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Abstract—Live video streaming is rapidly becoming a mainstream application in the mobile Internet. An important fact in live 
streaming is that the demand for low playback-latency inherently conflicts with the desire for high QoE. This requires different 
types of live services to seek different latency-QoE tradeoffs according to their service-requirements. However, our investigations 
revealed that it is fundamentally difficult for existing streaming algorithms to keep consistent latency across network conditions, 
let alone achieve the service-desired latency-QoE tradeoff. To tackle the challenge, this work develops a novel framework called 
Flexible Latency Aware Streaming (FLAS) that not only achieves consistent low latency, but also can control the latency-QoE 
tradeoff flexibly. Specifically, FLAS generates a set of algorithm logics offline, each optimized for a candidate tradeoff point, then 
selects the most appropriate one to run online. We first show how FLAS can be applied to existing algorithms to make them 
latency-aware. Second, we developed a novel Genetic Programming approach to fully explore FLAS’s potential. Extensive 
evaluations show that FLAS can precisely control latency all the way down to 1s and achieve substantially higher QoE than state-
of-the-arts. FLAS can be readily implemented into real streaming platforms, offering a practical solution for live-streaming services. 

Index Terms—Live Video Streaming, Mobile Network, Playback Latency, Quality-of-Experience. 

——————————      —————————— 

1 INTRODUCTION
OBILE video streaming has seen tremendous growth 
in the past decade and is now a mainstream applica-

tion in the mobile Internet. Beginning with streaming pre-
encoded contents, i.e., on-demand streaming, a new trend 
in recent years is the streaming of live events, from profes-
sionally-authored live contents (e.g., news, concerts, and 
sports), to user-generated live streams (e.g., personal live 
shows, game live). This trend is further fueled by the wide-
spread adoption of live-streaming platforms such as 
YouTube Live [1] and Facebook Live [2]. 

In addition to the usual quality-of-experience (QoE) 
metrics such as video quality and playback rebuffering, 
live video streaming has a unique and important perfor-
mance criterion – playback latency, defined as the time dif-
ference between video rendering and actual capturing 
(note that in this paper, in order to distinguish playback 
latency from the usual QoE metrics, we don’t incorporate 
latency into the calculation of QoE).  

In general, live streaming services require low playback 
latency (a few seconds at most). However, an important 

fact is that playback latency and the usual QoE metrics (e.g., 
quality, rebuffering) are inherently conflicting objectives. 
For instance, viewers generally prefer to stream high-qual-
ity videos which would inevitably incur a longer transmis-
sion delay at the mobile radio link. As the transmission de-
lay translates directly into the playback latency of live 
streaming, the need for high-quality videos inherently con-
flicts with the live streaming’s low latency demand. There-
fore, this requires live streaming services to seek perfor-
mance tradeoffs between the playback latency and QoE. 

In practice, different types of live streaming services can 
have very different latency-QoE tradeoff requirements [3-
5]. For example, highly interactive live streams (e.g., live 
sales, interactive live shows) demand much lower latency 
than one-way live broadcasts (e.g., news, concerts), but the 
interactive streams need to tolerate relatively lower video 
quality than the one-way broadcasts. Therefore, how to 
achieve desired and optimal latency-QoE tradeoff perfor-
mance for different live streaming services is a significant 
challenge for designing live streaming algorithms.  

While many sophisticated live streaming algorithms 
(e.g., [6-28]) have been proposed in recent years, none of 
them have addressed the above challenge. Moreover, our 
investigations revealed that the playback latency achieved 
by these existing algorithms are far from consistent, but 
vary over a wide range (e.g., 2s ~ 31s) in changing network 
conditions. In other words, streaming the same video from 
the same mobile operator, even in the same location, could 
result in significantly different latency, depending on the 
specific network condition experienced. This is clearly un-
desirable as it is even not possible for the existing algo-
rithms to keep consistent latency, let alone achieve the ser-
vice-desired latency-QoE tradeoff. 

M
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To tackle the challenge, we propose a novel framework 
called Flexible Latency Aware Streaming (FLAS) that not 
only achieves consistent low latency across a wide range of 
network conditions, but also can control the latency-QoE 
tradeoff flexibly. Specifically, we introduce the notion of 
state quantizer (SQ) to quantify the latency-QoE tradeoff 
under different network conditions into a set of states. 
FLAS then generates a set of algorithm logics where each 
member is optimized for a particular state. At runtime, ser-
vice providers (or viewers) are allowed to specify a target 
playback latency (e.g., 2s) according to the live-service re-
quirement. With the target latency prescribed, FLAS can 
periodically select/adjust the operational streaming algo-
rithm based on SQ, so that the actual latency will not devi-
ate from the target while QoE can be maximized. 

This work makes three key contributions. First, our ex-
tensive experiments demonstrated the problem in the cur-
rent live streaming system – it is fundamentally difficult 
for existing streaming algorithms to keep consistent low 
latency, and to achieve desired latency-QoE tradeoffs 
based on live-service requirements. 

Second, we designed FLAS to be a unified framework 
to make the existing streaming algorithms latency aware. 
To demonstrate this applicability, we applied FLAS to one 
state-of-the-art algorithm L2AC [27] and the resultant sys-
tem is called FLAS-L2AC (note that L2AC was developed 
upon A3C [29] – a leading-edge deep-reinforcement-learn-
ing technique that has been widely used in the design of 
on-demand streaming algorithms [17,21]). We discovered 
that although FLAS-L2AC can achieve substantially better 
performance, its efficacy is still restricted under challeng-
ing network conditions, presumably due to the inherent 
structure of the neural network model adopted [27]. 

Third, to get rid of the limitation of FLAS-L2AC, we 
turned to a radically different machine-learning approach 
– Genetic Programming (GP) [30], which represents candi-
date solutions in the form of expression trees. Different 
from deep reinforcement learning using predefined neural 
network structures, GP does not impose a rigid structure 
on the expression tree, so one can explore the solution 
space freely with GP. Based on the insight, we developed 
FLAS-GP to fully exploit FLAS's potential. FLAS-GP en-
codes streaming algorithms using expression trees and 
then executes a novel latency-aware evolutionary process to 
evolve the algorithms for better performance. 

Extensive evaluations show that, FLAS-GP 1) can 
achieve substantially higher QoE with the same or lower 
playback latency than state-of-the-art streaming algo-
rithms; 2) can precisely control the latency all the way 
down to 1s; 3) exhibits remarkable spatial and temporal ro-
bustness; and 4) consolidates most of the complexities into 
offline training, leaving a lightweight online implementa-
tion that can be easily deployed on real streaming plat-
forms. 

The rest of the paper is organized as follows: Section 2 
reviews the background and related work; Section 3 re-
veals the problems of existing streaming algorithms; Sec-
tion 4 presents the FLAS framework and evaluates the ef-
ficacy of applying FLAS to L2AC; Section 5 presents a 
novel Genetic Programming approach to fully explore 

FLAS’s potential; Section 6 evaluates and compares the 
performance of FLAS against current state-of-the-arts, and 
Section 7 summarizes the study and outlines some future 
work. 

2 BACKGROUND AND RELATED WORK 
Adaptive video streaming is the primary tool service pro-
viders use to compensate for the inevitable bandwidth 
fluctuation in mobile and fixed networks. Given the wide-
spread use of video streaming, researchers have developed 
many novel adaptive streaming algorithms for on-demand 
streaming in recent years. The basic principle is to design 
algorithms to dynamically select the future video bitrate in 
the light of past measurements such as throughput and 
buffer occupancy. Existing adaptive streaming algorithms 
can be classified based on their measured metrics, e.g., 
bandwidth-based [7-8], buffer-based [9-10], and hybrid-
bandwidth-buffer-based [11-21] approaches, or classified 
based on the technique employed in optimizing the adap-
tation algorithm, e.g., heuristics [7-12], PID-controller [13], 
data-analytic [14-16], machine learning [17-21]. 

In live streaming, however, playback latency is the pri-
mary performance metric. While the above adaptive 
streaming algorithms worked well for on-demand stream-
ing, they often exhibited latency too high to be suited for 
live streaming services. Therefore, a number of researchers 
have begun developing new adaptation algorithms specif-
ically for live streaming services. One of the problems in 
live streaming is that the data buffering process can di-
rectly increase playback latency. This motivates designs to 
control the amount of buffered video data in the streaming 
pipeline to reduce the latency. For example, Cicco et al. [22] 
proposed a client-side algorithm employing PID feedback 
control to track a target buffer occupancy by adapting the 
video bitrate, thereby maintaining low latency while pre-
venting playback rebuffering. Similarly, Wang et al. [23] 
proposed a PID-based adaptation algorithm to control the 
buffer occupancy at the streaming server side. Xie et al. [24] 
proposed DTBB to select video bitrate depending on a 
buffer threshold that is tuned dynamically according to 
measured network throughput. 

The second problem in live video streaming is latency 
accumulation where the primary source of latency is play-
back rebuffering. Specifically, during rebuffering where 
the player runs out of video data, video playback will be 
suspended until sufficient data are downloaded to resume 
the playback. The live event, on the other hand, continues 
on and thus the gap between the video playback and the 
actual capturing will be widened by the rebuffering dura-
tion. Given that video data are played in sequence, latency 
once introduced thus cannot be reduced, resulting in incre-
mental latency throughout the streaming session when-
ever rebuffering occurs.   

Two common methods to solve this problem are video 
data skipping and playback rate regulating. The former 
one is to skip the download/playback of the late-arriving 
video segments while the later one is to accelerate the 
video playback. Both of them can make the video player 
catch up with the live event.  
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TABLE 1    Evaluation Settings 
Streaming parameters Values 

Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6} Mbps [37]
Segment duration 2s 

Frame rate 25 fps 
Live event duration 3600s 

Client buffer size 60s 
Initial video bitrate 0.2 Mbps 
Throughput trace  60 days for training and 60 days for testing 
 
For instance, Miller et al. [25] proposed LOLYPOP that 

executes data skipping once the playback latency is larger 
than a pre-defined skipping threshold. Lim et al. [26] pro-
posed LoL that turns up the video playback rate to achieve 
low latency. Zhao et al. [27] developed L2AC that incorpo-
rates both of the two methods, i.e., determining the skip-
ping threshold and the playback rate simultaneously 
through neural networks trained by deep-reinforcement-
learning.  

Although the above algorithms were designed with re-
ducing latency in mind, this is still far from enough in prac-
tice, as different types of live services can have very differ-
ent latency and QoE requirements. Recently, Zhang et. al 
[28] proposed LAPAS that allows users to specify a target 
playback latency according to live-service requirements, 
and then LAPAS tracks the target through running a 
streaming-parameter optimization (i.e., tuning the stream-
ing parameters based on the network condition). However, 
LAPAS suffers from two fundamental limitations: First, as 
LAPAS’s adaptation logic is a fixed heuristic restricted by 
human intuitions, it fails to achieve optimal performance 
across a broad set of network conditions; Second, the com-
putational overhead of the streaming-parameter optimiza-
tion is very large as it utilizes brute-force search, which 
hinders the large-scale deployment of LAPAS in real 
streaming platforms. 

By contrast, the FLAS framework developed in this 
study offers three superiorities over the existing ap-
proaches. 1) In addition to achieving consistent low latency 
across a wide range of network conditions, FLAS can ena-
ble flexible latency-QoE tradeoff control; 2) Instead of rely-
ing on pre-programmed models from human intuitions, 
FLAS is designed as a unified framework, which not only 
can be applied to optimizing the existing algorithms, but 
also guides the design of new latency-aware approaches. 
For instance, we apply FLAS to L2AC (the state-of-the-art 
algorithm) in Section 4, and explore a novel FLAS-based 
Genetic Programming approach in Section 5. This feature 
enables FLAS to incorporate any advanced techniques to 
fully liberate the performance potential on its own; 3) The 
two-phase design of FLAS avoids difficulties in real plat-
form deployment, bringing a completely practical solution 
to current live streaming services. 

3    EVALUATION OF EXISTING ALGORITHMS 
In this section, we evaluate the performance of five lead-
ing-edge adaptive live streaming algorithms and then 
demonstrate their limitations. 

 
Fig. 1. Comparison of mean QoE and playback latency (error bars 
span streaming sessions with top/bottom 5% latency). 

3.1    Experiment Setup 
To evaluate the performance of streaming algorithms in re-
alistic network settings, we employed trace-driven simula-
tions where the simulator executes the streaming algo-
rithms over simulated network conditions reproduced by 
TCP throughput trace data. 

Specifically, a content provider captured a live video 
stream through a camera, and then uploaded it to a stream-
ing server where the video would be encoded into multiple 
bitrate versions following Apple’s recommended bitrate 
profile [37]. Common Media Application Format (CMAF) 
[33] was adopted into DASH [32] so that the streaming 
server can deliver the video data on a frame-by-frame basis 
to minimize segmentation delay. A video player began 
playback after the first video frame was downloaded. The 
initial video bitrate was set to the lowest level (i.e., 0.2 
Mbps). The network condition was emulated by replaying 
TCP throughput trace data captured from multiple pro-
duction mobile networks, including 3G, 4G, and Wi-Fi 
[36,39,40]. The rest of the parameters are summarized in 
Table 1. 

Two primary performance metrics were adopted: 1) 
mean playback latency is defined as the average playback la-
tency experienced in each streaming session, and 2) QoE is 
calculated from the QoE function proposed by Yin et al. [11] 
combined with a penalty for video data skipping [27] (the 
component weight also follows [11] and [27]): 

 


 

 
         

 
 

1 1

1
0 1

1 3.0 3.0 ' 0.2
K K

k k k
k k

Q r r r Z Z G
K

   (1)          

where Z is the rebuffering duration, Z’ is the startup delay, 
rk is the bitrate selected for segment k in Mbps, G is the 
skipped video duration, K is the total number of segments 
in one streaming session. We will further consider other 
QoE metrics in Section 6.2. 

We evaluated five state-of-the-art adaptive live stream-
ing algorithms:  LOLYPOP [25], LAPAS [28], L2AC [27], 
PID [23], DTBB [24]. We referred to the source codes pro-
vided by Zhao et al. [40] to train the neural networks in 
L2AC. A total of 60 days throughput trace data (~50,000 
streaming sessions) were used for the training and another 
unseen 60 days traces were applied to evaluating the per-
formance of the five streaming algorithms. 
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Fig. 2. Comparison of daily latency over a period of 40 days. 

3.2    Results and Discussions 
Observation 1. Fig. 1 compares the mean QoE and play-
back latency of the five streaming algorithms in all tested 
streaming sessions. Most streaming algorithms (except 
LAPAS) do not have latency awareness, so each of them 
achieves only one specific point of tradeoff between QoE 
and latency. This is a significant limitation in practice as 
different types of live services or video contents can have 
very different latency/QoE requirements. By comparison, 
LAPAS obtains a continuous tradeoff frontier between 
QoE and playback latency, as LAPAS supports the setup 
of target latency and offers a streaming-parameter optimi-
zation to keep tracking the target. Interested readers can 
refer to [28] for more details. 

However, the performance of LAPAS is much worse 
than L2AC. For example, there is a 15.2% QoE gap between 
them under the playback latency 1.4s. We argue that this is 
because LAPAS's adaptation logic is a fixed heuristic pre-
programmed by humans, which is inevitably restricted by 
human intuitions, thus limiting the performance. In com-
parison, L2AC employs a deep learning technology (i.e., 
A3C [29]) and learns a better adaptation logic based on its 
past experience. Nonetheless, as we mentioned, L2AC is 
not a latency-aware algorithm (only have a single tradeoff 
point), so it is incapable to achieve latency-QoE tradeoffs 
based on requirements. 

Observation 2. In Fig. 1, we found that there is a large 
variation in latency across different algorithms, ranging 
from 1.4s (L2AC) to 19s (DTBB), and their error bars indi-
cate that the latency achieved in different streaming ses-
sions vary over a wide range as well. Hence we plotted Fig. 
2 to show latency variations over a period of 40 days by 
using a 40-day TCP throughput trace. To appreciate the 
variations in network conditions, we plotted the daily 
mean TCP throughput in Fig. 1, which fluctuates signifi-
cantly from a low of 3.3 Mbps to a high of 7.8 Mbps.  

As expected, the daily mean latency of most streaming 
algorithms (except LAPAS) fluctuate substantially with the 
changing network conditions, e.g., the latency of DTBB 
ranges from 2s to 31s. This is clearly undesirable as they 
even cannot keep consistent low latency, let alone achieve 
the service-desired latency-QoE tradeoff. By contrast, 
LAPAS exhibits more consistent latency over the 40 days 
(we set a 2s target latency). This is because through analyz-
ing the throughput traces in past streaming sessions, 
LAPAS’s streaming-parameter optimization can periodi-
cally tune the value of the streaming parameters to adapt 
to the changing network conditions. 

However, this is at the expense of extremely high com-
putational complexity, as the parameter optimization is 
built upon brute-force search. Specifically, based on our 
test, one-day optimization even costs ~1320 CPU hours (for 
4-parameter tuning [28]). To keep playback latency con-
sistent, LAPAS requires the streaming server to run it on a 
daily basis. This undoubtedly occupies a large amount of 
computational resource, especially when the streaming cli-
ent scales, and thus hinders the large-scale deployment of 
LAPAS on real streaming platforms. 

Two insights. 1) Since most existing algorithms adopt 
fixed adaptation logics with immutable streaming param-
eters (so-called one-size-fits-all mode), they don’t have la-
tency awareness. In contrast, LAPAS is latency-aware as it 
is able to tune a specific set of streaming parameters ac-
cordingly for different latency requirements and network 
conditions; 2) Although LAPAS is a feasible solution, only 
tuning the parameters but without adapting the algorith-
mic logic may still be insufficient to achieve optimal per-
formance. Besides, LAPAS also suffers from deployment 
issues in practice.  

Our Approach. To tackle the limitation of the existing 
approaches, we propose to optimize/train different 
streaming algorithm logics specifically for different latency 
requirements and network conditions (instead of only tun-
ing streaming parameters) where each logic covers a sub-
set of the target environment and together provide full 
coverage. Equipped with these candidate algorithm logics, 
the system can then conduct online algorithm selections 
and adjustments to keep the most appropriate streaming 
algorithm always in operation, so that a full spectrum of 
latency-QoE tradeoffs can be offered under a broad set of 
network conditions. 

4    FLEXIBLE LATENCY AWARE STREAMING 
Inspired by the insights from Section 3, we develop a uni-
fied framework called Flexible Latency Aware Streaming 
(FLAS). FLAS is built upon two phases where most of the 
complexities are consolidated into distributed offline training 
phase to train a set of algorithm logics, and a lightweight 
strategy is incorporated in online algorithm selection phase. 
The system architecture of FLAS is depicted in Fig. 3. 

While streaming a live video event, the network condi-
tion may change significantly, so the initial-selected algo-
rithm may no longer be optimal later on. We thus propose 
to divide one streaming session into multiple sub-sessions 
(henceforth called “epoch”) where each has a fixed video 
duration (e.g., 300s), so the system can execute algorithmic 
re-selection in the interval of each epoch (within the stream-
ing session) to adapt to the changing network conditions. 
This is illustrated in Fig. 3 and we will introduce more de-
tails later. 

In this section, we first introduce the design of the FLAS 
framework and then demonstrate a use case of FLAS by 
applying it to optimizing an existing streaming algorithm, 
L2AC [27].  
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Fig. 3. The system architecture of FLAS. 

4.1    Distributed Offline Training 
To quantify the latency-QoE tradeoff under different net-
work conditions, we define a two-dimensional state quan-
tizer (SQ), denoted by  

  


,                                    (2) 

where the first dimension ω is called latency coefficient and 
the second dimension ϖ is named as throughput level. 

Latency Coefficient ω. The function is to extract the re-
lationship between playback latency and QoE. Specifically, 
let μk be the time elapsed since the beginning of the live 
event at the time of requesting segment k. The current play-
back time point, denoted by lk, is known to the video player 
so that the playback latency αk can be computed from 

                  k k kl                                   (3) 

The mean playback latency over all video segments in one 
epoch is then given by  

                         




 
1

0

1 K

k
kK

                                  (4) 

where K is the total number of video segments in an epoch. 
The mean latency β is then combined with the desired 

QoE function (e.g., (1)) to form the objective function used 
in the offline training: 

                        U Q                                  (5) 

where Q is the QoE function and ω is the latency coefficient. 
The offline training will maximize the objective function U 
where the playback latency β and QoE Q are conflicting 
metrics with each other, so the latency coefficient ω can be 
tuned to balance the tradeoff between them. For instance, 
a larger value of ω will result in an algorithm trained with 
lower latency but worse QoE.  

Based on this principle, we define M values of ω, i.e., 
{ωp|p=0,1,…,M-1}, to generate M objective functions: 

                  , =0,1,..., 1p pU Q p M                  (6) 

which can quantify M candidate latency-QoE tradeoff 
points.  

Throughput level ϖ. Since the playback latency varies 
across different network conditions (c.f. Observation 2 in 
Section 3.2), we introduce throughput level to differentiate 
the network conditions where throughput level is defined 
as the mean throughput during streaming video sessions 
(we also tested some other metrics, e.g., throughput varia-
tion and network type, but they perform worse). While 
throughput level can be calculated directly in offline as the 

throughput trace data is given, it cannot be known before 
streaming the actual video in online streaming. Therefore, 
to keep the calculation process consistent, we propose the 
following way to estimate throughput level. 

Specifically, the throughput of a new video epoch j can 
be estimated from the mean throughput of downloading 
the last m segments in the last epoch j-1: 

                    




 
1

-1,

0 -1,

1 m
j k

j
k j k

s
V

m d
                                   (7) 

where sj-1,k, and dj-1,k are the size and download time of seg-
ment k in epoch j-1. We then apply a linear quantization 
policy to map the measured throughput Vj to a discrete 
throughput Wj: 

                       
  
       

min , 1j
j

V
W N                            (8) 

where Δ is the quantization step size and N is the 
maximum value of the discrete throughput. The next step 
is to segregate the throughput trace data of all epochs Sj, 
j=0,1,…,J, into N network classes through throughput level 
ϖq: 

         , ,   0,1, , 1q j j qC S W j q N            (9) 

where each throughput trace class will emulate a particu-
lar network condition in the offline training. 

Training. With the two-dimensional SQ, i.e., M latency 
coefficients and N throughput levels, FLAS can quantify a 
total of M×N latency-QoE tradeoff states: 

      = , 0,1,..., 1,  0,1,..., 1p qU C p M q N     (10) 

where Up is the objective functions (to be maximized) with 
latency coefficient ωp (defined (6)) and Cp is the throughput 
trace data with throughput level ϖq (defined in (9)). For 
each state, FLAS runs a separate training process, denoted 
by function Tx(), to train a specialized adaptation algo-
rithm for this state: 

    , ( , ), 0,1,..., 1,  0,1,..., 1p q x p qA T U C p M q N   (11) 

where Ap,q is the trained algorithm set including M×N algo-
rithms. Fig. 3 illustrates the trained algorithm set where 
each square represents an adaptation algorithm trained for 
one state. During the training, FLAS also records the re-
sultant QoE, denoted by Qp,q, and mean playback latency, 
denoted by βp,q, achieved by the algorithm of each state, 
which will then be utilized in the online algorithm selec-
tion phase (c.f. Section 4.2). 

Importantly, FLAS is designed as a general framework 
that is able to operate upon any underlying adaptation al-
gorithms. For instance, when applying FLAS to L2AC (i.e., 
FLAS-L2AC), the training function (i.e., Tx(.) in (11)) is 
deep reinforcement learning A3C [29], and the resultant al-
gorithm set (i.e., Ap,q in (11)) includes M×N neural networks 
(we will evaluate the performance of FLAS-L2AC in Sec-
tion 4.3). 
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TABLE 2    System Configurations of FLAS 
System parameters Values 

Epoch duration 300s 
Latency coefficient A total of 18 coefficients ranging from 0.01 to 1.8 
Throughput level A total of 10 levels with quantization step 1 Mbps 

PI controller Kp=0.5, Ki=0.05 [35] 

4.2    Online Algorithm Selection 
The algorithm set trained in the offline training will be 
downloaded to the video player (e.g., through DASH 
metadata [32]) for online streaming. To cater to different 
playback latency requirements, FLAS supports runtime 
configuration of target playback latency (e.g., 2s), denoted 
by λ, which can be input as a video player option. With the 
target latency λ prescribed, the system’s goal is to prevent 
the actual latency from deviating from the target while 
maximizing QoE. 

Initial Selection. FLAS client first selects the most ap-
propriate adaptation algorithm running at the beginning 
of a streaming session, i.e., in epoch 0. Since all the trained 
algorithms are labeled with different states, the state quan-
tizer (SQ) can be used to assist in the algorithm selection 
process.  

The streaming client begins a live streaming session by 
prefetching m video segments with a pre-configured fixed 
bitrate where the total prefetching video duration equals 
to the target latency λ. FLAS client then measures the av-
erage throughput in downloading these m video segments: 
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                                 (12) 

where s0,k, and d0,k are the size and download time of the 
segment k in epoch 0. The average throughput V0 will then 
be utilized to estimate throughput level: 
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where Δ is the quantization step size and N is the 
maximum value of throughput levels.  

After obtaining the throughput level, the next step is to 
determine latency coefficient. Specifically, FLAS will select 
the operational algorithm among the algorithms trained 
with throughput level ϖq* and M different latency 
coefficients {ωp|p=0,1,…,M-1}. The decision criteria is to 
find which algorithm can achieve the highest QoE while its 
playback latency does not exceed the latency target λ: 

           , * , *max    s.t. ,  =0,1,..., 1p q p qp
Q p M           (14) 

where Qp,q* and βp,q* are the QoE and playback latency 
achieved by the algorithm trained with latency coefficient 
ωp and throughput level ϖq* (these data are recorded in the 
offline training, c.f. Section 4.1). Finally, the video player 
will apply the matching adaptation algorithm to epoch 0. 

Inter-epoch Selection. During streaming the subse-
quent epochs (e.g., epoch 1~epoch 4 in Fig. 3), network con-
ditions can change significantly, so the FLAS client will ad-
just the operational adaptation algorithm at the start of 

each epoch to keep the actual latency from deviating from 
the target λ. 

Specifically, at the beginning of epoch j (j>0), FLAS acti-
vates a PI feedback controller: 
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where Kp and Ki are tuning parameters representing the 
proportional gain and integral gain of the PI controller [35], 
and 

                      1 1j je                                (16) 

is the deviation of the actual mean latency in epoch j-1, de-
noted by ξj-1, from the target latency λ. 

To compensate for the latency deviation incurred in 
epoch j-1, i.e. (16), the PI controller will adjust the target 
latency of epoch j to λj by: 

                                1 -1j j ju                                (17) 

where λj-1 is the target latency adopted in epoch j-1 and uj-

1 is the output of the PI feedback controller, i.e., (15). An in-
tuitive example to illustrate the principle of this feedback 
mechanism is that, if the actual latency is higher than the 
target latency in the current epoch, one can set a lower tar-
get in the next epoch to shorten the actual latency so that 
the deviation can be reduced. 

With the new target latency λj, the next step is to deter-
mine the operational algorithm for use in epoch j through 
SQ. First, throughput level is estimated by the mean 
throughput in downloading the last m segments in epoch 
j-1: 
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where sj-1,k, and dj-1,k are the size and download time of seg-
ment k in epoch j-1. The mean throughput Vj is then 
mapped to a discrete throughput level by 

                    
  
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N                          (19) 

where Δ is the quantization step size and N is the 
maximum value of throughput level.  

Latency coefficient is determined by 

         , * , *max    s.t. ,  0,1,..., 1p q p q jp
Q p M         (20) 

where the underlying principle is identical with (14), 
except λj replacing λ, which is adjusted by the PI feedback 
controller in (15)~(17). After determining SQ, the video 
player will apply the matching adaptation algorithm to 
epoch j. 

4.3    Performance Evaluation 
FLAS is a general framework that can optimize existing 
adaptive streaming algorithms to make them latency 
aware. To evaluate this applicability, we applied FLAS to 
optimizing the state-of-the-art algorithm L2AC [27]. The 
resultant system is named as FLAS-L2AC.  
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TABLE 3    QoE Performance Across Throughput Levels  
(Target Latency=2s) 

 
Algorithm 

Throughput Level 
0~1 2~3 4~5 6~7 8~9 

FLAS-L2AC -1.11 1.72 3.06 4.83 6.97 
LAPAS 0.21 1.79 2.79 4.07 5.20 

 

 
Fig. 4. Comparison of QoE and playback latency between FLAS-L2AC 
and the existing algorithms (error bars span streaming sessions with 
top/bottom 5% latency). 

We conducted the trace-driven simulation as described 
in Section 3 where Table 1 summarizes the simulation set-
tings. For the configuration of FLAS, we adopted 14 la-
tency coefficients (defined in (6)) ranging from 0.01 to 1.8, 
and 10 throughput levels (defined in (8)) with 1 Mbps 
quantization step size. Unless stated otherwise, the live 
events last for 3600s and the epoch duration is set to 300s. 
The rest of the parameters are summarized in Table 2. 

Fig. 4 compares the latency-QoE tradeoff of FLAS-L2AC 
to the existing streaming algorithms. We observed that 
FLAS configures L2AC to offer a continuous tradeoff fron-
tier. Remarkably, FLAS improves the QoE performance of 
L2AC by 15.7% under the playback latency ~1.4s. This 
strongly suggests that FLAS and L2AC can cooperate ef-
fectually to train more specialized neural networks that 
better match the operating environments. Compared to 
LAPAS, FLAS-L2AC achieves much higher QoE in lower 
latency targets (≤3s), while performing similarly in higher 
latency targets (>3s). 

Fig. 5 plots the daily mean latency over a period of 40 
days. Same as LAPAS, we set the target latency to 2s for 
FLAS-L2AC. We observed that among all the algorithms, 
only FLAS-L2AC and LAPAS exhibit consistent latency 
and track the latency target closely over the 40 days. As 
opposed to LAPAS requiring daily optimization (dis-
cussed in Section 3), FLAS-L2AC does not need to repeat 
the training process at all, as the latency variations largely 
due to network condition changes have already been ad-
dressed by FLAS. Moreover, FLAS’s training process car-
ries most of the system complexity and once it is completed 
no need to be re-executed, so that the implementation and 
deployment for FLAS are much simpler than LAPAS. 

Limitations of FLAS-L2AC. Fig. 6 compares the daily 
mean QoE achieved by FLAS-L2AC and LAPAS under 2s 
target latency over the 40 days.  We also plotted the daily 
mean TCP throughput to appreciate the variation of net-
work conditions.  

 
Fig. 5. Comparison of daily playback latency between FLAS-L2AC 
and the existing algorithms over a period of 40 days. 

 
Fig. 6. Comparison of daily QoE performance between FLAS-L2AC 
and LAPAS over a period of 40 days. 

We can see that the QoE tracks the throughput closely, 
as the latter directly impacts the mean video bitrate deliv-
ered, which is the primary factor affecting QoE. Moreover, 
a more interesting observation is that, compared to LAPAS, 
FLAS-L2AC only achieves better QoE performance in 28 of 
the 40 days but performs worse in the rest 12 days. Com-
paring the daily throughput, it appears that FLAS-L2AC 
becomes less effective in networks with lower throughput 
levels. 

To this end, we further studied the QoE performance 
across different throughput levels. We divided all stream-
ing sessions into 10 throughput levels, with level l=0,1,…,8 
collecting sessions with average throughput within (l, l+1] 
Mbps, plus level 9 with average throughput ≥9Mbps, and 
then summarized the respective QoE performance of 
FLAS-L2AC and LAPAS in Table 3. The results verify our 
conjecture that FLAS-L2AC performs much worse in lower 
throughput levels, especially at the lowest two throughput 
levels (i.e., 0~1). We also found similar results in other tar-
get latency options. 

One of the challenges in using machine-learning ap-
proaches to solve problems is that the resultant solutions 
(e.g., neural network) are often opaque and difficult to an-
alyze so that the insights into their performance cannot be 
easily obtained. To shed light on the results in Table 3, we 
attempted to tackle the challenge by analyzing the stream-
ing algorithm’s bitrate adaptation behavior. Specifically, 
by fixing other less critical parameters, e.g., set buffer oc-
cupancy to 2s and the last segment bitrate to 200kbps, we 
can plot the bitrate decision (y-axis) versus measured 
throughput (x-axis) for the adaptation logics. 
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Fig. 7. Comparison of bitrate adaptation behavior in low (0), medium 
(5), and high (9) throughput levels (target latency = 2s). 

We plotted the results in Fig. 7 for low (0), medium (5), 
and high (9) throughput levels where the calibration val-
ues of the y-axis indicate the available video bitrate ver-
sions. For FLAS-L2AC, the results reveal one of its behav-
ior – its bitrate adaptation logic is relatively aggressive. 
While this may work well in high throughput levels, it 
would cause disastrous consequences in low throughput 
levels that typically have substantial throughput fluctua-
tions. Therefore, this clearly explains why FLAS-L2AC 
cannot perform equally well across different throughput 
levels. Another issue of FLAS-L2AC is the abrupt changes 
of the bitrate decision boundary. For example, the bitrate 
changes sharply from 0.2 Mbps to 1.2 Mbps (from 0.2 Mbps 
to 2.2 Mbps in level 9) despite the availability of two inter-
mediate bitrate choices (0.4 Mbps and 0.8 Mbps). We con-
jecture that in spite of using the state-of-the-art deep rein-
forcement learning A3C, the resultant neural network 
structure may still not be sufficiently flexible to explore the 
complete solution space of the bitrate adaptation.  

In comparison, LAPAS exhibits relatively conservative 
behavior at throughput level 0, which is more reasonable. 
However, limited by its fixed heuristic logic, the conserva-
tism in bitrate selection cannot be appropriately altered in 
higher throughput levels, so this inevitably results in 
suboptimal performance.  

GP Scheme. To further explore FLAS’s potential, we 
will turn to a new approach in Section 5 – Genetic Pro-
gramming (GP). The preliminary results of FLAS-GP (i.e., 
applying FLAS to GP) are plotted in Fig. 7 which presents 
a far more reasonable bitrate adaptation behavior. We can 
observe that, as the measured throughput raises, the se-
lected bitrate of FLAS-GP gradually increases without any 
abrupt changes (unlike FLAS-L2AC). Specifically, at level 
0 it is clear that FLAS-GP intentionally selects bitrates 
much lower than the measured throughput, as the network 
condition is judged to be poor and high measured through-
put would be treated as exceptions that are unlikely to last. 
Thus not raising the bitrate too far would effectively pre-
vent rebuffering in the future. By comparison, at level 5, 
FLAS-GP becomes more moderate and balanced in its bi-
trate selection. Finally, at level 9, FLAS-GP becomes more 
aggressive, even occasionally selecting bitrates higher than 
the measured throughput. Intuitively, at throughput level 
9, the low measured throughput is likely short-term so 
maintaining high video bitrates can prevent unnecessary 
QoE degradations. We will introduce the design of FLAS-
GP in the next section. 

 
Fig. 8. Illustration of the transform between adaptation algorithm and 
GP expression tree (c, u are estimated throughput and buffer occu-
pancy respectively; γ and τ are numeric constants; b is video bitrate). 

5    FLEXIBLE LATENCY AWARE VIA GP 
Genetic Programming (GP) [30] is inspired by the process 
of natural selection where a population evolves itself to 
adapt to the changing environment through crossover, 
mutation, and reproduction.  

Why GP? GP encodes candidate solutions in the form 
of expression trees and does not impose a rigid structure 
on them, so GP-based schemes can be free to explore the 
solution space. This is totally different from deep-rein-
forcement learning which holds a predefined fixed neural 
network structure and only the neuron weights can be 
tuned. Therefore, using GP can potentially resolve the lim-
itations of FLAS-L2AC.  

In this section, we investigate the GP approach for FLAS 
where adaptation algorithms are encoded with expression 
trees. In addition, a new latency-aware evolutionary pro-
cess is developed to make GP more suitable for evolving 
streaming algorithms in the scenario of live video stream-
ing. It is worth noting that other machine learning or heu-
ristic techniques can be operated by FLAS in a similar man-
ner, and this could be a fruitful direction for future work. 

5.1    Adaptation Algorithm and Expression Tree 
GP encodes candidate solutions using expression trees [30] 
which are particularly suitable for representing streaming 
algorithms. In fact, many existing adaptive streaming algo-
rithms can be mapped to relatively simple expression trees. 
Fig. 8 shows an example in on-demand streaming: the 
right-side expression tree is the equivalent of the left-side 
expression, which is a hybrid-throughput-buffer-based ad-
aptation algorithm proposed by Liu et al. [14]. The algo-
rithm determines the bitrate b according to the estimated 
throughput c and the buffer occupancy u. In the following, 
we will apply expression trees to encoding playback/bitrate 
adaptation algorithms for live video streaming. 

Playback Adaptation. A fundamental problem in live 
streaming is the accumulation of playback latency where 
the primary source of latency is playback rebuffering. Spe-
cifically, rebuffering occurs when the video player runs out 
of video data and thus has to suspend video playback until 
more video data are received. The live event, on the other 
hand, continues on and thus the time gap between the 
video playback and the actual capturing will be widened 
by the rebuffering duration. Worst still, as subsequent 
video data are played back in sequence, the widened gap 
will be eventually accumulated into the playback latency 
for the rest of the streaming session. In fact, whenever a 
rebuffering event occurs, the playback latency will be in-
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creased by the rebuffering duration. This is clearly unde-
sirable in live video streaming, as the latency would keep 
increasing throughout the whole streaming session.  

To the best of our knowledge, there are two effective 
methods to address this problem. The first one is video 
data skipping [25], i.e., by skipping the download/play-
back of the late-arriving video segments, the video player 
can then catch up with the live event. However, this also 
introduces playback glitch as a tradeoff thereby resulting 
in QoE degradation [27]. By comparison, the second one, 
i.e., regulating the playback rate [26,28], has much fewer 
impacts on QoE. The idea is to increase the video playback 
framerate slightly (e.g., within 5%) to catch up with the live 
event. Such a slight change to the playback rate is much 
less perceivable to viewers and thus can prevent the QoE 
degradation [31]. 

Therefore, instead of using video data skipping, we em-
ploy playback rate regulation to control the playback la-
tency in our following design. Fig. 9 illustrates the relation-
ship between playback latency, rebuffering, and playback 
rate adaptation. The x-axis is wall-clock time while the y-
axis is the playback point in the video stream. Assuming 
the live streaming session starts at time point zero then the 
live event’s timeline is a 45-degree line passing through the 
origin. A video player streaming live events will first 
buffer video data up to the target latency (2s in this exam-
ple) before commencing playback, thereby resulting in an 
initial latency of 2s. When a rebuffering event occurs at 
time t1, the client suspends video playback for 1s before re-
suming it at time t1+1. Due to the rebuffering event, the 
playback latency is then increased to 3s, thus exceeding the 
latency target of 2s. To reduce playback latency, the player 
increases playback rate until the target is reached, after 
which it reverts back to normal playback rate.  

To control the playback rate automatically, we explore 
the use of Genetic Programming (GP) to evolve playback 
adaptation algorithms. GP encodes candidate solutions us-
ing expression trees (see Fig. 8) which comprise two types of 
components: operands – leaf nodes, and operators – non-leaf 
nodes. The choices of operands and operators determine 
GP’s search space. For the playback rate adaptation, GP 
captures network and streaming states as inputs in an ex-
pression tree via variable operands. We define a variable op-
erand set with four input variables: 

                      ={ , , , }z b                                 (21) 

where δ is the average TCP throughput in downloading 
the past x (e.g., x=5) video segments; z is the current buffer 
occupancy; b is the bitrate of the previous video segment; 
and α is the playback latency. The first three variables are 
commonly employed in on-demand adaptive streaming 
algorithms while the last one is specific to live video 
streaming. 

In addition to input variables, one also needs numeric 
constants for constructing algorithms. These are intro-
duced into GP expression tree via constant numeric oper-
ands, defined by an operand set   that comprises numeric 
constants randomly generated over a given range D: 

        { , }x D x D                        (22) 

 
Fig. 9. Illustration of using adaptive playback to control playback  

latency.  

As opposed to operands, GP operators are non-leaf 
nodes of an expression tree. An operator node performs a 
specific operation on its child nodes to produce a result 
which is then served as input to its parent operator node. 
We employ a set of four arithmetic functions in the opera-
tors set :  

                                       { , , , }                             (23) 

The above operands and operators are specially chosen 
such that the resultant expression tree can be presented in 
the form of a mathematical equation that can be simply 
implemented into video players. The output of the 
expression tree is playback rate multiplier, denoted by . 
Specifically, =1 means normal playback rate and >1 (<1) 
speeds up (slows down) playback rate by a factor of . 
Note that slowing down the playback rate serves the pur-
pose to assist in avoiding playback rebuffering by buffer-
ing up more data in the case of the actual latency lower 
than the target. 

In practice, one wants to make the playback rate change 
imperceptible so that it does not degrade the user experi-
ence. Previous work [28,31] found that, for both video and 
audio, playback rate changes within 5% are imperceiva-
ble to most viewers. To verify this, we tested a wider range 
of playback rate changes (within 50%) via dash.js video 
player [41] and our findings were consistent with the pre-
vious work. In fact, we found it is difficult for viewers to 
notice even with a 15% playback rate change but conser-
vatively we adopted 5% maximum change limit in this 
work. Interested readers can visit dash.js reference player 
[41] to experience it. Finally, we limit the playback rate 
multiplier computed by the expression tree to this range: 

                       
  

  
  

  
 
  

max

max

min( ,1 ),  1
= ,                          1

max( ,1 ),  1
                     (24) 

where κmax = 5% is the maximum playback rate change. 
Bitrate Adaptation. For evolving bitrate adaptation al-

gorithms, we define a set Φ that includes five domain-spe-
cific inputs as variable operands: 

                      ={ , , , , }z b                             (25) 

Comparing (25) to (21), an additional operand ρ – the play-
back rate calculated from (24) is added. This means that the 
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bitrate adaptation algorithm has knowledge of the play-
back rate chosen to enable the two adaptation algorithms 
to evolve jointly (c.f. Section 5.2).  

The definitions of numeric constants operands and op-
erators in bitrate adaptation are identical with that in (22) 
and (23) respectively. Same as the playback adaptation al-
gorithm, the choices of operands and operators in bitrate 
adaptation also enable the expression trees to be converted 
into mathematical equations that can be easily imple-
mented into the video player. 

The output of the expression tree here is the video bi-
trate, denoted by r, of the next video segment, but as r is a 
real number while bitrate choices are discrete, it needs to 
be mapped to the closest available bitrate version by 

                            =arg  min h
h

h r r                             (26) 

where rh, h=0,1,…,H-1, are the available bitrate versions. 

5.2    Latency-aware Evolutionary Process 
The two types of algorithms (i.e., playback adaptation and 
bitrate adaptation) defined in Section 5.1 are not independ-
ent but should work together to optimize QoE and play-
back latency in live video streaming. On one hand, given 
the different functions performed by the two types of algo-
rithms, they should be evolved in separate GP populations. 
On the other hand, system performance is a result of run-
ning them simultaneously so one also needs a way to 
evolve them jointly. To this end, we drew on the method-
ology of cooperative coevolution [34] and developed a new 
latency-aware evolutionary process to co-evolve the two 
types of algorithms in live video streaming. 

Populations. The evolutionary process begins with two 
separate initial populations, one for playback rate adapta-
tion and the other for bitrate adaptation, each containing γ 
(e.g., γ=800) randomly-generated individuals (i.e., expres-
sion trees). We adopted the method proposed by Koza et 
al. [30] to generate the initial populations. 

Let Iτ,g (Iπ,g) and Iτ,g,k∈Iτ,g (Iπ,g,k∈Iπ,g) be the population set 
and individual k, k=0,1,…,K–1, in the population in gener-
ation g, g=0,1,…,G-1, for playback (bitrate) adaptation al-
gorithms respectively. We link each pair of individuals 
(Iτ,g,k and Iπ,g,k) from the two populations (Iτ,g and Iπ,g) ac-
cording to the fixed order k to form a combined individual, 
denoted by Ic,g,k: 

                     , , , , , ,{ , }c g k g k g kI I I                            (27) 

It’s worth noting that, in the study of Potter et al. [34], 
they proposed to link each individual in the current popu-
lation with the best-performing individuals from the rest 
of the populations. However, this method is not suitable 
for this work as the two types of individuals are not inde-
pendently optimized for separate fitness metrics but must 
work together to determine the common fitness metric. 
Therefore, we adopted the fixed linkage which makes ei-
ther individual evolve in accordance with its counterpart, 
hence enables synergy between them. 

Joint Fitness Evaluation. Each generation of population 
evolves by means of reproducing offspring to form the 
next generation. This is done by first evaluating the fitness 

of each combined individual in the population which indi-
cates the goodness of each candidate solution in the prob-
lem domain. Fitness is determined by both bitrate and 
playback adaptation algorithms in this work, so it should 
be jointly evaluated upon a pair of the individuals, i.e., the 
combination in (27). 

This presents a challenge as the fitness of the adaptation 
algorithm not only depends on the adaptation logic, but is 
also affected by the network conditions as well as the eval-
uation metric adopted. To tackle this challenge, we pro-
pose to employ trace-driven simulations to evaluate the fit-
ness of a given combined individual according to a given 
fitness function (e.g., (6)). To ensure that the fitness evalu-
ation covers a broad range of network conditions, each 
combined individual is evaluated over L (e.g., L=200) 
streaming sessions using throughput traces from a dataset 
E. Now given the throughput trace data of session j in 
dataset E, denoted by Sj∈E, the combined individual Ic,g,k 
can be executed (denoted by the function F()) to produce 
a set of performance metrics (e.g., bitrate, rebuffering 
duration, playback latency and etc.), collectively denoted 
by Pk,j: 

                            , , ,( , )k j c g k jP F I S                             (28) 

Finally, the fitness of Ic,g,k, denoted by fc,g,k, is computed 
from the mean of all L streaming sessions: 
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                         (29) 

where U() is the fitness (objective) function adopted (e.g., 
(6)). 

Selection, Crossover, and Mutation. Once the fitness 
values for all individuals are obtained, GP performs selec-
tion, crossover and mutation for the bitrate and playback ad-
aptation population separately to reproduce offspring. Se-
lection is to pick parent individuals with good fitness. 
Crossover/Mutation is to explore the combination/modifi-
cation of genes in the parent individuals such that the gene 
diversity of the offspring can be improved to broaden the 
solution search space. Interested readers can refer to Potter 
et al. [34] and Koza et al. [30] for more details. 

Termination. The reproduced offspring forms the pop-
ulations in the next generation and then all the processes 
repeat until a predefined maximum number of generation 
G (e.g., G=50) is reached. As the evolutionary process goes 
on, GP can explore a wide spectrum of candidate solutions 
in the solution space to progressively evolve better-per-
forming individuals. In the end, the combined individual 
with the best fitness in the final populations will be se-
lected as the adaptation algorithm for use in actual stream-
ing sessions. 

5.3    FLAS-GP 
Finally, we apply FLAS to the above GP scheme (i.e., 
FLAS-GP) to enable flexible playback latency control. 
FLAS-GP is compatible with the unified FLAS framework 
that operates in two phases. In distributed offline training 
phase, FLAS-GP uses state quantizer (SQ) to quantify M×N 
latency-QoE tradeoff states, i.e., (10). For each state, FLAS-
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GP runs the GP latency-aware evolutionary process sepa-
rate (c.f. Section 5.2), denoted by the function TGP(), to 
evolve a particular adaptation algorithm specifically for 
each state: 

     , ( , ),  0,1,..., 1,  0,1,..., 1p q GP p qA T U C p M q N   (30) 

where Up denotes the objective function (it is called fitness 
function in GP and will be maximized during the evolu-
tionary process) with latency coefficient ωp (defined in (6)), 
Cq denotes throughput trace data in throughput level ϖq 
(defined in (9)), and Ap,q is the evolved algorithm set in-
cluding a total of M×N adaptation algorithms (i.e., expres-
sion trees in GP). It is worth noting that GP is only one can-
didate scheme to carry out FLAS’s training phase, i.e., (11), 
and other machine learning or heuristic paradigms can be 
operated by FLAS in a similar manner. 

Online algorithm Selection phase of FLAS-GP is identical 
to that in Section 4.2. In particular, the video player does 
not need any GP evolutionary components or expensive 
computational operations online. The only modification 
needed for deploying FLAS-GP is to append a lightweight 
module into the video player to determine the runtime 
state of each epoch and then apply the matching 
algorithms to them, i.e., (12)~(20). Overall, in the two-
phase design, most of the computations are completed in 
offline training, and a simple strategy is kept online, so that 
FLAS-GP can be readily implemented into real streaming 
platforms. 

6    PERFORMANCE EVALUATION 
In this section, we conduct a systematic and thorough eval-
uation for FLAS and compare it against the state-of-the-art 
streaming algorithms. 

6.1    Evaluation Setup 
We employed trace-driven simulations where the simula-
tion settings are consistent with that in Section 3 (see Table 
1) and the configurations of FLAS are summarized in Table 
2. For the GP evolutionary process, we adopted a popula-
tion size of 800 (i.e., 800 combined individuals), and then 
the population was evolved for 50 generations after which 
the combined individual with the best fitness was selected 
as the adaptation algorithm for use in actual streaming ses-
sions. 

6.2    Latency-QoE Tradeoff 
Among all the streaming algorithms evaluated, three of 
them support the control of the target playback latency, 
namely FLAS-GP, FLAS-L2AC, and LAPAS. The first ex-
periment is to evaluate how well the three algorithms track 
the target latency. The results in Table 4 show that the three 
algorithms perform similarly and the actual latency 
achieved is close to the corresponding target one. To fur-
ther quantify the deviation of the actual latency from the 
target, we defined a new metric –Mean Absolute Deviation 
of latency that characterizes the average absolute difference 
between the actual latency and the target (henceforth 
called “latency-MAD”): 
 

TABLE 4    Actual Mean Latency (s) vs Target Latency 
 

Algorithm 
Target Latency (s) 

1 3 5 7 9 
FLAS-GP 0.86 2.93 4.87 6.91 8.98 

FLAS-L2AC 0.96 2.92 4.99 6.87 8.84 
LAPAS 1.05 2.83 5.32 7.40 9.33 

TABLE 5    Comparison of Latency-MAD (s)  
 

Algorithm 
Target Latency (s) 

1 3 5 7 9 
FLAS-GP 0.30 0.37 0.43 0.47 0.48 

FLAS-L2AC 0.31 0.36 0.41 0.45 0.50 
LAPAS 0.56 0.65 0.75 0.87 0.98 

TABLE 6    QoE Performance Across Throughput Levels  
(Target Latency=2s) 

 
Algorithm 

Throughput Level 
0~1 2~3 4~5 6~7 8~9 

FLAS-GP 0.64 2.04 3.47 5.31 7.76 
FLAS-L2AC -1.11 1.72 3.06 4.83 6.97 

LAPAS 0.21 1.79 2.79 4.07 5.20 

1
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1 | |
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jL
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                            (31) 

where βj is the actual mean latency during streaming epoch 
j, λ is the target latency and L is the total number of 
streamed epochs. The results are summarized in Table 5 
where lower latency-MAD indicates the target latency be-
ing better tracked. We can see that the two FLAS-opti-
mized algorithms achieve significantly lower latency-
MAD than LAPAS. This benefits from FLAS’s online algo-
rithm selection which periodically adjusts the algorithm in 
operation to avoid the actual latency deviating from the 
target during streaming a live session. In contrast, LAPAS 
does not have such a mechanism to make adjustments dur-
ing a session. Moreover, although FLAS-L2AC and FLAS-
GP perform similarly in latency-MAD, skipping video data 
(adopted by FLAS-L2AC) introduces playback glitches 
thus causing QoE degradation, while changing playback 
rate within 5% (adopted by FLAS-GP) is imperceptible to 
viewers so it is harmless to QoE. Therefore, FLAS-GP can 
achieve better QoE performance (see the following results). 

Next, we investigate the tradeoff performance between 
QoE and playback latency. We observed in Fig. 10 that 
FLAS-GP achieves a continuous frontier of latency-QoE 
tradeoff where QoE is much higher than all other algo-
rithms across the latency ranging from 1.0s to 9.0s. Table 6 
summarizes the QoE achieved by FLAS-GP, FLAS-L2AC 
and LAPAS across throughput level 0~9. We only listed the 
results under 2s target latency, as similar results were ob-
tained with other target options.  

Remarkably, FLAS-GP resolves the performance flaw of 
FLAS-L2AC, outperforming the other two algorithms sig-
nificantly at throughput level 0~1. In addition, FLAS-GP 
also achieves substantially higher QoE in throughput level 
2~9. This clearly demonstrates that with the flexible expres-
sion tree structure, GP enables FLAS to generate more spe-
cialized algorithms to match different network conditions 
better. 
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Fig. 10. Comparison of latency-QoE tradeoff under QoE function (1)  
(error bars span streaming sessions with top/bottom 5% latency). 

The insight from the above results is that, despite the 
substantial performance gains in FLAS-L2AC, merely ap-
plying FLAS may not be sufficient on its own. FLAS also 
needs an underlying scheme that can fully exploit special-
izations to explore and match the wide range of network 
environments for optimal performance, and the GP 
scheme presented in Section 5 offers such an option. More 
work is warranted to explore other machine learning or 
heuristic schemes to see if one can push the envelope even 
further. 

To see if the above observations are consistent under 
different QoE metrics, we repeated the experiments with 
another QoE function proposed by Mao et al. [17]: 

        
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   (32)        

where Z is the playback rebuffering duration, G is the 
skipped video duration, K is the total number of segments 
in one streaming session and  

                              minlog( )k kr r                            (33) 

where rk is the bitrate selected for segment k and rmin is the 
lowest available bitrate in the profile. 

Fig. 11 plots the latency-QoE tradeoff under this QoE 
function. We can observe very similar patterns in the re-
sults which are consistent with the observations in Fig. 10. 
FLAS-GP again consistently outperforms all other algo-
rithms, more so at the lower end of the latency range. 

6.3    Robustness 
In this section, we investigate the robustness of FLAS. 
Again, we only show the performance under 2s target la-
tency, as similar results were obtained with other options. 
We first consider temporal robustness – performance vari-
ation over time (i.e., days). Fig. 12 plots the daily latency-
MAD (defined by (31)) over a period of 40 days. As ex-
pected, the latency-MAD of LAPAS is much higher than 
that of FLAS and exhibits far more fluctuations due to the 
changing network condition (e.g., daily throughput varia-
tions) over the 40 days. We also plotted the corresponding 
daily mean QoE in Fig. 12. FLAS-GP outperforms FLAS-
L2AC and LAPAS substantially, achieving the highest 
daily QoE in 39 of the 40 days. 

 

 
Fig. 11. Comparison of latency-QoE tradeoff under QoE function (32)  
(error bars span streaming sessions with top/bottom 5% latency). 

 
Fig. 12. Comparison of latency-MAD and QoE over a period of 40 days 
(target latency = 2s). 

Next, we consider spatial robustness – performance var-
iations over different network characteristics, e.g., network 
types, service providers and etc., which presumably ex-
hibit different ranges of network conditions [38]. We con-
ducted a new set of simulations using a total of seven in-
dependent throughput trace datasets, i.e., #1~#7. Table 7 
summarizes the key statistics for the seven datasets where 
#1 to #5 were captured in 3G networks, and #6 and #7 were 
obtained from 4G/LTE and Wi-Fi networks respectively 
[36,39,40]. 

In order to explore the impact of trace-data usage mode 
in the training, we experimented with two training meth-
ods for FLAS: (a) we trained FLAS using 60 days’ trace data 
from dataset #1 only, which is indicated by the “-D1” suffix 
(e.g., “FLAS-GP-D1”); and (b) we trained FLAS using 60 
days’ trace data consisting of the data in #1~#7, which is 
indicated by the “-Mix” suffix (e.g., “FLAS-GP-Mix”). In 
both cases, unseen trace data were used to obtain the per-
formance results. Table 8 and Table 9 summarize the la-
tency-MAD and QoE respectively achieved by FLAS-GP, 
FLAS-L2AC and LAPAS under the seven datasets.  

FLAS achieves far more precise latency and better QoE 
performance than LAPAS. Noticeably, FLAS-GP outper-
forms FLAS-L2AC in QoE by 6.3%~18.1% across the seven 
datasets, which again exhibits the superiority of the GP 
scheme in live video streaming. More interestingly, FLAS 
trained with “-D1” and “-Mixed” perform similarly across 
the seven datasets despite being trained using very differ-
ent trace data (e.g., the LTE network #6 has much higher 
mean throughput than 3G network #1). This indicates that 
FLAS is spatially robust. 
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TABLE 7    Statistics of Seven Throughput Trace Datasets 
 Datasets 

Features #1 #2 #3 #4 #5 #6 #7 
Throughput (Mbps) 5.6 4.7 3.3 2.9 1.2 11.1 3.1 

Variation (CoV) 0.4 0.4 0.7 0.5 0.8 0.7 0.6 
Network type 3G 3G 3G 3G 3G LTE WiFi 

Location L1 L1 L2 L3 L4 L5 L6 
ISP S1 S2 S1 S1 S3 S2 S4 

TABLE 8    Latency-MAD (s) Across Seven Datasets  
(Target Latency=2s) 

 
Algorithm 

Datasets 
#1 #2 #3 #4 #5 #6 #7 

FLAS-GP-D1 0.35 0.24 0.40 0.35 0.43 0.34 0.36 
FLAS-GP-Mix 0.34 0.22 0.41 0.35 0.44 0.35 0.37 

FLAS-L2AC-D1 0.34 0.24 0.40 0.36 0.43 0.35 0.36 
FLAS-L2AC-Mix 0.35 0.23 0.39 0.34 0.44 0.33 0.33 

LAPAS 0.63 0.45 0.74 0.67 0.88 0.57 0.63 
 
Overall, the above results point to an important charac-

teristic of FLAS – it is both temporally and spatially robust. 
This strongly suggests that as long as FLAS is trained with 
a wide spectrum of network conditions, the resultant algo-
rithm set would be sufficiently general that could be ap-
plied to a much wider range of networks. Moreover, as the 
variations in network conditions have already been ac-
counted for by the design of FLAS, it is not necessary to 
repeat the training process at all (unless new networks 
with completely different features are introduced). This 
can greatly save the streaming server’s computing re-
sources and simplify system deployment. 

6.4    Sensitivity Analysis 
In this section, we analyze the sensitivity of FLAS with re-
spect to epoch duration and live event duration. FLAS ex-
ecutes algorithm selection at the beginning of each epoch 
in the online phase. This leads to the question of epoch du-
ration choices. Table 10 compares the QoE of FLAS-GP 
across epoch durations ranging from 50s to 600s. Again 
only the results with 2s target latency were listed. Clearly, 
a longer epoch can result in better QoE performance. This 
is because each video epoch is regarded as a separate 
streaming session and longer epoch duration offers more 
room (i.e., time) for the adaptation algorithms to maneuver 
so that they do not need to be too conservative. 

However, longer epoch does have a tradeoff – higher 
latency-MAD, as demonstrated in Table 10. We observed 
that the MAD increases with longer epoch durations be-
cause longer epochs reduce the execution frequency of 
FLAS’s online algorithm selection, thereby hampering the 
client’s responsiveness to the changes in network condi-
tions. Meanwhile, the QoE improvement tapers off for the 
epoch duration longer than 300s, so 300s is adopted as the 
default epoch duration in this work. 

Live events can have a very wide range of durations, 
ranging from minutes to hours. Another advantage of 
epoch-based FLAS is that the trained algorithm set is de-
coupled from the actual live event duration. 

 TABLE 9    QoE Performance Across Seven Datasets  
(Target Latency=2s) 

 
Algorithm 

Datasets 
#1 #2 #3 #4 #5 #6 #7 

FLAS-GP-D1 3.54 2.83 1.90 2.15 0.90 9.02 2.39 
FLAS-GP-Mix 3.46 2.91 1.93 2.21 0.87 9.06 2.43 

FLAS-L2AC-D1 3.04 2.61 1.63 1.91 0.81 8.01 2.13 
FLAS-L2AC-Mix 3.01 2.66 1.71 1.93 0.75 7.87 2.09 

LAPAS 2.64 1.92 1.40 1.60 0.77 6.73 1.84 

TABLE 10    Impact of Epoch Duration  
(Target Latency = 2s).  

Epoch duration (s) 50 100 300 600 
QoE 3.00 3.29 3.44 3.46 

Latency-MAD (s) 0.22 0.30 0.39 0.58 

TABLE 11    Impact of Live Event Duration  
(Target Latency = 2s)  

Live event duration 5 
mins 

10 
mins 

30 
mins 

1 
hour 

6 
hours 

24 
hours 

QoE 3.33 3.38 3.41 3.44 3.43 3.41 
Latency-MAD (s) 0.41 0.40 0.39 0.39 0.37 0.39 
 
For example, Table 11 shows the QoE and latency-MAD 

for live event durations from 5 mins all the way up to 24 
hours where FLAS-GP maintains consistent QoE and low 
latency deviations in all cases. This strongly suggests that 
FLAS can be applied to a wide range of live streaming ser-
vices from short-term events (e.g., live sports, live shows) 
to round-the-clock services (e.g., news channels and video 
surveillance). 

7    SUMMARIES AND FUTURE WORK 
The FLAS framework investigated in this paper offers a 
new approach to flexible latency-QoE tradeoff control for 
live streaming services. It not only enables precise control 
of playback latency all the way down to 1s, but also can 
achieve substantially better QoE performance than the 
state-of-the-art streaming algorithms. Moreover, FLAS ex-
hibits remarkable robustness over time, mobile operators, 
and even network types, thereby significantly reducing the 
need to train streaming algorithms repeatedly. Its client-
side implementation is relatively simple and does not con-
tain any computationally intensive operations. Therefore, 
FLAS can be readily implemented within the current 
DASH/CMAF standards, offering service providers a new 
tool for high-performance live video streaming. 

This work is only the first step in this direction. There 
are many opportunities for future research. For instance, 
as the unified FLAS framework is decoupled from the un-
derlying streaming algorithms, it means that one can re-
place the later to explore the use of other machine learning 
or heuristic paradigms to further improve the performance. 
On the other hand, exploring FLAS’s robustness in a wider 
range of network types (e.g., the emerging 5G or datacen-
ter networks) is also a fruitful direction for future work. 
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