video bitrate – defined as the average bi-
trate selected, mean buffer occupancy – defined as the av-
erage buffer level, rebuffering duration – defined as the to-
tal time at which playback is suspended due to client 
buffer underflow, rebuffering frequency – defined as the 
total number of rebuffering events, and QoE – calculated 
by the QoE function proposed by Mao et al. [27]: 

 
1 1

, , , 1
0 1

1 2.66
K K

i i k i k i k i
k k

Q Z
K

  
 


 

 
     

 
   (5) 

where Zi is the rebuffering duration, K is the total number 
of segments in video session i and ϑi,k is the video quality 
calculated by 

 , , minlog( )i k i kr r   (6) 

where ri,k is the bitrate selected for segment k and rmin is the 
lowest available bitrate in the profile. Note that the coeffi-
cient of Zi (i.e., 2.66) follows Mao et al. [27].  

Table 3 summarizes the evaluation results where we 
calculated the daily average wastage amount (multiply per 
session wastage and daily mean session number), as well 
as the average of all video sessions for other metrics. The 
first observation is that the overall data wastage ratio 
across the seven algorithms ranges from 25.2% to 51.7%, 
which means that a quarter to half of the downloaded data 
is in fact wasted. In addition, data wastage amount is on 
average 1.17~6.17 Petabyte each day. Given the pricing of 
Amazon CDN [28], such amounts of data wastage can cost 
the streaming vendor tens to hundreds of millions of dol-
lars each year.  

Second, in the "Skip v.s. Departure" column of Table 3, 
we evaluated the percentage of data wastage caused by 
video skip versus early departure. We can see that video 
skip incurs about twice as much data wastage as early de-
parture in almost all the algorithms (except for BB due to 
its bandwidth-limiting strategy at the beginning of each 
video session [7]). This is intuitive as viewers can only quit 
at most once in each video session while on average skip 2 
~ 3 times (c.f. Fig. 2). 

Third, LBG and BBA exhibit substantial data wastage 
(51.7% and 50.5%) which is a result of their large buffer size 
and conservative bitrate adaptation logic (reflected by 
video bitrate). In contrast, their streaming performance 
measured by rebuffering duration and rebuffering fre-
quency is much lower than others, as their higher buffer 
occupancy can absorb larger throughput fluctuations to 
prevent playback rebuffering. 
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Table 4 
    Data Wastage of MPC Across Seven Trace Datasets.  

 
Metrics 

Dataset 
#1 #2 #3 #4 #5 #6 #7 

Wastage Ratio 
(%) 

33.2 32.7 26.3 25.6 22.9 39.5 24.3 

Wastage 
Amount (PB) 

2.01 1.95 1.04 1.14 0.78 4.10 1.07 

 
 In comparison, although Stagefright also has a con-

servative bitrate adaptation logic, its data wastage (39.8%) 
is much lower than LBG and BBA due to its smaller buffer 
size (20MB or approximately 90s of video data). SARA has 
the smallest buffer size (i.e., 20s) among all the evaluated 
streaming algorithms thus achieves lower data wastage 
(30.3%) than Stagefright. However, such a small buffer 
leads to much more rebuffering events for SARA, decreas-
ing its QoE performance. 

Interestingly, although MPC and Pensieve are non-
wastage-aware, they can also achieve comparatively lower 
data wastage (28.3% for MPC and 25.2% for Pensieve). This 
is due to their aggressive bitrate adaptation logics, which 
can result in relatively low buffer level. In comparison, 
while BB’s strategy (i.e., restricting bandwidth) is also ef-
fective in reducing data wastage, it significantly increases 
the number of rebuffering events (the average rebuffering 
duration is 9.08, which is the largest among the seven algo-
rithms) and thus degrades QoE (mean QoE is 0.71, which 
is the worst among the seven algorithms). 

Table 4 compares the data wastage ratio/amount across 
the throughput trace dataset #1~#7. Note that we only 
listed the results of MPC, as results for other streaming al-
gorithms are similar (see Appendix A.3 for full set of re-
sults). Interestingly, we found that dataset #1, #2, and #6 
exhibit far more data wastage than others. Given the trace 
data statistics in Table 1, it appears that data wastage is 
more severe in networks with higher mean throughput. To 
further investigate this, we divided all video sessions into 
10 throughput levels, with level l=0,1,…,8 collecting ses-
sions with mean throughput within (l, l+1] Mbps, plus 
level 9 with mean throughput ≥9Mbps, and then summa-
rized their wastage ratio/amount in Table 5 (full results are 
in available Appendix A.3). 

 
 
 

Table 5 
    Data Wastage of MPC Across 10 Throughput Levels.  

 
Metrics 

Throughput Level 
0~1 2~3 4~5 6~7 8~9 

Wastage Ratio (%) 21.0 26.9 29.9 34.1 41.4 
Wastage Amount (PB) 0.71 1.12 2.08 3.02 4.54 
  
The results strongly suggest that data wastage increases 

as throughput level increases. This is due to the fact that 
high throughput levels indicate that the network is in well-
covered mobile cells, non-peak hours, etc., and thus has a 
relatively stable network condition. In this case, the video 
player accumulates large amounts of buffered data more 
frequently, resulting in more data wastage. 

3.3 Discussions 
We gained two insights from the above results. First, data 
wastage is directly attributed to the buffered video data, as 
all the data in the buffer will be discarded upon early de-
parture or video skip. However, video buffering is essen-
tial for preventing rebuffering and maintaining high QoE. 
Therefore, the need for reducing data wastage inherently 
conflicts with the high QoE requirements. One potential 
solution is to investigate whether a feasible tradeoff exists 
between data wastage and QoE, and if so, how to achieve 
the desired tradeoff. From Table 3, we found out two fac-
tors that can affect both data wastage and QoE, namely 
buffer size and bitrate adaptation aggressiveness, so exploiting 
these two factors could offer a solution to achieve the de-
sired wastage-QoE tradeoffs. 

Second, Table 4 and Table 5 reveal another interesting 
property – data wastage is not uniform but throughput-de-
pendent. However, existing streaming algorithms were al-
most all designed to be one-size-fits-all, i.e., using fixed 
streaming parameter values (e.g., buffer size) irrespective 
of the network environments (e.g., ranging from 3G net-
works with a few Mbps mean bandwidth to 4G networks 
with 100+ Mbps peak bandwidth). Therefore, a major chal-
lenge for this work is to optimize the streaming parameters 
according to the specific network conditions so that data 
wastage can be controlled equally well on networks with 
different bandwidth capacities. In next section, we devel-
oped a new PSWA framework to tackle the above-men-
tioned challenges. 

Table 3 
       Evaluation Results of Existing Streaming Algorithms. 

Streaming 
algorithm 

Buffer 
size 

Wastage  
ratio (%) 

Daily mean wastage  
amount (Petabyte) 

Skip v.s. 
 Departure  

Bitrate 
(Mbps) 

Buffer  
occupancy (s) 

Rebuffering  
duration (s) 

Rebuffering   
frequency 

QoE 

LBG 184s 51.7 5.75 69% v.s. 31% 1.77 35.9 1.23  1.18 0.92 
BBA 240s 50.5 6.17 63% v.s. 37% 1.31 40.7 0.80 1.29 0.94 
MPC 30s 28.3 1.19 69% v.s. 31% 2.99 6.70 6.33 7.21 1.55 

Stagefright 20MB 39.8 3.01 66% v.s. 34% 1.71 16.7 1.07 1.44 1.11 
Pensieve 60s 25.2 1.17 67% v.s. 33% 3.22 5.73 8.94 9.9 1.73 

BB 30s 38.5 1.24 51% v.s. 49% 1.32 6.79 9.08 4.54 0.71 
SARA 20s 30.3 1.21 65% v.s. 35% 1.23 10.9 3.10 3.41 0.80 
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Fig. 3. The architecture of PSWA framework. 

4 WASTAGE-AWARE VIDEO STREAMING 
In this section, we propose Post-Streaming Wastage Anal-
ysis (PSWA) framework. We first develop wastage-aware 
parameters to convert existing adaptive streaming algo-
rithms into wastage-aware and then apply post-streaming 
analysis [31] to optimize the wastage-aware algorithms. 

4.1 Data Wastage Awareness 
Most of the existing streaming algorithms were not de-
signed to incorporate the impact of data wastage. To this 
end, we design two generic wastage-aware parameters, 
namely buffer limit β and adaptation multiplier γ, to convert 
them to wastage-aware versions.    

Buffer limit β. From Section 3, we found that data wast-
age is highly correlated with the amount of buffered video 
data. This suggests that limiting the buffer can control 
wastage. Most existing streaming algorithm originally has 
a buffer size (c.f. Table 3), denoted by B, but this size is typ-
ically fixed for a given algorithm and cannot be dynami-
cally tuned based on the network condition, thus results in 
suboptimal performance (c.f. Section 3.2). Therefore, we 
designed a flexible buffering mechanism by buffer limit β.  

Specifically, ignoring network latency, let ti and fi be the 
starting and completion time for transferring video seg-
ment i to the client. Let bi be the buffer occupancy at time fi. 
We schedule the starting time to transmit the next video 
segment at ti+1 to limit the buffer occupancy within β: 

 1

,  if 
,  

i i
i

i i

f b
t

f b otherwise




  
 

 (7) 

where the value of β is no longer fixed, but is to be dynam-
ically tuned within the original buffer size B, i.e., 0<β<B, 
according to network conditions (c.f. Section 4.2). 

Adaptation multiplier γ. From Section 3, we learn that 
bitrate selection aggressiveness also has significant im-
pacts on data wastage. The intuition is that an appropriate 
increase in the bitrate adaptation aggressiveness can re-
duce buffer occupancy and thus decrease data wastage. To 
exploit this, we develop a mechanism to regulate the adap-
tive algorithm’s bitrate selection aggressiveness. Specifi-
cally, most of the algorithms originally have one or more 
internal metrics [29-30] which are the key criterion for 
them to determine video bitrate (refer to [29] for the notion 
of “internal metric”). Therefore, we introduce adaptation 
multiplier γ to multiply the internal metric, thus the bitrate 
selection aggressiveness can be controlled by tuning γ. 

Table 6 
    Internal Metric and Adaptation Multiplier γ of  

the Existing Streaming Algorithms. 
Algorithm Internal metric Range of γ 
LBG [23] Video segment duration over  

segment download time 
0~3 

Stagefright [24] The sliding window of  
throughput measurement 

0~5 

BBA [25] Mapping slope between buffer  
occupancy and video bitrate 

0~12 

MPC [26] The harmonic mean of past throughput 
divided by previous estimation error 

0~5 

Pensieve [27] Throughput measurement vector  
including past 8 video segments 

0~3 

 
It’s worth noting that the definition of the internal met-

ric in the existing streaming algorithms depends on the 
specific design of their adaptation logic, so the definition 
differs across different algorithms. Table 6 summarizes the 
description for the internal metric of five existing adaptive 
streaming algorithms, and we refer the interested readers 
to their original studies [23-27] for the detailed definitions.  

 To illustrate how the adaptation multiplier γ works, we 
take MPC [26] as an example, of which the definition of the 
internal metric is reproduced below (proposed by Yin et al. 
[26]):  

 (1 )k k kD H e   (8) 

where Dk is the estimated throughput for determining the 
bitrate of segment k, Hk is the harmonic mean throughput 
for downloading the past 5 segments (i.e., segment k–6 ~ k–
1) and ek is the previous maximum absolute estimation er-
ror. MPC mainly relies on the estimated throughput Dk to 
determine video bitrate [26], so we can apply the multiplier 
γ to Dk to control the bitrate selection aggressiveness: 

 '
k kD D   (9) 

where the value of γ can be tuned to change the final out-
put, denoted by '

kD .  
Naturally, different streaming algorithms may use dif-

ferent internal metrics (e.g., the throughput measurement 
vector in Pensieve [27] as opposed to harmonic mean in 
MPC) but one can apply γ in a similar fashion (see Table 6) 
to control their bitrate selection aggressiveness. 

4.2 Post-Streaming Wastage Analysis (PSWA) 
We defined two wastage-aware parameters (i.e., β and γ) 
in Section 4.1, which can be easily applied to existing 
streaming algorithms. The next challenge is to find a way 
to determine the optimal (wastage-aware) parameter value 
that can effectively control data wastage while maintaining 
high QoE. 

Although mobile networks are known to have rapid 
bandwidth fluctuations, they also exhibit consistent prop-
erties over longer timescales (e.g., days) so that analysis of 
the network conditions in past video sessions (e.g., in the 
past a few days) can inform the optimization of future 
streaming sessions [31]. Exploiting this, Liu et al. [31] pro-
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posed Post-Streaming Analysis that can provide predicta-
ble streaming performance in adaptive video streaming. 
The idea is to exploit past streaming trace data captured as 
a by-product of video sessions to automatically tune 
streaming parameters in the adaptation logic to achieve the 
desired streaming performance, e.g., target rebuffering 
probability, in future video sessions.  

Drawing on the Post-Streaming Analysis principle, we 
developed a novel Post-Streaming Wastage Analysis 
(PSWA) framework to control data wastage through opti-
mizing the wastage-aware parameters, i.e., buffer limit β, 
and adaptation multiplier γ. Specifically, PSWA comprises 
repeating cycles of two phases, namely offline analysis and 
online streaming, as depicted in Fig. 3. PSWA executes of-
fline analysis periodically, e.g., daily, to compute the opti-
mal value of  and γ for use in online streaming, e.g., the 
next 24 hours.  

Offline Analysis. The results in Section 3 reveal that 
data wastage is throughput-dependent. This suggests that 
a single set of parameters optimized for all kinds of net-
work conditions is likely to be sub-optimal. To tackle this 
challenge, we segregate network conditions into different 
classes according to the throughput level (c.f. Section 3) so 
that the wastage-aware parameters can be optimized sep-
arately to match the characteristics of different network 
classes. However, while the throughput level can be calcu-
lated directly in offline analysis, as the throughput trace 
data are given, it cannot be known before streaming the 
actual video session in online streaming. Therefore, we 
need a way to estimate the throughput level for the new 
video sessions. 

Video players typically prefetch a number of video seg-
ments before commencing playback. The throughput in 
downloading the prefetch segments reflects the current 
network condition and thus can be used to estimate the 
throughput level for the new video session. Specifically, let 
α be the pre-configured bitrate for the first m segments dur-
ing prefetch, i.e.,  

 , , 0,1,... 1j kr k m    (10) 

where rj,k denotes the selected video bitrate for the kth seg-
ment in session j. After segment m-1 is received, the system 
can then calculate the mean throughput from 

 
1

,

0 ,

1 m
j k

j
k j k

s
V

m d





   (11) 

where sj,k, and dj,k are size and download time for segment 
k in the prefetch phase of session j. We then employ a linear 
quantization policy to map the throughput level Tj from 
the mean throughput Vj: 

 min , 1j
j

V
T M

  
       

 (12) 

where Δ is the quantization step size and M is the maxi-
mum number of the throughput level. Based on the 
throughput level Tj, the next step is to divide all video ses-
sions trace data Sj, j=0,1,…,N, into M network classes: 

  , ,   0,1, , 1p j jC S T p j p M      (13) 

where Tj is the throughput level for video session j. 
PSWA then conducts parametric optimization to calculate 

the optimal wastage-aware parameters for each network 
class separately. Specifically, for throughput level p, PSWA 
executes trace-driven simulation with streaming trace data 
Cp to test the effectiveness of different values of wastage-
aware parameter, i.e., p and γp. Note that the trace data has 
two types, namely TCP throughput trace (replicating net-
work condition) and viewing behavior trace (replicating 
early departure and video skip), both of which are cap-
tured as a by-product of past video sessions so no extra 
measurements are needed.   

After the simulation, PSWA records the resultant 
streaming performance metrics including selected bitrates, 
playback rebuffering, etc., to compute the overall QoE 
achieved in each network class, denoted by {Q(p, γp) | 
p=0,1,…,M–1}, where Q(.) is the QoE function adopted, e.g., 
(5). Concurrently, PSWA also records the data wastage 
amount, i.e., W(.), in each network class, denoted by {W(p, 
γp) | p=0,1,…,M–1}. With these two wastage-aware param-
eters, PSWA quantifies the relationship between QoE and 
data wastage (see Appendix A.2 for more details of QoE 
and wastage measurement). 

QoE and data wastage are inherently conflicting metrics 
so reducing data wastage may impair QoE. However, QoE 
is critical to streaming services and it is likely application, 
service, and even user dependent so we need a mechanism 
for the streaming vendor to control data wastage based on 
their QoE preference. One possibility is to combine QoE 
and data wastage into a unified utility function such that 
the problem becomes a utility-maximization problem. 
However, such a utility function does not exist in the liter-
ature and it is unclear how the utility can be normalized 
between QoE and data wastage.  

Therefore, we adopted a different approach that the sys-
tem offers an interface (e.g., a configurable video player 
option) for the streaming vendors to specify an acceptable 
QoE loss ratio, denoted by δ. The purpose of δ is to allow 
the streaming vendors to specify their QoE preference, e.g., 
they can set δ to any values within 0%~100%. Note that set-
ting δ to 0% indicates no QoE loss, in which case PSWA 
will maintain the resulting QoE at the same level as that 
achieved by the original streaming algorithms (i.e., the al-
gorithm without wastage-aware parameters).  

In the underlying design, we denote the QoE achieved 
by the original streaming algorithms in throughput level p 
as Up, p=0,1,…M-1. PSWA then aims at minimizing the 
amount of data wastage and at the same time maintaining 
the QoE loss within δ through tuning the two wastage-
aware parameters p and γp, i.e., 

 

,
min ( , )   

( , )
. .   1 ,

0,1, , 1

p p
p p

p p

p

W

Q
s t

U
p M

 
 

 
 

 

 (14)                  
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After solving the optimization problem, PSWA obtains the 
optimal wastage-aware parameters for each throughput 
level, denoted by  * *, | 0,1,... 1p p p M    . 

Online Streaming. After offline analysis, the optimized 
wastage-aware parameters will be loaded into the video 
player as part of streaming metadata (e.g., MPD playlist in 
DASH [5]). To begin a new video session, the video player 
first estimates the throughput level from the prefetch pro-
cess, i.e., (10)~(12), and then applies the optimal wastage-
aware parameters according to the throughput level to the 
current video session. The rest of the streaming process is 
unchanged. Overall, the modification needed for the ap-
pended processes is very simple so that PSWA can be read-
ily deployed into existing streaming platforms. 

4.3 Takeaway and Deployment  
Takeaway. PSWA is designed to complement (rather 

than replace) the underlying streaming algorithms to con-
vert them into wastage-aware versions. Thus it can be ap-
plied to the streaming platforms already in service and is 
compatible with the existing video streaming protocols 
such as DASH. The insight behind PSWA is that mobile 
networks exhibit consistent properties over a timescale of 
days so that one can analyze past video sessions’ trace data 
to achieve predictable performance (data wastage and QoE) 
for future sessions [31]. Therefore, to capture the properties 
of the mobile network and keep detecting whether they 
have evolved, PSWA employs the repeated cycle of the 
two-phase design (c.f. Section 4.2). This guarantees that 1) 
the value of the wastage-aware parameters can be contin-
uously updated, thus maintaining consistent wastage-QoE 
tradeoff performance even if the network condition 
changes significantly, and 2) the deployment of PSWA can 
be highly portable to accommodate the evolution of mobile 
streaming infrastructure. 

Deployment. In applying PSWA to rate-adaptation al-
gorithms, the computation complexity should be low as bi-
trate decision needs to be performed frequently online. 
This can be easily achieved by PSWA as most of the com-
putations are consolidated into the offline analysis that can 
be executed on the server-side. For example, the CDN 
server of the streaming vendors can be easily extended to 
record the video session’s trace data for offline analysis 
when it delivers the video data to the players over 
HTTP/TCP. Moreover, the optimal wastage-aware param-
eters can be embedded into the meta-data file of the 
streaming protocols (e.g., MPD in DASH) and then are sent 
to the video player. For online streaming, the only compu-
tation requirement is the throughput level measurement 
during prefetch, which is not computationally expensive 
and is performed only once at the beginning of each video 
session. To demonstrate PSWA’s feasibility, we imple-
mented PSWA into an open-source video player (dash.js 
[32]) and evaluated its performance (see Section 5.5). 

 
Fig. 4. Comparison of data wastage amount and QoE performance. 

5 PERFORMANCE EVALUATION 
In this section, we evaluate PSWA’s effectiveness in reduc-
ing data wastage and analyze the tradeoff between data 
wastage and QoE. 

5.1 Experiment Setup 
We employed trace-driven simulations with the same 
setup as described in Section 3.2. PSWA was applied to op-
timizing the five non-wastage-aware streaming algorithms, 
namely LBG [23], Stagefright [24], BBA [25], MPC [26], and 
Pensieve [27], to turn them into wastage aware versions. In 
addition, the two existing wastage-aware algorithms, BB [7] 
and SARA [8], were evaluated to compare to the perfor-
mance of PSWA. 

We used a total of 60 weeks’ trace data (~100,000 video 
sessions) in the evaluation. PSWA was configured to use 
the past one day’s trace data in offline analysis phase to 
optimize the two wastage-aware parameters {β, γ}, which 
were then applied to online streaming phase in the next 24 
hours. β is tuned within the streaming algorithm’s buffer 
size (c.f. Table 4), and the tuning range of γ is listed in Ta-
ble 6. For the throughput level, we adopted the linear map-
ping policy in (12) with quantization step size of Δ = 1 
Mbps and M=10. Unless stated otherwise we adopted (5) 
as the default QoE function. The rest of the parameters are 
summarized in Table 3. 

5.2 Performance Tradeoff 
PSWA offers a tool for streaming vendors to explicitly con-
trol the tradeoff between data wastage and QoE through 
specifying QoE loss ratio δ. To evaluate the tradeoff trajec-
tory, we varied δ from 0% to 4% to evaluate the tradeoff 
between QoE and data wastage. Fig. 7 plots the tradeoff 
trajectories for all seven streaming algorithms evaluated. 
The performance results of the original algorithms (with-
out applying PSWA) are indicated by “-o” suffix (e.g., 
“LBG-o”) while PSWA-optimized versions are indicated 
by “-p” suffix (e.g., “LBG-p”).  

We observed that all the five non-wastage-aware algo-
rithms optimized by PSWA show a significant reduction in 
data wastage with little or even no loss of QoE. In all cases, 
PSWA enables them to achieve a continuous tradeoff tra-
jectory between data wastage and QoE.  
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Table 7 
    Actual QoE Loss Proportion φ (%) versus Specified 

QoE Loss Ratio δ. 
 

Algorithm 
QoE Loss Ratio δ (%) 

0 1 2 3 4 
LBG -0.15 0.96 1.75 2.86 3.93 
BBA -0.09 0.90 1.81 2.77 3.78 
MPC -0.06 0.87 1.79 2.98 3.69 

Stagefright -0.21 0.99 1.89 2.57 3.90 
Pensive -0.10 0.79 1.92 2.49 3.71 

Table 8 
    Data Wastage Reduction Proportion ς (%) versus Speci-

fied QoE Loss Ratio δ. 
 

Algorithm 
QoE Loss Ratio δ (%) 

0 1 2 3 4 
LBG 79.9 83.2 85.4 87.2 90.2 
BBA 31.6 35.7 38.2 41.8 44.4 
MPC 40.3 45.1 48.7 50.4 52.3 

Stagefright 64.2 68.6 71.0 74.3 74.8 
Pensive 44.0 48.3 54.2 57.1 61.2 

 
In comparison, since BB and SARA are wastage-aware 

algorithms, they do achieve relatively low data wastage. 
However, due to their one-size-fits-all model, both of them 
can only achieve one specific point of tradeoff and the re-
sultant QoE is relatively low. 

To evaluate PSWA’s control on QoE loss, we defined a 
new metric φ to quantify the actual QoE loss proportion, 
i.e.,  

 ( )i i i
i i

U Q U
 

    (15) 

where Ui is the QoE achieved by the original algorithm (i.e., 
those with “-o” suffix) for video session i, Qi denotes the 
QoE achieved by the PSWA-optimized algorithms (i.e., 
those with “-p” suffix). We then compared φ against the 
specified QoE loss ratio δ in Table 7. We can see that the 
five algorithms performed similarly, all of which achieve 
the actual QoE loss proportion lower than but close to δ.  

Next, we quantified the data wastage reduction by de-
fining a new metric called data wastage reduction propor-
tion: 

 ( )i i i
i i

P W P
 

    (16) 

where Pi is data wastage amount produced by the original 
algorithm (those with “-o” suffix) for video session i, Wi is 
the data wastage amount of the PSWA optimized algo-
rithm (those with “-p” suffix). Table 8 summarizes the data 
wastage reduction proportion versus the specified QoE 
loss ratio δ. We observed that through PSWA, all the five 
streaming algorithms’ data wastage was reduced signifi-
cantly, i.e., up to 44.4%~90.2% wastage reduction within 4% 
QoE loss, where LBG achieves the most substantial results.  

Most remarkably, PSWA manages to reduce data wast-
age even without any QoE loss. It is clear from the column 
with δ=0% in Table 8 that PSWA enables the five algo-
rithms to achieve 31.6% to 79.9% wastage reduction.  

Table 9 
    Data Wastage Reduction Proportion ς (%) Across Four 

QoE Functions (δ = 0%). 
Algorithm QoE1 QoE2 QoE3 QoE4 

LBG 79.9 73.5 83.3 90.1 
BBA 31.6 27.0 39.5 30.5 
MPC 40.3 51.7 49.7 41.7 

Stagefright 64.2 50.1 66.4 56.6 
Pensive 44.0 58.2 66.1 51.2 

 
This is due to PSWA's ability to break the one-size-fits-

all model of the existing streaming algorithms. Specifically, 
the optimal value of a streaming algorithm’s internal met-
ric (c.f. Section 4.1) varies with the changes in network con-
ditions [29]. However, existing streaming algorithms were 
commonly equipped with a fixed set of internal metrics 
and functioned in all kinds of networks (so-called one-size-
fits-all), so the internal metrics were inevitably suboptimal 
that results in suboptimal QoE. By comparison, PSWA 
tuned γ to optimize streaming algorithms’ internal metrics 
based on the specific network conditions and thus improve 
the algorithm’s QoE performance beyond its original ver-
sion. The potential increased QoE thus provides a QoE 
margin for PSWA to reduce data wastage without degrad-
ing QoE performance (see Appendix A.4 for more details). 

To see if the above observations are consistent under 
different QoE metrics, we repeated the experiments using 
three more QoE functions i.e., QoE2 ~ QoE4 [26,33,34] (QoE1 
is defined by (5)). We set QoE loss ratio δ to 0% and sum-
marized data wastage reduction under the four QoE func-
tions in Table 9. We observed very similar patterns across 
the four QoE functions, where PSWA enables the five 
streaming algorithms to achieve substantial data wastage 
reduction without any QoE loss. 

5.3 Variation Across Network Conditions 
In this section, we investigate the performance variation 
across different network conditions. At first, we evaluated 
the data wastage performance over the seven throughput 
trace dataset #1 ~ #7, which were collected from multiple 
mobile operators and locations (c.f. Table 2). PSWA makes 
use of the past one day’s trace data for offline analysis 
where the trace data is a combination of data from the da-
taset #1 ~ #7, and then unseen trace data is used for evalu-
ating online streaming performance. Note that in this sec-
tion we only show the results of MPC with setting δ to 2%, 
as similar results were obtained with other streaming algo-
rithms and other settings of δ. 

We summarized the results in Table 10. The observation 
is that PSWA enables MPC to achieve substantial data 
wastage reduction across all the seven datasets, ranging 
from 32.3% to 77.1%. Compared to MPC-o (i.e., original 
MPC), MPC-p (i.e., PSWA-optimized MPC) achieves more 
consistent wastage ratio and wastage amount across differ-
ent datasets. These results strongly suggest that using the 
trace data with a sufficiently wide spectrum of network 
conditions in the offline analysis phase, PSWA can enable 
one algorithm to effectively control the data wastage over 
a wide range of network environments. 
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Table 10 
    Data Wastage of MPC Across Seven Throughput Trace 

Datasets (δ = 2%). 
Metrics Wastage  

Ratio (%) 
Wastage  

Amount (PB) 
 

Data Wastage  
Reduction ς 

(%) 
Version MPC-

o 
MPC-

p 
MPC-

o 
MPC-

p 

D
at

as
et

 

#1 33.2 13.9 2.01 0.90 55.1 
#2 32.7 13.6 1.95 0.91 53.2 
#3 26.3 13.4 1.04 0.61 41.3 
#4 25.6 13.1 1.14 0.67 40.7 
#5 22.9 12.9 0.87 0.59 32.3 
#6 39.5 13.1 4.10 0.96 76.9 
#7 24.3 14.0 1.07 0.63 41.1 

Table 11 
    Data Wastage of MPC Across 10 Throughput Levels  

(δ = 2%). 
 

Metrics 
 

Algorithm 
Throughput Level 

0~1 2~3 4~5 6~7 8~9 
Wastage  
Ratio (%) 

MPC-o 21.0 26.9 29.9 34.1 41.4 
MPC-p 13.2 14.3 13.1 13.2 12.8 

Wastage 
Amount (PB) 

MPC-o 0.71 1.12 2.08 3.02 4.54 
MPC-p 0.48 0.65 1.05 1.17 1.39 

Wastage Reduction ς (%) 32.1 41.9 49.4 61.2 69.2 
 
To further analyze the results across different levels of 

throughput, we divided all video sessions into 10 through-
put levels, with level l=0,1,…,8 collecting sessions with av-
erage throughput within (l, l+1] Mbps, plus level 9 with av-
erage throughput ≥9Mbps, and then summarized their re-
spective data wastage performance in Table 11. 

We observed that through PSWA’s optimization, MPC-
p can effectively control data wastage across all the 
throughput levels. The generally higher data wastage at 
higher throughput levels is now compensated by PSWA 
with higher wastage reduction. Compared to MPC-o, 
MPC-p’s wastage ratio is far more consistent across the 10 
levels, but its wastage amount still exhibits a slight increase 
as the throughput level increases. We argue that this in-
crease is inevitable as adaptive streaming algorithms typi-
cally select higher video bitrate at higher throughput levels 
and hence the larger video segment size would naturally 
lead to more data wastage. Nevertheless, after PSWA’s op-
timization, the rising slope of wastage amount of MPC-p is 
much lower than that of MPC-o. 

To further investigate the dynamics of PSWA with re-
spect to throughput levels, we calculated in Table 12 the 
mean values of the wastage-aware parameters (i.e., β and 
γ) of MPC-p in different levels. There are two observations. 
First, the results clearly show that the optimal wastage-
aware parameters vary substantially across throughput 
levels. This validates PSWA’s throughput-level differenti-
ation approach to optimize the parameters. Second, as 
throughput level increases, the buffer limit  decreases 
while the adaptation multiplier γ increases. This indicates 
that PSWA is exploiting the (better) network condition at 
higher throughput levels where the likelihood of low 
bandwidth is much lower than in lower throughput levels.  

Table 12 
Wastage-aware Parameters of MPC-p Across 10  

Throughput Levels (δ = 2%). 
Network Characters and  

Wastage-aware Parameters 
Throughput Level 

0~1 2~3 4~5 6~7 8~9 
Throughput (Mbps) 0~2 2~4 4~6 6~8 ≥8 

Coefficient of Variation (CoV) 0.84 0.59 0.42 0.32 0.25 
Buffer limit β (s) 11.2 10.3 8.8 7.9 6.9 

Adaptation multiplier γ 0.8 1.3 1.7 2.1 2.6 
 

 
Fig. 5. The evolution of wastage-aware parameters (in throughput 

level 5) over a period of 70 days. 

Specifically, in the higher throughput level, the smaller 
buffer limit directly reduces data wastage while the larger 
adaptation multiplier improves video quality (via more 
aggressive bitrate selection) and reduce data wastage (via 
lower buffer occupancy). PSWA thus jointly tunes β and γ 
to achieve more substantial data wastage reduction (see 
Appendix A.4 for more details). 

Fig. 5 plots the daily mean values of β and γ in through-
put level 5 over a period of 70 days (similar patterns can be 
observed in other throughput levels). Since the mean 
throughput at a certain throughput level is limited to a spe-
cific range (e.g., 5 Mbps ~ 6 Mbps in throughput level 5), 
we can ignore the impact of mean throughput but focus on 
the effect of throughput variations (quantified by through-
put Coefficient of Variation (CoV) in Fig. 5) on the param-
eter value. The observation is that the values of the two pa-
rameters were constantly changing as the evolution of the 
throughput CoV over the 70 days. This is intuitive, for ex-
ample, a network with higher throughput CoVs is more 
likely to cause more rebuffering events, so in this case, 
PSWA maintains a relatively high buffer level by tuning 
the parameters such that QoE degradation can be avoided. 
Overall, the results clearly demonstrate that through exe-
cuting the offline analysis on a daily basis, PSWA was able 
to optimize/update the wastage-aware parameter appro-
priately to adapt to the changing network conditions. A 
deeper analysis on the two wastage-aware parameters (β 
and γ) is in Appendix A.4. 

5.4 Sensitivity Analysis 
In this section, we dissect PSWA by investigating the rela-
tive performance contribution by its key components. Spe-
cifically, we investigate the significance of: (a) tuning 
buffer limit β only while keeping γ to 1; (b) tuning adapta-
tion multiplier γ only while keeping β to the algorithm’s 
original buffer size; (c) removing the throughput level dif-
ferentiation (as in an early version of this work [18]) 
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 Fig. 6. Performance contributions of PSWA’s key components. 

We compared the performance of the full version 
PSWA (indicated by the “-p” suffix) to the three handi-
capped versions, indicated by “-p-w/o-β” (without tuning 
β), “-p-w/o-γ” (without tuning γ) and “-p-w/o-TL” (with-
out differentiating throughput levels) suffixes respectively. 
Fig. 6 plots their performances in terms of QoE loss and 
data wastage reduction. Again we only showed the results 
for MPC as the results for other algorithms are similar.  

 From Fig. 6, it is clear that both the throughput level 
differentiation and the two wastage-aware parameters are 
essential to PSWA as the effectiveness of reducing data 
wastage drops significantly without anyone of them. In 
particular, the performance drops the most without tuning 
γ (i.e., MPC-p-w/o-γ) where the curve exhibits a more lin-
ear pattern passing through the origin. 

5.5 Implementation and Real Experiments 
In this section, we report results from a prototype imple-
mentation of PSWA into the well-known dash.js video 
player (version 3.11) [32] to validate PSWA’s practicality 
and to verify its performance in real-world streaming im-
plementations. Specifically, we first modified dash.js to 
support the five non-wastage-aware streaming algorithms. 
For Pensieve, dash.js was configured to fetch bitrate selec-
tion decisions from a specialized bitrate decision server 
where Pensieve’s neural network is deployed. All other al-
gorithms were embedded into “AbrController.js” of 
dash.js and executed directly. Next, we specified a 2% QoE 
loss ratio for PSWA’s offline analysis and then applied the 
optimal wastage-aware parameters into the streaming al-
gorithms in dash.js.  

In our setup, the video server host ran Linux with the 
Apache httpd [35] serving video data over TCP CUBIC [36] 
and the video client was a Google Chrome browser run-
ning in a smartphone with Android operating system. We 
used an improved version of DummyNet [37] to emulate 
the network conditions between the client and server 
based on our collected TCP throughput trace data [22], 
along with 80 ms minimal RTT to model propagation delay. 
Other streaming settings (e.g., video duration, bitrate pro-
file, etc.) were consistent with those in Section 3.2. 

We ran each streaming algorithm twice, each executing 
1000 video sessions (the throughput trace data was the 
same for both runs). Specifically, we ran streaming algo-
rithms with their original settings (i.e., without PSWA) for 
the first time, and then applied the wastage-aware param-
eters into the algorithms to run again (i.e., with PSWA).  

Table 13 
Experimental Results (δ = 2%). 

 Actual QoE Loss (%) Wastage Reduction (%) 
LBG 1.74 78.3 
BBA 1.91 40.2 
MPC 1.87 53.9 

Stagefright 1.62 71.5 
Pensieve 1.88 56.1 

 
Table 13 shows the proportion of actual QoE loss and 

data wastage reduction for each algorithm. We observed 
that the actual QoE losses of the five algorithms were all 
within the specified QoE loss ratio 2%. Meanwhile, the 
data wastage reduction is significant in all cases, ranging 
from 40.2% to 78.3%. Overall, the experimental results ver-
ified PSWA’s design goal to achieve the desired tradeoff 
performance between QoE and data wastage in a real-
world streaming implementation. Therefore, PSWA offers 
an immediate and practical solution to significantly reduce 
data wastage in current as well as future streaming plat-
forms. 

6 SUMMARY AND FUTURE WORK 
This work reveals that current video streaming systems 
can result in substantial data wastage due to viewer’s early 
departure and video skip behavior. To tackle the problem, 
we proposed a novel PSWA framework which can reduce 
data wastage significantly (e.g., up to 80%) without im-
pacting QoE. PSWA not only can convert existing on-de-
mand adaptive streaming algorithms into wastage-aware 
versions, it can also be incorporated into the design of new 
streaming algorithms so that data wastage becomes an in-
tegrated performance metric rather than an afterthought. 

This work is only the first step in this direction. There 
are many opportunities for future research, because data 
wastage is not limited to on-demand streaming platforms. 
For example, there is a rapid increase in live streaming ser-
vices in recent years and although viewers cannot skip 
ahead in a live stream, their early departure would cer-
tainly result in data wastage. Similarly, the emerging 360-
degree video streaming poses an even bigger challenge on 
data wastage due to its viewport-based streaming. More 
work is thus warranted to investigate these research chal-
lenges. 
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