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Deep Cross-modal Representation Learning and
Distillation for Illumination-invariant Pedestrian

Detection
Tianshan Liu, Kin-Man Lam, Senior Member, IEEE, Rui Zhao, and Guoping Qiu

Abstract—Integrating multispectral data has been demon-
strated to be an effective solution for illumination-invariant
pedestrian detection, in particular, RGB and thermal images can
provide complementary information to handle light variations.
However, most of the current multispectral detectors fuse the
multimodal features by simple concatenation, without discovering
their latent relationships. In this paper, we propose a cross-modal
feature learning (CFL) module, based on a split-and-aggregation
strategy, to explicitly explore both the shared and modality-
specific representations between paired RGB and thermal images.
We insert the proposed CFL module into multiple layers of a two-
branch-based pedestrian detection network, to learn the cross-
modal representations in diverse semantic levels. By introducing
a segmentation-based auxiliary task, the multimodal network is
trained end-to-end by jointly optimizing a multi-task loss. On
the other hand, to alleviate the reliance of existing multispectral
pedestrian detectors on thermal images, we propose a knowledge
distillation framework to train a student detector, which only
receives RGB images as input and distills the cross-modal repre-
sentations guided by a well-trained multimodal teacher detector.
In order to facilitate the cross-modal knowledge distillation,
we design different distillation loss functions for the feature,
detection and segmentation levels. Experimental results on the
public KAIST multispectral pedestrian benchmark validate that
the proposed cross-modal representation learning and distillation
method achieves robust performance.

Index Terms—Illumination-invariant pedestrian detection,
multispectral fusion, knowledge distillation, cross-modal repre-
sentation.

I. INTRODUCTION

AS one of the crucial research topics in computer vi-
sion, pedestrian detection has widespread human-centric

applications [1]–[3], such as video surveillance, autonomous
driving, human behaviour analysis, etc. Recently, motivated
by the success of deep-learning-based methods in object
detection [4], [5], remarkable improvements have been made
on the performance of pedestrian detectors. However, most
of the existing pedestrian detection methods are based on
the assumption that the visible images are captured under
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good illumination conditions. This may restrict them from
being deployed in real-world scenarios, with a wide range
of illumination variations [6], [7]. Especially, images with
weak illumination usually contain low contrast and are of low
resolution, which makes the pedestrian detection task difficult
even for human beings.

To overcome this limitation, various attempts have been
made to explore multispectral data [8], [9], i.e., paired visible
(RGB)-thermal images, for illumination-invariant pedestrian
detection. The intuition is that thermal data is insensitive to
illumination variations and can provide additional information
of the targets complementary with RGB data [10], [11].
However, the majority of the current multispectral pedestrian
detection methods concentrate on exploring different fusion
stages, and simply concatenate the features extracted from
RGB and thermal images, without discovering their latent
relationships. Considering that paired RGB-thermal images
are highly correlated in terms of targets and scenes, more
compact yet discriminative representations can be extracted by
learning the latent semantic relations between the multispectral
data. Therefore, different from the common practice of fusing
multispectral features in a holistic manner, we propose a
novel cross-modal feature learning (CFL) module, to explicitly
explore both the shared features and modality-specific features
between RGB and thermal image pairs. The shared features
depict the common cues between the two modalities, while
the modality-specific features capture unique components of
each modality.

Although leveraging multispectral data can alleviate the
ill-effects of poor illumination conditions on RGB images,
it is impractical to collect thermal images in some real-
world applications owing to the limitations of hardware [12].
This poses a new challenge, that of how to train a robust
pedestrian detector using multispectral data, while only RGB
images are available in the test/inference phase. Inspired by
the theory of knowledge distillation explored in numerous
multimodal vision tasks [13]–[15], we propose to leverage a
deep-learning-based distillation framework to train a student
network, which distills cross-modal representations guided by
a well-trained multimodal teacher network. In other words,
the student network only receives RGB images as input, and
is trained to produce the discriminative cross-modal represen-
tations, to achieve illumination-invariant pedestrian detection.
The teacher model, trained using extra thermal images, can
provide privileged information to facilitate the learning of
the student model. To distill sufficient knowledge from the
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Fig. 1. The overall architecture of the proposed deep cross-modal representation learning-based pedestrian detection network
(DCRL-PDN).

multimodal teacher network, we design different levels of
distillation loss terms.

In this paper, we first propose a deep cross-modal repre-
sentation learning-based pedestrian detection network (DCRL-
PDN) as the teacher model. The proposed DCRL-PDN is a
two-branch-based framework, taking paired RGB-thermal im-
ages as input. Each branch is developed, based on a two-stage
detector, i.e., Faster R-CNN [5]. We boost the performance of
the proposed illumination-invariant pedestrian detector from
three aspects. Firstly, to explicitly exploit the shared and
modality-specific components between multispectral data, we
propose a cross-modal feature learning (CFL) module based
on a split-and-aggregation strategy. Our CFL module can be
inserted into the backbone CNN in a plug-and-play way, to
facilitate information interactions between the two branches.
Secondly, motivated by the effectiveness of self-supervision
learning, in addition to the detection task, we introduce a
segmentation-based auxiliary task by leveraging weakly su-
pervised box-based pedestrian masks. Thirdly, to adaptively
assign different importance weights for each modality ac-
cording to the inputs, we employ a modality attention-based
fusion (MAF) strategy to combine the detection results of
the two sub-branches. The overall network architecture of our
proposed DCRL-PDN is illustrated in Fig. 1.

On the other hand, we leverage a generalized distillation
framework, by training a deep cross-modal representation
distillation-based pedestrian detection network (DCRD-PDN),
as the student model. The proposed DCRD-PDN is fed with
RGB images only, and distills cross-modal representations
taught by the multimodal teacher network (DCRL-PDN). As
illustrated in Fig. 2, the weights of the multimodal teacher
detector (DCRL-PDN) are frozen for the learning of the stu-
dent detector (DCRD-PDN). To distill abundant cross-modal
knowledge from the well-trained teacher model, we employ
different distillation loss terms at multiple levels, including the
feature, detection and segmentation perspectives. Firstly, we
employ a Euclidean-distance-based metric loss to explicitly
distill cross-modal features, from the backbone CNN of the

teacher model. Secondly, considering that pedestrian detection
is multi-tasked, we utilize a classification-level distillation loss
and a conditional regression distillation loss for two sub-tasks.
Thirdly, we propose a pixel-wise segmentation distillation loss,
to improve the learning capability of the student network.

The main contributions of this paper can be summarized
as follows. First, based on a split-and-aggregation strategy,
we propose a cross-modal feature learning (CFL) module,
which aims to explicitly discover the shared structure and
modality-specific cues between RGB and thermal images. The
proposed CFL module is deployed into different layers of the
deep multimodal network for illumination-invariant pedestri-
an detection. Second, we propose a knowledge distillation
framework to train a student network, which only receives
RGB images as input and distills cross-modal representations
guided by the multimodal teacher network. We design multiple
losses to conduct cross-modal knowledge distillation at the
feature, detection and segmentation levels. Third, extensive ex-
perimental results and ablation analysis on the public KAIST
multispectral pedestrian data set validate the effectiveness of
the proposed method.

II. RELATED WORK

A. Visible Pedestrian Detection
As a canonical sub-task of object detection, pedestrian

detection has been intensively studied by the computer vision
community, because of its widespread real-world applications.
Research works on pedestrian detection have experienced an
evolution from handcrafted feature-based methods to deep-
learning framework-based methods. The Integral Channel
Features (ICF) [16] is a popular pedestrian detector, which
combines channel feature pyramids with cascade classifiers.
ICF has been a basic descriptor for several variants, such as
Aggregated Channel Features (ACF) [17] and Filtered Channel
Features (FCF) [18]. With the popularity of CNN in numerous
vision tasks, recent pedestrian detectors are based on deep-
learning architectures. Since the region-proposal-based detec-
tion models [5], [19] have achieved promising performance in
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Fig. 2. Illustration of the proposed deep cross-modal representation distillation framework.

object detection, more and more pedestrian detection methods
are being developed based on two-stage detectors, e.g., Faster
R-CNN [5]. Cai et al. [20] proposed a multi-scale CNN
(MS-CNN) by integrating a feature pyramid into the Faster-
RCNN. Li et al. [21] developed a Scale-Aware Fast R-CNN
(SAF-RCNN), by introducing multiple sub-networks to detect
pedestrians at different scales. Instead of using RoIPooling as
in typical Faster-RCNN, Zhang et al. [22] extracted convo-
lutional features of the candidates generated by the Region
Proposal Network (RPN) [5], and then employed a boosted
forest (BF) to mine hard negative examples. Brazil et al. [23]
cascaded the RPN and a binary classification network (BCN),
with an additional segmentation loss, to guide the learning
of the detector. Cai et al. [24] proposed a cascade R-CNN,
which consists of multiple detectors, trained with various
IoU thresholds, to eliminate false positives in a progressive
manner. On the other hand, there are also pedestrian detection
methods which explore using a single-stage pipeline to save
computational time. Liu et al. [25] proposed an Asymptotic
Localization Fitting (ALF) module to evolve the anchor boxes
of SSD [26] sequentially to achieve more accurate detection
results. Lin et al. [27] integrated fine-grained attention masks
into convolutional features, to construct graininess-aware rep-
resentations for pedestrian detection. Recently, Liu et al. [28]
proposed an anchor-free method, which converts the pedestrian
detection task to the center and scale prediction task, through
convolutions on higher-level semantic features.

Our work is also built based on a two-stage detector, i.e.,
Faster R-CNN, owing to its excellent detection accuracy. How-
ever, different from the above-mentioned visible pedestrian
detection methods that mainly tackle the issues of scale [29]
and occlusion [30], we focus on leveraging multispectral data
to train a robust model to deal with light variations, for
illumination-invariant pedestrian detection.

B. Multispectral Pedestrian Detection

Multispectral sensors capture paired RGB-thermal images to
provide complementary information about the target pedestri-
ans. Effective fusion of these two modalities can achieve robust
detection results. Hwang et al. [8] first collected a large-scale
multispectral pedestrian data set, and extended the classical
ACF detector to a multispectral version (ACF+T+THOG)
by incorporating intensity and HOG features of the thermal
channel. Liu et al. [31] integrated Faster R-CNN for mul-
tispectral pedestrian detection, and investigated four fusion
strategies to combine RGB and thermal branches at different
stages. Fusion RPN+BDT [32] was proposed by integrating
a multispectral RPN with a boosted decision-tree classifier,
to reduce false positives. Li et al. [33] cascaded a multi-
spectral proposal network with a multispectral classification
network, and jointly optimized the detection and semantic
segmentations losses in an end-to-end manner. Guan et al.
[11] developed a built-in day-sub-network and night-sub-
network, and applied both of them to process RGB and thermal
images. Motivated by the channel attention in squeeze-and-
excitation networks (SENets), Zhang et al. [10] proposed a
cross-modality interactive attention module to fuse the RGB
and thermal features for multispectral pedestrian detection. Li
et al. [6] trained an illumination-aware network using coarse
day/night labels to obtain two weights, which were further
used to combine the detection results from the RGB and
thermal sub-networks. Park et al. [34] designed a three-branch-
based network, and proposed the channel weighting fusion
(CWF) and accumulated probability fusion (APF) layers to
dynamically fuse different information flows. To alleviate the
problem of position shift, Zhang et al. [7] proposed an aligned
region CNN (AR-CNN) to adaptively align the region features
between RGB and thermal modalities.

Most of the above-mentioned multispectral pedestrian de-
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tection methods simply concatenate features extracted from
RGB and thermal modalities, without learning their latent
relationships. This restricts the detection performance of these
methods. In this paper, we propose a cross-modal feature
learning (CFL) module, which specifically explore both shared
and modality-specific features between different modalities
by a split-and-aggregation strategy. Moreover, the above-
mentioned methods are based on the assumption that RGB
and thermal images are available in both training and testing
stages. However, collection of the thermal data is impractical
in some real-world applications. Therefore, we also exploit a
generalized distillation framework to train a student network,
which distills cross-modal representations from the multi-
modal teacher network. The proposed model only receives
RGB images as input, but can achieve illumination-invariant
pedestrian detection.

C. Cross-modal Representation Learning

Cross-modal representation learning approaches aim to
discover discriminative latent connections between different
modalities for facilitating the downstream task. Kang et al. [35]
proposed to jointly learn the basis matrices of different modal-
ities for handling unpaired data, in cross-modal multimedia re-
trieval. To fully exploit the rich patterns across the multimodal
data, Zhang et al. [36] proposed a cross-modal knowledge
transition scheme based on the generative adversarial network,
and further built a cross-modal feature fusion network for
brain tumor segmentation. To model the urban dynamics
from massive geo-tagged social media (GTSM) data, a cross-
modal feature learning method, named CrossMap [37], was
presented. After detecting the spatio-temporal hotspots, both
reconstruction-based and graph-based strategies are applied
for projecting all spatial, temporal, and textual components
into a shared embedding space. Zhang et al. [38] deployed
a series of multi-scale, multi-modal, and multi-level feature
fusion modules into a deep network, to achieve robust RGB-T
saliency detection.

However, most of these methods only concentrate on dis-
covering shared feature space among different modalities
without considering modality-specific structures. In contrast,
we propose a cross-modal feature learning (CFL) module, to
explicitly exploit both shared and modality-specific features
between different modalities, based on channel split and
aggregation strategies. The proposed CFL module is flexible
and can be deployed into multiple layers of backbone network,
to learn the cross-modal representations in diverse semantic
levels.

D. Knowledge Distillation

Knowledge distillation [39] is a powerful tool for transfer-
ring useful information between different domains, such as
high-resolution and low-resolution images, RGB and depth
data, etc. Our work is motivated by the knowledge distilla-
tion framework explored in various multimodal vision tasks.
Hoffman et al. [13] proposed a distillation framework to train a
hallucination network, which distills depth features from RGB
images for general object detection. Luo et al. [14] presented

a graph-based approach to distill knowledge across abundant
modalities (RGB, depth, optical flow, skeleton joints) in the
training stage, but tested it only using single modality for
action detection and recognition. Shi et al. [40] leveraged
skeleton data as privileged information, to facilitate the learn-
ing of RNN-based models, for action recognition from depth
sequences. Garcia et al. [41] trained a hallucination stream,
by designing a multi-stage training paradigm and combining a
Euclidean-distance metric loss with a generalized distillation
loss, for action recognition. The authors further utilized an
adversarial strategy [15], instead of the distillation loss, to al-
leviate the demand of tuning hyper-parameters. Different from
these distillation approaches proposed for RGB-D vision tasks,
our distillation method is proposed to discover the relationship
between RGB and thermal images. In addition, most of the
above-mentioned methods train a separate stream to produce
the features, mimicking the missing or unavailable modality.
In contrast, we train a single network, which produces more
compact cross-modal representations for pedestrian detection.

Recently, some research on pedestrian detection has also
leveraged knowledge distillation frameworks from different
aspects. Shen et al. [42] trained a smaller network guided by
a large network, by performing knowledge distillation at both
high-dimensional hint layer and prediction layer. The authors
also integrated handcrafted features, i.e., ACF, to boost the
performance of pedestrian detection. Chen et al. [43] proposed
several improved loss functions to distill information from
the feature, classification and regression perspectives. Wang
et al. [44] proposed a fine-grained feature imitation method
for object detection, which forces the student network to
concentrate more on distilling knowledge from the teacher
network in the near object anchor regions. However, methods
[42]–[44] leverage a knowledge distillation framework as a
compression tool, which aims to learn a compact yet effective
object detection network. In our work, we mainly employ
knowledge distillation to transfer cross-modal information
from the teacher model to the student model. Xu et al.
[45] proposed a region reconstruction network to transfer
cross-modal representations between RGB and thermal da-
ta, which improves the robustness of pedestrian detectors
against bad illumination conditions. However, the method
only distills knowledge through an indirect reconstruction
task, without considering distillation at high-level detection
tasks. Kruthiventi et al. [12] proposed to distill knowledge
from a multi-modal teacher model, by only using a weighted
L1-hint loss in an intermediate layer. To distill sufficient
cross-modal knowledge from the teacher model, our proposed
method employs different distillation losses in multiple levels,
including the feature, detection and segmentation perspectives.

III. DEEP CROSS-MODAL REPRESENTATION LEARNING

A. Overall Network Architecture

The overall architecture of the proposed deep cross-modal
representation learning-based pedestrian detection network
(DCRL-PDN) is illustrated in Fig. 1. The proposed DCRL-
PDN framework consists of two sub-branches, which take
RGB images and thermal images as input, respectively. Each
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branch network is based on a Faster R-CNN, involving two
stages, i.e., region proposal generation (RPG) and region
detection refinement (RDR). We choose VGG-16 [46] as
the backbone CNN to extract features for each branch. To
improve the representation learning capacity and facilitate
information exchange between the two branches, we introduce
three modules into the classical Faster R-CNN, including
cross-modal feature learning, segmentation auxiliary task, and
modality attention-based fusion. The proposed cross-modal
feature learning (CFL) module aims to discover the common
structure and modality-specific characteristics between the
RGB and thermal inputs, in an explicit manner. We insert
the proposed CFL module after each convolutional layer from
conv1 to conv5, to learn the shared and modality-specific
components in different semantic levels. The learned cross-
modal representations can serve as a strong basis for the
subsequent detection tasks. In addition, to ease the training
of the final detection task, we introduce a segmentation-based
auxiliary task in both the RPG and RDR stages, by leveraging
weakly supervised pedestrian masks. Furthermore, we employ
a modality attention-based fusion (MAF) strategy to compute
the weights, for combining the detection results of the two sub-
branches. The details about these three modules are presented
in the following subsections.

The overall objective function, LT , is formulated as follows:

LRPG = LRPG
cls + λLRPG

reg + ηLRPG
seg ,

LRDR = LRDR
cls + λLRDR

reg + ηLRDR
seg ,

LT = LRPG + LRDR, (1)

where Lcls denotes the classification loss function based on
the cross-entropy loss, Lreg is the bounding-box regression
loss function based on the smoothed L1 loss, and Lseg is the
segmentation loss, which will be described in Section III-C.
The parameters λ and η are used to balance the importance
between the different loss terms. Both of them are set to be
1, throughout all the experiments.

B. Cross-modal Feature Learning Module

Considering that the RGB and thermal images are highly
related in the scenes involving pedestrians, there exist latent
semantic relationships between these two modalities. In the
deep-learning domain, a crucial insight is that different chan-
nels of a feature map represent the diverse patterns learned by
the network. For learning discriminative cross-modal repre-
sentations, some channels are expected to depict the common
structures between the RGB and thermal modalities, while
the other channels account for capturing the unique cues of
each modality. Therefore, we propose a cross-modal feature
learning (CFL) module based on a split-and-aggregation s-
trategy, which explicitly explores the shared structures and
modality-specific cues between RGB and thermal data. As
shown in Fig. 3, for each modality m (m = 1, 2, for RGB and
thermal images, respectively), given a convolutional feature
tensor xm ∈ RC×W×H , extracted from the VGG-16 backbone
network, where C denotes the number of channels, and W
and H are the width and height, respectively. We first split
the feature tensor channels into two parts, by a ratio of α, one

for learning the shared structures among multispectral data,
with the other for learning the modality-specific details. Then,
the subsequent convolution operations can be formulated as
follows:

ôm
1

ôm
2
...

ôm
C

 =

W1,1 · · · W1,αC

...
. . .

...
WC,1 · · · WC,αC


 xm

1
...

xm
αC



+

Um
1,αC+1 · · · Um

1,C
...

. . .
...

Um
C,αC+1 · · · Um

C,C


x

m
αC+1

...
xm
C

 , (2)

where ôm ∈ RC×W×H represents the output feature tensor,
Wi,j denotes the learnable kernels, for learning the shared
structure using αC channels, and Um

i,j represents the learnable
parameters of modality m, applied for learning the modality-
specific representation with (1− α)C channels.

To explore the common structures between the RGB and
thermal modalities, and maintain computational efficiency, we
employ point-wise convolution, i.e., 1 × 1 kernels, with the
parameters Wi,j . As illustrated in Fig. 3, we enforce the
parameters Wi,j to be shared between multispectral data, thus,
leading to discovering the common patterns of pedestrians
across different modalities. In addition, we further divide the
modality-specific representation part into several groups. Each
group may correspond to an intrinsic characteristic of each
modality, such as textures in RGB images, heat signature in
thermal data, etc. Then, we utilize group-wise convolution to
process these channel groups. Since the group-wise convolu-
tion is based on a sparse block-diagonal kernel, each block
only accounts for a specific group [47]. To ensure the interac-
tions across all the channels in the modality-specific part, we
employ another point-wise convolution to avoid information
loss. We apply both group-wise and point-wise convolution
on the modality-specific channels, in parallel. Then, these two
convolutional features are fused by element-wise summation.
The convolution operation on the modality-specific part is
formulated as follows:Um

1,αC+1 · · · Um
1,C

...
. . .

...
Um

C,αC+1 · · · Um
C,C


x

m
αC+1

...
xm
C

 =

P
m
1 0 0

0
. . . 0

0 0 Pm
G


z

m
1
...

zmG


+

Vm
1,αC+1 · · · Vm

1,C
...

. . .
...

Vm
C,αC+1 · · · Vm

C,C


x

m
αC+1

...
xm
C

 , (3)

where the modality-specific part, learned with (1− α)C chan-
nels, is partitioned into G groups, and each group zmg , g =
1, 2, ..., G, consists of (1− α)C/G channels. Pm

g represents
the group-wise convolutional kernels for the g-th group.

After generating both the shared representation Sm ∈
RC×W×H and modality-specific representation Rm ∈
RC×W×H , we employ an attention-based fusion strategy to
combine these two types of features, without introducing extra
parameters. Specifically, as shown in Fig. 3, global average
pooling (GAP) is applied to Sm and Rm along the spatial
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Fig. 3. Schematic diagram of the proposed cross-modal feature learning (CFL) module.

dimension, to obtain the channel-wise statistics sm ∈ RC

and rm ∈ RC , respectively. Then, we utilize a self-attention
strategy based on softmax operation, to generate the fusion-
weight vectors βm ∈ RC and γm ∈ RC , as follows:

βm
c =

exp(smc )

exp(smc ) + exp(rmc )
, (4)

γm
c = 1− βm

c , (5)

where βm
c and γm

c , c = 1, 2, ..., C, denote the c-th element of
the weight vectors βm and γm, respectively. The final output
of the CFL module is computed by fusing the shared feature
Sm and the modality-specific feature Rm, using the weight
vectors βm and γm, as follows:

om
c = βm

c Sm
c + γm

c Rm
c , (6)

By Eq. (6), Eq. (2) becomes as follows:
om
1

om
2
...

om
C

 = βm ⊙

W1,1 · · · W1,αC

...
. . .

...
WC,1 · · · WC,αC


 xm

1
...

xm
αC



+ γm ⊙

P
m
1 0 0

0
. . . 0

0 0 Pm
G


z

m
1
...

zmG


+ γm ⊙

Vm
1,αC+1 · · · Vm

1,C
...

. . .
...

Vm
C,αC+1 · · · Vm

C,C


x

m
αC+1

...
xm
C

 , (7)

where ⊙ denotes the channel-wise multiplication. These are
also the detailed operations of the proposed CFL module.

C. Segmentation-based Auxiliary Task

Auxiliary task has had demonstrated success in a number of
vision-based topics [48], [49], because it can ease the training
of the downstream task and improve the learning capacity
of the trunk network. Motivated by the works in [23] and

[6], we introduce a segmentation-based auxiliary task into
both the RPG and RDR stages, by using box-based pedestrian
masks. Since the goal of the auxiliary task is to facilitate the
feature-learning efficiency of the trunk network, rather than
to achieve high segmentation performance, we implement the
segmentation module as a shallow layer, with 1 × 1 convo-
lutional kernels. The segmentation module outputs the masks
indicating the likelihood of pixels belonging to pedestrian or
background segments. As shown in Fig. 1, by concatenating
the cross-modal representations of each modality along the
channel dimension, the segmentation module is attached to
predict the pedestrian masks. Each ground-truth pedestrian
mask q ∈ RW×H is generated by labelling all the regions in
a bounding box as foreground, i.e., qx,y = 1, with the other
regions as background, i.e., qx,y = 0, where W and H are the
width and height, respectively, of the mask. The segmentation
loss in the RPG stage is defined as follows:

LRPG
seg =

1

H ×W

∑
x,y

ls
(
qx,y,q

∗
x,y

)
, (8)

where ls (·) is the cross-entropy loss. q and q∗ represent
the predicted and ground-truth pedestrian masks, respectively.
Similarly, in the RDR stage, the segmentation loss is formu-
lated as follows:

LRDR
seg =

1

H ×W × J

∑
x,y,j

ls
(
qx,y,j ,q

∗
x,y,j

)
, (9)

where the subscript j denotes the j-th region of interest (ROI),
and J is the total number of ROIs.

D. Modality Attention-based Fusion

Since each sub-branch outputs the modality-specific detec-
tion results, involving confidence score and bounding-box re-
gression offsets, it is vital to adopt an effective fusion strategy
to obtain the final detection results. We observe that the im-
portance of each modality may vary in different scenarios. In
good illumination conditions, e.g., during daytime, the colour
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and texture patterns in RGB images may provide more useful
cues for pedestrian detection. In poor illumination conditions,
e.g., during nighttime, the pedestrian silhouettes in thermal
images are more reliable. Since the proposed CFL module
explores both the shared and modality-specific components
to provide discriminative representations, it is reasonable to
adaptively generate weights for each modality based on the
features learned by the CFL module. Therefore, we employ
a modality attention-based fusion module, to compute the
relative importance weight for each modality, according to the
input image pairs. Given the features om output from the CFL
module after conv5 layer, in each branch, the attention weights
are computed as follows:

w = Dθat

(
⊕M

m=1fl(o
m)

)
, (10)

µm =
exp(wm)∑M
k=1 exp(wk)

, (11)

where ⊕ is the concatenation operator, fl(·) denotes the flatten
operation, D represents a multi-layer perceptron (MLP) with
the learnable parameter θat, and wm denotes the m-th element
of vector w. The final detection results are produced by a
linear combination, based on the modality-attention weights,
as follows:

dfinal =

M∑
m=1

µm · dm, (12)

tfinal =
M∑

m=1

µm · tm, (13)

where dm and tm are the classification score and bounding-box
regression offsets from each sub-branch, respectively. Since
the modality-attention-weighted results, defined in Eq. (12)
and Eq. (13), are differentiable with respect to the weights
and sub-branch results, the overall network is trainable end-
to-end.

IV. CROSS-MODAL REPRESENTATION DISTILLATION

A. Overview

Since capturing multispectral data may be difficult in some
practical applications due to limitations of hardware, we pro-
pose to solve the problem by leveraging a knowledge distilla-
tion framework to train a student network, which receives only
RGB images as input and distills cross-modal representations
guided by the multimodal teacher network. Considering that
visual patterns in RGB images are less discriminative in
regions of low visibility for pedestrian detection, a well-trained
teacher model using extra thermal data can provide privileged
information for student-model learning. As illustrated in Fig.
2, the DCRL-PDN model is chosen as the teacher network.
The student network is also built based on a Faster R-CNN,
involving two stages, i.e., region proposal generation (RPG)
and region detection refinement (RDR). To ensure the basic
learning capacity, we also introduce a segmentation-based
auxiliary task into these two stages. The training paradigm for
knowledge distillation consists of two steps. In the first step,
the teacher network is trained leveraging RGB and thermal
image pairs, as depicted in Section III. In the second step, the

teacher network is frozen to provide a stable target for the
student network to learn. We only feed RGB images into the
student model, and train it to distill cross-modal representa-
tion for illumination-invariant pedestrian detection. The cross-
modal knowledge distillation is conducted at multiple levels,
including the feature, detection and segmentation perspectives.
We introduce these three aspects in detail, in the following
subsections.

The overall objective function, LTS , for the proposed
teacher-student learning model is defined as follows:

LdRPG = LdRPG
cls + λLdRPG

reg + ηLdRPG
seg ,

LdRDR = LdRDR
cls + λLdRDR

reg + ηLdRDR
seg ,

LTS = LdRPG + LdRDR + ρLF , (14)

where LF denotes the feature-level distillation loss function
that forces the student network to produce cross-modal repre-
sentation as the teacher network. Ldcls and Ldreg represent the
classification loss and bounding-box regression loss, respec-
tively. Both of them belong to the detection-level distillation.
Ldseg is the segmentation-level distillation loss function. All
these loss functions are described in the subsections that
follow. The parameters λ, η and ρ balance the weights between
the different distillation loss terms. We set them to be 1, 1,
and 0.5, respectively, throughout all the experiments.

B. Feature-level Distillation

To explicitly distill cross-modal representation from the
multimodal teacher network, we employ a feature-level distil-
lation loss function, based on Euclidean distance, as follows:

LF =
∥∥A(Es)−Et

∥∥2
2
, (15)

where Et ∈ R2C×W×H denotes the multispectral feature maps
in the teacher network, generated by concatenating the cross-
modal representations of each modality after the conv5 layer,
as Et = ⊕2

m=1o
m. Es ∈ RC×W×H represents the feature

map output from the conv5 layer of the student network. To
match the number of channels between the feature maps in
the teacher and the student networks, an adaption layer A (·),
based on 1 × 1 convolution, is adopted to map the student
features to the teacher feature space. Thus, the output size of
the adaption layer is 2C. Minimizing LF implies distilling
cross-modal representations at the intermediate layers, guided
by the well-trained multimodal teacher network.

C. Detection-level Distillation

Since the pedestrian detection task consists of two sub-tasks,
i.e., classification and bounding-box regression, we design the
detection-level distillation loss from these two aspects. Mo-
tivated by the classical knowledge distillation framework, we
employ a generalized distillation loss [50] for the classification
task by simultaneously considering hard and soft labels, as
follows:

Ldcls = ζg
(
yh, φ(ds)

)
+ (1− ζ) g (ys, φ(ds)) , (16)

where φ is a softmax function and g (·) denotes a cross-entropy
loss. ds is the classification score of the student network. The
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hyper-parameter ζ ∈ [0, 1] balances the contribution of the
hard labels (ground truth) yh and the soft labels ys in the
classification distillation loss. Given the classification score of
the teacher network as dt, the soft labels ys are computed
by φ (dt/T ), where T is the temperature parameter to soften
the prediction vector. The soft labels involve discriminative
information learned from multispectral data by the teacher
network. Integrating the soft labels into the distillation loss can
force the student network to distill such privileged information.

The bounding-box regression task aims to calibrate the posi-
tion and size of the proposals. Considering that the regression
results are real numbers and unbounded, the inaccurate regres-
sion of the teacher model may provide wrong guidance to the
student model. Motivated by the work in [43], we employ
a conditional regression distillation loss, which utilizes the
regression results of the teacher model as a bound, instead of
using a soft target to guide the regression learning directly. The
specific bounding-box regression distillation loss is formulated
as follows:

Lb (ts, tt, y) =

{
∥ts − y∥22 , if ∥ts − y∥22 + δ > ∥tt − y∥22
0, otherwise

,

Ldreg = LsL1 (ts, yreg) + εLb (ts, tt, yreg) , (17)

where yreg is the regression ground truth, and δ denotes a
margin. ts and tt represent the regression output of the student
network and teacher network, respectively. ε is a weight
parameter. LsL1 (·) denotes a smoothed L1 loss function. The
regression distillation loss, defined in Eq. (17), implies that
when the performance of the student model is lower than the
teacher model by a certain margin, additional penalties will be
introduced to regularize the learning of the student network.

D. Segmentation-level Distillation

To ensure the basic learning capability of the student net-
work, we also introduce a segmentation-based auxiliary task
into both the RPG and RDR stages. The segmentation module
is implemented based on a 1× 1 convolutional layer, similar
to the teacher network depicted in Section III-C. To distill
segmentation-level knowledge from the multimodal teacher
network, we exploit a pixel-wise distillation loss as follows:

Ldseg = ξ
1

H ×W

∑
x,y

ls
(
qs
x,y,q

seg
x,y

)
+ (1− ξ)

1

H ×W

∑
x,y

ls
(
qs
x,y,q

t
x,y

)
, (18)

where qseg is the ground-truth pedestrian mask, and ls (·)
is the cross-entropy loss function. qs and qt represent the
predicted pedestrian masks by the student network and teacher
network, respectively. ξ is a weight parameter, balancing the
supervision provided between the ground-truth mask and the
teacher’s predicted mask.

V. EXPERIMENTS

A. Data Sets

We evaluate the proposed method on the public KAIST
multispectral pedestrian benchmark [8]. The KAIST data set

consists of 50,172 aligned colour-thermal image pairs, cap-
tured by visible and thermal cameras, under different light
conditions. Following the works in [32], we utilize 25,086
multispectral image pairs for training. The testing set involves
2,252 pairs of colour-thermal images, in which 1,455 and 797
pairs are captured during daytime and nighttime, respectively.
We follow the reasonable evaluation settings presented in
[8]. Since the choice of annotations is not consistent in
the literature, we conduct a comprehensive evaluation by
considering three widely used annotations, including the o-
riginal annotations (OA) [8], improved annotations (IA) [31],
sanitized annotations (SA) [33], and paired annotations (PA)
[7]. The log-average miss rate (MR) is adopted to evaluate
the performance of different pedestrian detection methods. We
average the miss rate over the false positive per image (FPPI)
in the range of [10−2, 100].

B. Implementation Details

The convolutional layers, conv1-5 in the backbone-CNN
VGG-16, are initialized with the weights pretrained on Ima-
geNet, for both the teacher (DCRL-PDN) and student (DCRD-
PDN) networks. All the other layers or modules are initialized
with a random Gaussian distribution. An anchor is considered
to be a pedestrian (positive), when its Intersection over Union
(IoU) satisfies IoU > 0.5. For the proposed CFL module,
we adopt half of the channels for the shared components,
i.e., α = 0.5, and the modality-specific part is partitioned
into 2 groups, i.e., G = 2. The batch size is set to be 64.
For the training of the proposed DCRL-PDN model (teacher
network), we adopt the ADAM optimization algorithm. The
learning rate is initialized at 0.001, and decayed by 0.1 after
50 and 75 epochs, with a total of 100 epochs. For the training
of the student network, the weights of the teacher network are
frozen to provide a stable soft target. Moreover, we adopt the
SGD algorithm with an initial learning rate of 0.001 and a
momentum of 0.9 for 150 epochs. The weight parameters ζ,
ε and ξ in Eq. (16), Eq. (17) and Eq. (18), respectively, are
all set as 0.5.

C. Comparison with State-of-the-Art Methods

The proposed DCRL-PDN (teacher model) and DCRD-
PDN (student model) networks are compared with several
state-of-the-art multispectral pedestrian detection methods.
The curves of MR against FPPI using original annotations
are shown in Fig. 4. The MR results using improved anno-
tations and paired annotations are presented in Table I. The
comparison methods include handcrafted representations, such
as ACF+C+T [8], and deep-learning-based methods, such as
Halfway Fusion [31], IAF R-CNN [6], Fusion RPN+BDT
[32], CMT-CNN [45], IATDNN+IAMSS [11], MSDS-RCNN
[33], AR-CNN [7], and AS-MPD [51]. From Fig. 4, it can be
observed that the proposed DCRL-PDN network achieves the
best detection results, in all of the all-day, daytime and night-
time evaluation settings. Although the state-of-the-art methods,
listed in Fig. 4, explore different fusion strategies or stages for
processing colour-thermal image pairs, simple concatenation
of the features from different branches leads to the ignorance
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Fig. 4. Miss rate curves of different methods on the KAIST pedestrian data set using the reasonable evaluation settings.

TABLE I. Miss rate (%) of different methods using improved annotations (MRIA), sanitized annotations (MRSA) and paired
annotations (MRR and MRT) on the KAIST pedestrian data set.

Method MRIA MRSA MRR MRT

All Day Night All All Day Night All Day Night
ACF+C+T [8] 41.65 39.18 48.29 - 41.74 39.30 49.52 41.36 38.74 48.03
CMT-CNN [45] 36.83 34.56 41.82 - 36.25 34.12 41.21 - - -
Halfway Fusion [31] 25.75 24.88 26.59 - 25.10 24.29 26.12 25.51 25.20 24.90
Fusion RPN+BDT [32] 15.91 16.49 15.15 - 15.98 16.60 15.28 16.52 17.56 14.48
IAF R-CNN [6] 15.73 14.55 18.26 - 15.65 14.95 18.11 16.00 15.22 17.56
IATDNN+IAMSS [11] 14.95 14.67 15.72 - 15.14 14.82 15.87 15.08 15.02 15.20
MSDS-RCNN [33] 11.63 10.60 13.73 7.49 11.28 9.91 14.21 12.51 12.02 13.01
AS-MPD [51] 9.68 - - 5.68 - - - - - -
AR-CNN [7] 9.34 9.94 8.38 - 8.86 8.45 9.16 8.26 9.08 7.04
DCRD (student) 12.58 13.12 11.65 8.12 13.64 13.15 13.98 - - -
DCRL (teacher) 9.16 9.86 8.18 5.36 9.56 9.08 9.94 8.42 9.22 7.25

of the latent relations in the multispectral data. In contrast,
the proposed cross-modal feature learning (CFL) module ex-
plicitly explores the common structure and modality-specific
cues between RGB and thermal images. In addition, the CFL
module is deployed into multiple layers in the DCRL-PDN
network, which can learn the cross-modal representations in
diversified semantic levels. Compared with the state-of-the-
art IATDNN+IAMSS [11], the performance gap (3%) in the
all-day setting demonstrates the effectiveness of the shared-
specific representation learning. Furthermore, we find that the
proposed DCRD-PDN network (student model) achieves the
second-best performance, and outperforms other state-of-the-
art multispectral pedestrian detectors. This suggests that the
proposed multi-stage-based distillation strategy can force the
student model to distill the discriminative cross-modal rep-
resentations guided by the well-trained multispectral teacher
model, by only receiving RGB images as input. Although
the coarse original annotations contain some inaccuracies, the
robust MR results indicate that the proposed DCRL-PDN and
DCRD-PDN networks perform better than other approaches,
when handling erroneous annotation labels.

From Table I, we can find that the proposed DCRL-PDN
network achieves 9.16% MR, which performs better than the
recent methods AR-CNN [7], MSDS-RCNN [33] and AS-

MPD [51], when using the improved annotations. Moreover,
by using the sanitized annotations, the proposed DCRL-
PDN network achieves 5.36% MR, which outperforms the
MSDS-RCNN [33] and AS-MPD [51] by 2.13% and 0.32%,
respectively. The AS-MPD approach mainly investigates mul-
tispectral data augmentation strategies based on an anchor-
free framework. These augmentation techniques are orthogonal
to our proposed method. Moreover, the proposed DCRD-
PDN model outperforms the cross-modality transfer learning
method CMT-CNN [45] by a large margin, i.e., 24.25%,
which validates the effectiveness of the proposed cross-modal
knowledge distillation framework and multi-level distillation
loss functions. The CMT-CNN model only designs a region-
reconstruction task for transferring knowledge between the
RGB and thermal modalities, which cannot provide sufficient
discriminative representations for pedestrian detection. The
paired annotations are presented to explore the effect of the
position-shift problem. We also utilize the paired annotations
to evaluate the performance of the proposed method. MRR and
MRT in Table I indicate the log-average miss rate, in terms of
the RGB modality and thermal modality, respectively. The per-
formance of the proposed DCRL-PDN model is comparable
with AR-CNN, without using any specific feature alignment
operations. Furthermore, we can find that performance gaps
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Fig. 5. Sample detection results of different methods evaluated on the KAIST pedestrian data set. The red bounding boxes and
green bounding boxes indicate the ground-truth annotations and predicted results, respectively.

exist, when using these three different annotations for the
evaluated methods, which reveals the impact of annotations.

To qualitatively demonstrate the effectiveness of the pro-
posed DCRL-PDN and DCRD-PDN networks, we further
visualize some detection results of the different methods,
as shown in Fig. 5. The first two rows are colour-thermal
image pairs captured during daytime, and the other four rows
are nighttime image pairs. The first column is the input
image pairs with ground-truth annotations, and the other four
columns illustrate the detection results generated by IAF
R-CNN [6], IATDNN+IAMSS [11], DCRD-PDN (student
model) and DCRL-PDN (teacher model), respectively. The
red bounding boxes and green bounding boxes indicate the
ground-truth annotations and predicted results, respectively.

Note that the student model (DCRD-PDN) does not require
thermal images as its input, in both the training and testing
images. Therefore, we obtain the detection results of the
student network from RGB images only, and then, directly
visualize the results on thermal images for comparison with
other multispectral pedestrian detectors. It can be observed that
the proposed DCRL-PDN and DCRD-PDN networks achieve
robust detection results under various illumination conditions.
For example, in the fifth row of Fig. 5, both the DCRL-PDN
and DCRD-PDN models can generate more accurate bounding
boxes, by tackling the challenging issues, such as low contrast
and low resolution caused by the poor illumination situations.
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Fig. 6. Comparison of detection performances with (w/ ) and
without (w/o) the proposed CFL module.

D. Ablation Study

1) Effect of the Cross-modal Feature Learning Module: We
evaluate the performance of DCRL-PDN (teacher model), with
and without the proposed cross-modal feature learning (CFL)
module. In addition, we further investigate its corresponding
effect on the knowledge distillation of DCRD-PDN (student
model). The comparison results are illustrated in Fig. 6. The
performance gap is 3.87%, which validates the benefits of
explicitly learning shared and modality-specific components
between paired RGB and thermal images. Without using
the CFL module, the teacher model simply concatenates the
features from different modalities and ignores the underly-
ing semantic relations between them. In contrast, the CFL
module incorporated into the teacher model can facilitate the
information-flow interactions between different modalities in
multiple semantic levels, which improves the performance of
the final pedestrian detection. Moreover, we can find that the
teacher model, trained without the CFL module, has a side
effect on the subsequent knowledge distillation. The MR of
the student model increases from 25.89% to 30.07%, when
learned by the guidance of the teacher model without any CFL
module. The student model cannot distill the discriminative
cross-modal representations from the teacher model, thus,
resulting in a worse detection performance. This suggests that
training an effective teacher model is crucial to the cross-
modal representation distillation of the student model.

Since the CFL module mainly consists of three compo-
nents, i.e., shared feature learning (SFL), modality-specific
feature learning (MFL), and attention-based aggregation s-
trategy (AAS), we further conducted ablation experiments to
investigate the contribution of each of the components in the
CFL module. The results are presented in Table II. Without
shared feature learning, i.e., α = 0, the CFL module is iden-
tical to employing the group-wise convolution and point-wise
convolution in parallel, to refine the intermediate feature maps
of each modality. The MR increases from 23.37% to 24.06%,
as the CFL module cannot explicitly discover the common
structure between the RGB and thermal modalities. When

TABLE II. Ablation results of the proposed CFL module using
the reasonable all-day evaluation setting.

Ablation Setting Miss Rate (%)

CFL w/o MFL 25.42
CFL w/o AAS 24.85
CFL w/o SFL 24.06
CFL 23.37

considering another extreme case, i.e., α = 1, this implies
that the CFL module is forced to only concentrate on learning
the shared representations between different modalities by
using fully shared parameters. The performance gap (2.05%)
confirms the importance of modality-specific features, which
provide unique, yet discriminative, cues for pedestrian detec-
tion. Without utilizing the attention-based aggregation strategy,
both the learned shared and modality-specific components
are combined by a basic average pooling operation, which
increases the detection error by 1.48%. This validates the
effectiveness of AAS, as it adaptively generates the channel-
wise aggregation weights by measuring the confidence of the
shared and modality specific features.

We leverage the visualization toolbox provided by [52], to
illustrate the learned shared and modality-specific components
generated by the proposed CFL module. The results are shown
in Fig. 7. The first sample, i.e., the first row of Fig. 7, is
captured under good illumination conditions, and the regions
involving pedestrians are highlighted by yellow bounding
boxes. It can be observed that the modality-specific features
exhibit unique patterns, which are not shareable between the
different modalities. The patterns in the RGB-specific features
are relatively richer than the ones in the thermal-specific
feature maps. The scene in the second row of Fig. 7 is captured
under poor light conditions. The RGB-specific component
cannot capture discriminative patterns, especially in the pink
and green rectangular regions, as the RGB modality is sen-
sitive to illumination variations. The shared features exhibit
a compromise in terms of performance, because they aim to
explore the common structures between these two modalities.
We can find that the thermal-specific features capture rich
patterns in all of these three highlighted regions, which provide
more reliable information for pedestrian detection.

2) Effect of Modality Attention-based Fusion: To validate
the effectiveness of the modality attention-based fusion (MAF)
module, we compare it with two other strategies, including
average pooling and linearly weighted fusion. The experimen-
tal results on the KAIST data set are presented in Table III.
For average pooling, we average the classification scores and
bounding-box regression offsets from both sub-branch net-
works. For the linearly weighted fusion strategy, the detection
results from each sub-branch network are combined by a set
of learnable weights. It can be observed that the modality
attention-based fusion module outperforms the other two fu-
sion strategies, in all of the all-day, daytime and nighttime
evaluation settings. The linearly weighted fusion is input inde-
pendent, since the importance weights for each modality (sub-
branch) are fixed after training. The MAF module outperforms
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Fig. 7. Visualization of the learned shared and modality-specific components generated by the proposed CFL module on two
samples.

TABLE III. Miss rate (%) of the proposed DCRL-PDN net-
work using different fusion strategies.

Fusion Strategy All-day Daytime Nighttime

Average pooling 24.63 25.13 22.82
Linearly weighted fusion 25.35 26.08 23.74
MAF 23.37 23.96 21.46

it by a margin of 1.98%. The underlying reason for this is that
the MAF module can dynamically assign input-specific weight
for each modality. Since the illumination conditions may
undergo drastic changes from daytime to nighttime, the MAF
module can adaptively generate importance weights to help
the proposed DCRL-PDN network to achieve illumination-
invariant pedestrian detection.

3) Effect of the Distillation Loss Function: To evaluate
the contribution of each part of the proposed knowledge
distillation method, we conduct experiments using different
loss terms. The comparison results are summarized in Table
IV, where FEA, CLS, BBR and SEG represent the feature-
level distillation loss (Eq. (15)), classification-level distillation
loss (Eq. (16)), bounding-box regression-level distillation loss
(Eq. (17)), and segmentation-level distillation loss (Eq. (18)),
respectively. For comparison, we train a baseline model based
on the proposed DCRD-PDN network by only receiving RGB
images as input, without guidance from the teacher model. We
can find that the knowledge distillation, with only feature-level
loss, improves the performance over the baseline by a margin
of 7.88%, which demonstrates the effectiveness of distilling
the cross-modal representations. By combining the detection-
level loss functions (CLS+BBR) with the feature-level (FEA)
loss function, the performance of the proposed DCRD-PDN
network can further improve, because the classification-level
distillation loss and bounding-box regression-level distillation
loss are directly related to the final detection task. More-
over, by introducing the segmentation-level distillation loss,
the DCRD-PDN network achieves the best performance, as

TABLE IV. Miss rate (%) of the proposed DCRD-PDN
network using different distillation loss terms in reasonable
all-day setting.

Ablation Configurations Miss Rate (%)

Baseline 46.23
FEA (Eq. (15)) 38.35
CLS (Eq. (16)) 40.46
BBR (Eq. (17)) 37.97
SEG (Eq. (18)) 41.52
CLS+BBR 34.18
CLS+BBR+FEA 29.86
CLS+BBR+FEA+SEG 25.89

it can distill additional segmentation-level knowledge from
the teacher network. Since the FEA, CLS, BBR and SEG
loss functions are employed for distilling knowledge from
different perspectives, they have functions complementary to
the learning of the DCRD-PDN network.

4) Effectiveness of Cross-modal Knowledge Distillation:
To demonstrate the effectiveness of the proposed cross-modal
knowledge distillation framework, we further evaluate the
proposed DCRD-PDN network (student model) on two single-
modality data sets, i.e., the Caltech [53] and NightOwls [54]
pedestrian data sets. The Caltech data set consists of 250,000
RGB images collected from urban traffic scenes, with 350,000
bounding-box annotations for about 2,300 pedestrians. We
follow the Caltech-reasonable evaluation settings as in [45].
The NightOwls data set involves 279,000 images captured at
night, with bounding-box annotations for 42,273 pedestrians.
In addition to the low illumination conditions, this data set
also contains several challenging factors, such as occlusion,
blur, reflections, etc. We follow the training and testing of
split settings, as in [54]. We implement a baseline model,
which is equipped with the same network architecture as
the DCRD-PDN network. But the baseline model only takes
RGB images as input in both training and testing stages. The
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TABLE V. Miss rate (%) of different methods on the KAIST,
Caltech, and NightOwls pedestrian data sets.

Method KAIST Caltech NightOwls

Faster R-CNN [5] - 20.98 20.00
CMT-CNN [45] 49.55 10.69 -
A-Faster-R-CNN [55] - 10.27 18.81
RPN+BF [22] - 9.58 23.26
SDS-RCNN [23] - 7.36 17.80
S3D [56] - 9.28 -
MS-J [57] - 8.81 -
Baseline 52.08 22.26 20.28
DCRD (student) 25.89 7.52 16.73

proposed DCRD-PDN network is first trained to distill cross-
modal representations on the KAIST data set using RGB-
thermal data, then we fine-tune the DCRD-PDN model on
the Caltech and NightOwls data sets only using RGB images.
For fair comparison, the baseline model is also pretrained on
the KAIST data set before fine-tuning on the Caltech and
NightOwls data sets. The comparison results on the KAIST,
Caltech and NightOwls pedestrian data sets are presented
in Table V. On the KAIST data set, DCRD-PDN performs
better than the baseline model by a large margin (26.19%),
as the DCRD-PDN is trained to produce cross-modal features
to deal with illumination changes. The baseline model only
explores RGB modality, which results in poor performance
in bad lighting conditions. On the Caltech data set, DCRD-
PDN also outperforms the baseline model by 14.74%, which
shows the benefits of cross-modal knowledge distillation. We
can find that the performance gap on the Caltech data set is
less than that obtained on the KAIST data set. The underlying
reason is that the images in the Caltech data set exhibit rela-
tively good illumination conditions. The thermal information
is generally more useful in handling poor lighting cases, as in
the KAIST data set. Moreover, the proposed DCRD-PDN net-
work performs better than the cross-modality transfer learning
method CMT-CNN on both the KAIST and Caltech data sets.
This is mainly due to the fact that the CMT-CNN transfers
knowledge between RGB and thermal modalities via region
reconstruction, which is not task-oriented. In contrast, the
proposed method conducts knowledge distillation at multiple
levels, which can provide abundant discriminative cues for
pedestrian detection. On the NightOwls data set, DCRD-PDN
achieves a satisfactory MR result, i.e., 16.73%. This suggests
that the distilled cross-modal representations are helpful for
night scenarios. In addition, the performance gaps between
different pedestrian detectors are smaller, which reveals that
the NightOwls data set is more challenging due to various
interference factors.

5) Effect of Segmentation-based Auxiliary Task: To inves-
tigate the effect of the segmentation-based auxiliary task for
the proposed DCRL-PDN network, we conducted experiments
on the KAIST data set using different ablation settings. The
results are summarized in Table VI. Without employing the
segmentation task, the baseline model achieves a detection
error of 25.23%. The error decreases to 23.37%, when in-

TABLE VI. Ablation results of introducing the segmentation-
based auxiliary task into different stages for the DCRL-PDN
network on the KAIST data set.

Ablation Configurations MR (%)
RPG stage RDR stage All-day

25.23√
23.92√
24.68√ √
23.37

TABLE VII. Runtime comparison results of different pedes-
trian detection methods in seconds per frame (s/f).

Method Testing Time (s/f)

Fusion RPN+BDT [32] 0.593
CMT-CNN [45] 0.326
Halfway Fusion [31] 0.296
IATDNN+IAMSS [11] 0.185
MSDS-RCNN [33] 0.169
DCRD (student) 0.128
DCRL (teacher) 0.175

troducing the segmentation task into both the RPG and RDR
stages. This suggests that the box-based segmentation supervi-
sion is beneficial for pedestrian detection. We also explore the
effect of introducing the segmentation task into RPG or RDR
alone. We can find that the detection performance is improved
in both of these cases. Integrating box-based segmentation
supervision in RPG brings greater improvement than that in
RDR (1.31% vs. 0.55%). Since the bounding-box annotations
in the KAIST data set are generally coarse, the inaccuracy
will be accumulated when generating segmentation masks for
local regions in the RDR stage.

6) Runtime Analysis: The computational efficiency of the
different pedestrian detection methods is evaluated on a s-
ingle RTX 2080 Ti GPU. We summarize the testing time
comparison results in Table VII. The Fusion RPN+BDT [32]
model integrates the RPN network with boosting trees, which
significantly increases the runtime compared with other deep-
learning-based approaches. The proposed DCRL-PDN net-
work (teacher model) improves the performance of the state-
of-the-art method, MSDS-RCNN [33], with a reduction of
the detection error by 2.47%, while only sacrifices a small
computational overhead, i.e., 0.006s/f. In the inference phase,
our DCRD-PDN network (student model) takes 0.128 seconds
only to process one image, which is faster than the domain
transfer-learning-based approach CMT-CNN.

VI. CONCLUSION

In this paper, we first propose a deep cross-modal rep-
resentation learning-based network, for illumination-invariant
pedestrian detection. Different from the common practice of
fusing multispectral features by simple concatenation, we pro-
pose a cross-modal feature learning (CFL) module, based on
a split-and-aggregation strategy, to explicitly explore both the
shared structures and modality-specific cues between paired
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RGB and thermal images. The proposed CFL module is further
deployed into multiple layers of Faster R-CNN, to learn the
cross-modal representations in diverse semantic levels. On the
other hand, to alleviate the reliance on the thermal data, we
propose to leverage a knowledge distillation framework to
train a student network, which only receives RGB images
as its input and distills cross-modal representations with the
guidance from a multimodal teacher network. Specifically, we
employ different loss terms to conduct cross-modal knowledge
distillation in multiple levels, including the feature, detection,
and segmentation perspectives. Extensive evaluations and ab-
lation studies on the public KAIST multispectral pedestrian
data set demonstrate that our method achieves superior perfor-
mance, compared with state-of-the-art multispectral detection
approaches.
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