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Abstract—Corn-plant counting is an important process for
predicting corn yield and analyzing corn-plant phenotypes. In
this paper, an effective corn-plant counting method is proposed,
which is based on utilizing the scale-aware contextual feature
and channel interdependence. Given the VGG (Visual Graphics
Generator) features, the scale-aware features are extracted by
spatial pyramid pooling to derive multi-scale context information.
In order to utilize the channel interdependent information, the
VGG features are integrated via an channel attention module.
Moreover, an encoder-decoder structure is constructed to fuse
the scale-aware features and the channel interdependence-based
features. Considering the sparsity of a corn plant, a hybrid loss
function is adopted to train the network, by considering a density
map loss function and an absolute count loss function. Exper-
imental results demonstrate the effectiveness of the proposed
method for corn-plant counting.

Index Terms—Corn-plant counting, VGG feature, scale-aware
feature, channel attention module.

I. INTRODUCTION

Corn-plant counting can provide useful information for
agricultural experimentation and the farm management, e.g.
breeding programs, predicting corn yield, analyzing corn-plant
phenotypes, etc. The most commonly used method is the
manual measurement. However, the cost and labor needed are
the two most restrictive factors for achieving a high estimation
accuracy for a large area [1]. As an alternative, the corn-plant
counting can be achieved via the computer vision techniques
to reduce the cost and improve the efficiency.

So far, only a few works have been reported for the corn-
plant counting, by means of the computer vision techniques.
In [1], a convolutional neural networks (CNN) was adopted
to segment the images of corn seedlings. Furthermore, the
morphological operations and the blob detection are combined
to count the corn plants. A digital counting approach for maize
plants was proposed in [2] by utilizing the color features of
the images captured by an unmanned aerial vehicle (UAV).
In [3], a vision-based method was developed to measure
corn-plant spacing and population at an early growth stage,
by means of vegetation segmentation, image thinning, stem
center identification, row line fitting, plant count and plant
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spacing measurement. A deep convolutional neural network-
based approach, termed as TasselNet, was proposed in [4] to
accurately counting maize tassels under unconstrained field-
based environment.

As part of most related works, many algorithms have
been developed for the crowd counting. In [5], a Multi-
column Convolutional Neural Network (MCNN) architecture
was proposed to accurately estimate the crowd count from
a static image with an arbitrary crowd density and arbitrary
perspective. A network for Congested Scene Recognition,
called CSRNet, was proposed to understand highly congested
scenes and perform accurate count estimation [6]. In [7], a
scale-aware contextual feature was proposed by adaptively
encoding the contextual information of multiple receptive
field sizes via an end-to-end trainable deep architecture. An
improved scale-adaptive CNN was reported in [8] for the
crowd counting. In [9], two modules, namely Spatial-wise
Attention Model (SAM) and Channel-wise Attention Model
(CAM), were introduced to encode the pixel-wise context of
the entire image and to extract more discriminative features
from different channels.

Inspired by [7]–[9], in this paper, an effective approach is
proposed for the corn-plant counting, by utilizing the scale-
aware features and the channel interdependent information.
A hybrid loss function, comprising of a density map loss
function and an absolute count loss function, is adopted to train
an encoder-decoder network structure. Experimental results
demonstrate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. In
Section II, we present our proposed algorithm. Experimental
results and related discussions are given in Section III, and the
concluding remarks are presented in Section IV.
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��	�	���������	
���	������	���
�	����������
���	�� ��������	�
Fig. 1. The flowchart of the proposed counting method for corn plants.

Figure 1 shows the flowchart of the approach proposed for
corn-plant counting. There are three main components in the
proposed method, including the scale-aware contextual fea-
tures, a channel attention module, and a hybrid loss function.
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A detailed description of these three parts is presented in the
following subsections.

A. Scale-aware contextual features
Figure 2 shows the extraction scheme for the scale-aware

contextual features [7]. Given an input image I of a corn plant
with a size of H×W , an encoder, which is formed by the first
10 convolutional layers of the VGG-16 Net, is used to extract
the local features vf , with a size of C ×H ×W . In terms of
spatial pyramid pooling (SPP), vf are transformed into features
with different scales, k(i)×k(i), by average pooling. For each
scale, a 1× 1 convolutional layer, consisting of C filters with
a size of C × 1 × 1, is applied to merge the features of C
channels. Then, the features are reshaped with the same size
as vf , via upsampling by using bilinear interpolation to obtain
the scale-aware features si. Given vf and si, a contrast feature
ci is computed as follows:

ci = si − vf . (1)

This feature captures the differences between the features at a
specific location and those in the neighborhood. Then, a 1×1
convolutional layer, followed by a sigmoid function, is applied
on ci to derive the weight wi. Considering the saliency, the
weighted scale-aware features are computed as,

af =
∑l

i=1 wi ¯ si∑l
i=1 wi

, (2)

where l is the number of scales, and ¯ is the element-
wise product between a weight map and a feature map.
Finally, the scale-aware contextual features cf are obtained
by concatenating af and vf , i.e.,

cf = [af | vf ] , (3)

where [· | ·] denotes the channel-wise concatenation operation.
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Fig. 3. Architecture of the channel attention module.

Figure 3 shows the architecture of the channel attention
module [9]. For vf , two feature maps C1 and C2 are attained
by the reshape operation. Then, the channel attention map Ca

can be computed by using softmax, as follows:

Cnm
a =

exp (Cm
1 · Cn

2 )∑C
m=1 exp (Cm

1 · Cn
2 )

, (4)

where Cnm
a denotes the mth channel’s influence on the nth

channel. Finally, the output En of CAM is defined as follows:

En = λ
C∑

m=1

(Cnm
a · Cm

1 ) + vn
f , (5)

where λ is a parameter learned via a convolutional layer, with
a kernel size of 1×1.

C. Hybrid loss function

The density map loss function LD(θ) is a commonly used
loss function for crowd counting,

LD(θ) =
1
M

M∑

i=1

‖F (Xi; θ)− Fi‖2 , (6)

where θ is the set of parameters to be learned in the network,
M is the total number of training images, and Xi is the ith

input image. For Xi, Fi and F (Xi; θ) are the ground-truth
density map and the estimated density map, respectively.

Besides LD(θ), the absolute count loss function LY (θ) can
also be used to evaluate the estimation performance,

LY (θ) =
1
M

M∑

i=1

‖Y (Xi; θ)− Yi‖2 , (7)

where Y (Xi; θ) and Yi are the estimated count and the
ground-truth count, respectively.

Given LD(θ) and LY (θ), a hybrid loss function L can
be adopted to jointly optimize the network to improve the
generalization ability, defined as follows:

L = (1− µ)LD(θ) + µLY (θ), (8)

where µ is a weighting coefficient [8].
In Fig. 1, the decoder, consisting of multiple convolutional

layers, is adopted to convert the scale-aware features and
the channel interdependence-based features into the estimated
density map.

III. EXPERIMENTAL RESULTS

A. Experimental data and set-up

The performance of the proposed approach is evaluated
on an image set provided by Anhui Agricultural University,
Hefei, China. The image set was captured from a part area
of an agricultural demonstration base on August 14, 2019.
The agricultural demonstration base, covering an area of about
663300 square meters, is located at Bozhou City, Anhui
Province, China.

An UAV, Mavic, of SZ DJI Technology Co., Ltd., equipped
with a visible light camera, flied about 10-12 meters high
above a corn field of the demonstration base. There are 896
images in the data set. For each image, the locations of corn
plants are manually marked to obtain the ground-truth data.
All of annotated core plant points are convolved by a Gaussian
kernel to encode the ground-truth density map.

Under a mild illumination intensity, as illustrated in Fig. 4,
we can easily recognize a corn plant. Nevertheless, under a
strong illumination intensity, reflection happens on the plants,
as shown in Fig. 5. Some areas are easily misclassified as the
corn plants. Therefore, two different sets of experiments will
be conducted by considering different illumination intensities.

For the corn-plant image sets, the original image size
(5472×3648) is relative large. We extract image patches with
different sizes from the original images, and use them as the
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Fig. 2. The extraction scheme for scale-aware contextual features.

Fig. 4. An image of a corn plant captured under a mild illumination intensity.

Fig. 5. An image of a corn plant captured under a strong illumination
intensity.

TABLE I
THE RELATED INFORMATION OF THE CORN-PLANT IMAGE SETS IN

EXPERIMENTS.

Illumination Set Ns NA
max NA

min

mild
train 301 158 35

test 100 144 40

strong
train 364 198 42

test 131 178 47

training and the testing sets. For these image patches, the
smallest size is 730 × 545, and the largest size is 1312 ×
1054. Table I shows the sample number (Ns) in the training
set and the testing set. Moreover, Table I also lists the smallest
number (NA

min) and the largest number (NA
max) of the corn

plants annotated in these image patches.
Two widely used performance indices, mean absolute error

(MAE) and mean squared error (MSE), are adopted to evaluate
the estimation accuracy of corn-plant density, defined as
follows:

MAE =
1
N

N∑

i=1

|Y (Xi; θ)− Yi|, (9)

MSE =

√√√√ 1
N

N∑

i=1

(Y (Xi; θ)− Yi)2, (10)

where N is the number of testing images, and Y (Xi; θ) and
Yi are the estimated count and the ground-truth count for the
ith image, respectively.

Moreover, another performance index, mean absolute per-
centage error (MAPE), is used to evaluate the percentage of
the counting errors, defined as follows:

MAPE =
100%

N

N∑

i=1

∣∣∣∣
Y (Xi; θ)− Yi

Yi

∣∣∣∣ (11)

To evaluate the performance of the proposed method, de-
noted as SC, we compare it with four state-of-the-art al-
gorithms for object counting, including CSRNet [6], SCAR
(Spatial-Channel-wise Attention Regression) [9], MCNN [5],
and CAN (Context-Aware Network) [7]. All experiments were
conducted in the PyTorch environment, running on a Tesla
V100 GPU with 32 GB memory.

B. Experimental comparison under mild illumination intensity

TABLE II
THE ESTIMATION ERRORS FOR CORN-PLANT DENSITY UNDER A MILD

ILLUMINATION INTENSITY.

Method MAE MSE MAPE

CSRNet 5.33 7.14 6.60%

SCAR 4.59 5.94 5.14%

MCNN 4.29 5.48 5.06%

CAN 2.67 3.66 3.11%

SC 2.38 3.02 2.83%
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Under a mild illumination intensity, there are 301 training
samples and 100 testing samples. Table II shows the esti-
mation errors for the corn-plant density. We can see that,
the estimation errors of the proposed method and CAN are
obviously lower than that of other three methods. Compared
to CAN, our MAE and MSE are 10.86% and 17.49% lower,
respectively. As an example, Figs. 6(a)- 6(c) show a testing
image, the corresponding ground-truth corn-plant density, and
the estimated corn-plant density, respectively.

(a) Testing image (b) Ground-truth density
map

(c) Estimated density
map

Fig. 6. An example of a testing image, the ground-truth density map, and
the estimated density map, under a mild illumination intensity.

C. Experimental comparison under strong illumination inten-
sity

TABLE III
THE ESTIMATION ERRORS FOR CORN-PLANT DENSITY UNDER A STRONG

ILLUMINATION INTENSITY.

Method MAE MSE MAPE

CSRNet 8.53 10.54 8.75%

SCAR 8.38 10.72 8.35%

MCNN 6.33 8.40 6.53%

CAN 3.69 4.92 3.71%

SC 3.45 4.69 3.41%

There are 364 training samples and 131 testing samples
under the strong illumination intensity. Table III shows the
estimation errors for corn-plant density. We can see that,
compared to the mild illumination intensity, the estimation
errors are obviously higher for all the methods under the strong
illumination intensity. Thus, a strong illumination intensity has
a significant effect on the accuracy of density estimation of
corn plants. The estimation errors of the proposed method and
CAN are obviously lower than that of the other three methods.
Our method has its MAE and MSE at about 6.50% and 4.67%,
respectively, lower than CAN. As an example, Figs. 7(a)- 7(c)
show a testing image, the corresponding ground-truth density
map, and the estimated density map, respectively.

D. Related discussions

In order to evaluate the performance gain achieved by dif-
ferent features and loss functions, we conducted the following
experiments, with five combinations of the features and loss
functions.
(1) VGG+DM: the VGG feature and the density map (DM)

loss are used in the network.

(a) Testing image (b) Ground-truth density
map

(c) Estimated density
map

Fig. 7. An example of a testing image, the ground-truth density map, and
the estimated density map, under a strong illumination intensity.

TABLE IV
THE CORN-PLANT COUNTING ERRORS WITH DIFFERENT COMBINATIONS

OF FEATURES AND LOSS FUNCTION UNDER THE MILD ILLUMINATION
INTENSITY.

Method MAE MSE MAPE

VGG+DM 5.33 7.14 6.60%

SA+DM 2.67 3.66 3.11%

SA+CI+DM 2.58 3.43 3.04%

SA+HL 2.52 3.23 3.01%

SC 2.38 3.02 2.83%

(2) SA+DM: the scale-aware (SA) feature and the density
map loss function are used in the deep neural network,
i.e., the CAN method.

(3) SA+CI+DM: the scale-aware feature, the channel
interdependence-based feature (CI), and the density map
loss function are used in the network.

(4) SA+HL: the scale-aware feature and the hybrid loss (HL)
function are used in the network.

(5) SC: the scale-aware feature, the channel interdependence-
based feature, and the hybrid loss function are all used
in the deep neural network, i.e., the proposed method.

Tables IV and V show the corn-plant counting errors for
the above five different combinations, under two different
illumination intensities. It can be seen that, compared to the
CAN method, i.e., SA+DM, the corn-plant counting errors
decreased, when SA is combined with either HL or CI. The
performance is the best, when both HL and CI are combined
with SA, i.e., the proposed method.

In (8), the term (1− µ)LD(θ) should have a relative larger
proportion than µLY (θ) . Take the mild illumination intensity
for example, Table VI shows the corn-plant counting errors
when the parameter µ is set as different values. In experiments,
the parameter µ is set as 0.1 for the proposed method.

Table VII shows the runtime (sec.) of one forward compu-
tation for the various methods. It can be seen that the runtime
is close to each other.

IV. CONCLUSION

In this paper, an effective approach is proposed for the
corn-plant counting. In the proposed method, the scale-aware
features, the channel interdependent information, and the hy-
brid loss function are combined, and have been verified to
be able to effectively strengthen the counting performance
for corn plants. Compared to the existing state-of-the-art
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TABLE V
THE CORN-PLANT COUNTING ERRORS WITH DIFFERENT COMBINATIONS
OF FEATURES AND LOSS FUNCTION UNDER THE STRONG ILLUMINATION

INTENSITY.

Method MAE MSE MAPE

VGG+DM 8.53 10.54 8.75%

SA+DM 3.69 4.92 3.71%

SA+CI+DM 3.57 4.86 3.51%

SA+HL 3.55 4.89 3.50%

SC 3.45 4.69 3.41%

TABLE VI
THE CORN-PLANT COUNTING ERRORS WHEN THE PARAMETER µ IS SET AS

DIFFERENT VALUES FOR THE PROPOSED METHOD.

µ MAE MSE MAPE

0.001 2.45 3.17 2.92%

0.01 2.49 3.14 2.98%

0.05 2.42 3.15 2.90%

0.1 2.38 3.02 2.83%

0.15 2.40 3.01 2.90%

0.3 2.48 3.19 3.04%

algorithms, the proposed algorithm can achieve a competitive
performance.
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