
 1

 A Unified Framework for Flexible Playback
Latency Control in Live Video Streaming

Guanghui Zhang, Jack Y. B. Lee, Senior Member, IEEE, Ke Liu,
Haibo Hu, Senior Member, IEEE, and Vaneet Aggarwal, Senior Member, IEEE

Abstract—Live video streaming is rapidly becoming a mainstream application in the mobile Internet. An important fact in live
streaming is that the demand for low playback-latency inherently conflicts with the desire for high QoE. This requires different
types of live services to seek different latency-QoE tradeoffs according to their service-requirements. However, our investigations
revealed that it is fundamentally difficult for existing streaming algorithms to keep consistent latency across network conditions,
let alone achieve the service-desired latency-QoE tradeoff. To tackle the challenge, this work develops a novel framework called
Flexible Latency Aware Streaming (FLAS) that not only achieves consistent low latency, but also can control the latency-QoE
tradeoff flexibly. Specifically, FLAS generates a set of algorithm logics offline, each optimized for a candidate tradeoff point, then
selects the most appropriate one to run online. We first show how FLAS can be applied to existing algorithms to make them
latency-aware. Second, we developed a novel Genetic Programming approach to fully explore FLAS’s potential. Extensive
evaluations show that FLAS can precisely control latency all the way down to 1s and achieve substantially higher QoE than state-
of-the-arts. FLAS can be readily implemented into real streaming platforms, offering a practical solution for live-streaming services.

Index Terms—Live Video Streaming, Mobile Network, Playback Latency, Quality-of-Experience.

——————————  ——————————

1 INTRODUCTION
OBILE video streaming has seen tremendous growth
in the past decade and is now a mainstream applica-

tion in the mobile Internet. Beginning with streaming pre-
encoded contents, i.e., on-demand streaming, a new trend
in recent years is the streaming of live events, from profes-
sionally-authored live contents (e.g., news, concerts, and
sports), to user-generated live streams (e.g., personal live
shows, game live). This trend is further fueled by the wide-
spread adoption of live-streaming platforms such as
YouTube Live [1] and Facebook Live [2].

In addition to the usual quality-of-experience (QoE)
metrics such as video quality and playback rebuffering,
live video streaming has a unique and important perfor-
mance criterion – playback latency, defined as the time dif-
ference between video rendering and actual capturing
(note that in this paper, in order to distinguish playback
latency from the usual QoE metrics, we don’t incorporate
latency into the calculation of QoE).

In general, live streaming services require low playback
latency (a few seconds at most). However, an important

fact is that playback latency and the usual QoE metrics (e.g.,
quality, rebuffering) are inherently conflicting objectives.
For instance, viewers generally prefer to stream high-qual-
ity videos which would inevitably incur a longer transmis-
sion delay at the mobile radio link. As the transmission de-
lay translates directly into the playback latency of live
streaming, the need for high-quality videos inherently con-
flicts with the live streaming’s low latency demand. There-
fore, this requires live streaming services to seek perfor-
mance tradeoffs between the playback latency and QoE.

In practice, different types of live streaming services can
have very different latency-QoE tradeoff requirements [3-
5]. For example, highly interactive live streams (e.g., live
sales, interactive live shows) demand much lower latency
than one-way live broadcasts (e.g., news, concerts), but the
interactive streams need to tolerate relatively lower video
quality than the one-way broadcasts. Therefore, how to
achieve desired and optimal latency-QoE tradeoff perfor-
mance for different live streaming services is a significant
challenge for designing live streaming algorithms.

While many sophisticated live streaming algorithms
(e.g., [6-28]) have been proposed in recent years, none of
them have addressed the above challenge. Moreover, our
investigations revealed that the playback latency achieved
by these existing algorithms are far from consistent, but
vary over a wide range (e.g., 2s ~ 31s) in changing network
conditions. In other words, streaming the same video from
the same mobile operator, even in the same location, could
result in significantly different latency, depending on the
specific network condition experienced. This is clearly un-
desirable as it is even not possible for the existing algo-
rithms to keep consistent latency, let alone achieve the ser-
vice-desired latency-QoE tradeoff.

M

————————————————
 G. Zhang and J.Y.B. Lee are with the Department of Information Engineering,

the Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR. E-mail:
{ghzhang, yblee}@ie.cuhk.edu.hk

 K. Liu is with the State Key Laboratory of Computer Architecture, Institute
of Computing Technology, Chinese Academy of Sciences, Beijing, China,
and the University of Chinese Academy of Sciences (UCAS), Beijing, China.
E-mail: liuke@ict.ac.cn

 H. Hu is with the Department of Electronic and Information Engineering,
Hong Kong Polytechnic University, Kowloon, Hong Kong and PolyU Shen-
zhen Research Institute. E-mail: haibo.hu@polyu.edu.hk

 V. Aggarwal is with the School of Industrial Engineering, Purdue University,
West Lafayette, IN 47907 USA and Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA. E-mail: vaneet@pur-
due.edu

Page 1 of 14 Transactions on Parallel and Distributed Systems
This is the Pre-Published Version.

The following publication G. Zhang, J. Y. B. Lee, K. Liu, H. Hu and V. Aggarwal, "A Unified Framework for Flexible Playback Latency
Control in Live Video Streaming," in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 12, pp. 3024-3037, Dec. 2021
is available at https://doi.org/10.1109/TPDS.2021.3083202.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

To tackle the challenge, we propose a novel framework
called Flexible Latency Aware Streaming (FLAS) that not
only achieves consistent low latency across a wide range of
network conditions, but also can control the latency-QoE
tradeoff flexibly. Specifically, we introduce the notion of
state quantizer (SQ) to quantify the latency-QoE tradeoff
under different network conditions into a set of states.
FLAS then generates a set of algorithm logics where each
member is optimized for a particular state. At runtime, ser-
vice providers (or viewers) are allowed to specify a target
playback latency (e.g., 2s) according to the live-service re-
quirement. With the target latency prescribed, FLAS can
periodically select/adjust the operational streaming algo-
rithm based on SQ, so that the actual latency will not devi-
ate from the target while QoE can be maximized.

This work makes three key contributions. First, our ex-
tensive experiments demonstrated the problem in the cur-
rent live streaming system – it is fundamentally difficult
for existing streaming algorithms to keep consistent low
latency, and to achieve desired latency-QoE tradeoffs
based on live-service requirements.

Second, we designed FLAS to be a unified framework
to make the existing streaming algorithms latency aware.
To demonstrate this applicability, we applied FLAS to one
state-of-the-art algorithm L2AC [27] and the resultant sys-
tem is called FLAS-L2AC (note that L2AC was developed
upon A3C [29] – a leading-edge deep-reinforcement-learn-
ing technique that has been widely used in the design of
on-demand streaming algorithms [17,21]). We discovered
that although FLAS-L2AC can achieve substantially better
performance, its efficacy is still restricted under challeng-
ing network conditions, presumably due to the inherent
structure of the neural network model adopted [27].

Third, to get rid of the limitation of FLAS-L2AC, we
turned to a radically different machine-learning approach
– Genetic Programming (GP) [30], which represents candi-
date solutions in the form of expression trees. Different
from deep reinforcement learning using predefined neural
network structures, GP does not impose a rigid structure
on the expression tree, so one can explore the solution
space freely with GP. Based on the insight, we developed
FLAS-GP to fully exploit FLAS's potential. FLAS-GP en-
codes streaming algorithms using expression trees and
then executes a novel latency-aware evolutionary process to
evolve the algorithms for better performance.

Extensive evaluations show that, FLAS-GP 1) can
achieve substantially higher QoE with the same or lower
playback latency than state-of-the-art streaming algo-
rithms; 2) can precisely control the latency all the way
down to 1s; 3) exhibits remarkable spatial and temporal ro-
bustness; and 4) consolidates most of the complexities into
offline training, leaving a lightweight online implementa-
tion that can be easily deployed on real streaming plat-
forms.

The rest of the paper is organized as follows: Section 2
reviews the background and related work; Section 3 re-
veals the problems of existing streaming algorithms; Sec-
tion 4 presents the FLAS framework and evaluates the ef-
ficacy of applying FLAS to L2AC; Section 5 presents a
novel Genetic Programming approach to fully explore

FLAS’s potential; Section 6 evaluates and compares the
performance of FLAS against current state-of-the-arts, and
Section 7 summarizes the study and outlines some future
work.

2 BACKGROUND AND RELATED WORK
Adaptive video streaming is the primary tool service pro-
viders use to compensate for the inevitable bandwidth
fluctuation in mobile and fixed networks. Given the wide-
spread use of video streaming, researchers have developed
many novel adaptive streaming algorithms for on-demand
streaming in recent years. The basic principle is to design
algorithms to dynamically select the future video bitrate in
the light of past measurements such as throughput and
buffer occupancy. Existing adaptive streaming algorithms
can be classified based on their measured metrics, e.g.,
bandwidth-based [7-8], buffer-based [9-10], and hybrid-
bandwidth-buffer-based [11-21] approaches, or classified
based on the technique employed in optimizing the adap-
tation algorithm, e.g., heuristics [7-12], PID-controller [13],
data-analytic [14-16], machine learning [17-21].

In live streaming, however, playback latency is the pri-
mary performance metric. While the above adaptive
streaming algorithms worked well for on-demand stream-
ing, they often exhibited latency too high to be suited for
live streaming services. Therefore, a number of researchers
have begun developing new adaptation algorithms specif-
ically for live streaming services. One of the problems in
live streaming is that the data buffering process can di-
rectly increase playback latency. This motivates designs to
control the amount of buffered video data in the streaming
pipeline to reduce the latency. For example, Cicco et al. [22]
proposed a client-side algorithm employing PID feedback
control to track a target buffer occupancy by adapting the
video bitrate, thereby maintaining low latency while pre-
venting playback rebuffering. Similarly, Wang et al. [23]
proposed a PID-based adaptation algorithm to control the
buffer occupancy at the streaming server side. Xie et al. [24]
proposed DTBB to select video bitrate depending on a
buffer threshold that is tuned dynamically according to
measured network throughput.

The second problem in live video streaming is latency
accumulation where the primary source of latency is play-
back rebuffering. Specifically, during rebuffering where
the player runs out of video data, video playback will be
suspended until sufficient data are downloaded to resume
the playback. The live event, on the other hand, continues
on and thus the gap between the video playback and the
actual capturing will be widened by the rebuffering dura-
tion. Given that video data are played in sequence, latency
once introduced thus cannot be reduced, resulting in incre-
mental latency throughout the streaming session when-
ever rebuffering occurs.

Two common methods to solve this problem are video
data skipping and playback rate regulating. The former
one is to skip the download/playback of the late-arriving
video segments while the later one is to accelerate the
video playback. Both of them can make the video player
catch up with the live event.

Page 2 of 14Transactions on Parallel and Distributed Systems

 3

TABLE 1 Evaluation Settings
Streaming parameters Values

Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6} Mbps [37]
Segment duration 2s

Frame rate 25 fps
Live event duration 3600s

Client buffer size 60s
Initial video bitrate 0.2 Mbps
Throughput trace 60 days for training and 60 days for testing

For instance, Miller et al. [25] proposed LOLYPOP that

executes data skipping once the playback latency is larger
than a pre-defined skipping threshold. Lim et al. [26] pro-
posed LoL that turns up the video playback rate to achieve
low latency. Zhao et al. [27] developed L2AC that incorpo-
rates both of the two methods, i.e., determining the skip-
ping threshold and the playback rate simultaneously
through neural networks trained by deep-reinforcement-
learning.

Although the above algorithms were designed with re-
ducing latency in mind, this is still far from enough in prac-
tice, as different types of live services can have very differ-
ent latency and QoE requirements. Recently, Zhang et. al
[28] proposed LAPAS that allows users to specify a target
playback latency according to live-service requirements,
and then LAPAS tracks the target through running a
streaming-parameter optimization (i.e., tuning the stream-
ing parameters based on the network condition). However,
LAPAS suffers from two fundamental limitations: First, as
LAPAS’s adaptation logic is a fixed heuristic restricted by
human intuitions, it fails to achieve optimal performance
across a broad set of network conditions; Second, the com-
putational overhead of the streaming-parameter optimiza-
tion is very large as it utilizes brute-force search, which
hinders the large-scale deployment of LAPAS in real
streaming platforms.

By contrast, the FLAS framework developed in this
study offers three superiorities over the existing ap-
proaches. 1) In addition to achieving consistent low latency
across a wide range of network conditions, FLAS can ena-
ble flexible latency-QoE tradeoff control; 2) Instead of rely-
ing on pre-programmed models from human intuitions,
FLAS is designed as a unified framework, which not only
can be applied to optimizing the existing algorithms, but
also guides the design of new latency-aware approaches.
For instance, we apply FLAS to L2AC (the state-of-the-art
algorithm) in Section 4, and explore a novel FLAS-based
Genetic Programming approach in Section 5. This feature
enables FLAS to incorporate any advanced techniques to
fully liberate the performance potential on its own; 3) The
two-phase design of FLAS avoids difficulties in real plat-
form deployment, bringing a completely practical solution
to current live streaming services.

3 EVALUATION OF EXISTING ALGORITHMS
In this section, we evaluate the performance of five lead-
ing-edge adaptive live streaming algorithms and then
demonstrate their limitations.

Fig. 1. Comparison of mean QoE and playback latency (error bars
span streaming sessions with top/bottom 5% latency).

3.1 Experiment Setup
To evaluate the performance of streaming algorithms in re-
alistic network settings, we employed trace-driven simula-
tions where the simulator executes the streaming algo-
rithms over simulated network conditions reproduced by
TCP throughput trace data.

Specifically, a content provider captured a live video
stream through a camera, and then uploaded it to a stream-
ing server where the video would be encoded into multiple
bitrate versions following Apple’s recommended bitrate
profile [37]. Common Media Application Format (CMAF)
[33] was adopted into DASH [32] so that the streaming
server can deliver the video data on a frame-by-frame basis
to minimize segmentation delay. A video player began
playback after the first video frame was downloaded. The
initial video bitrate was set to the lowest level (i.e., 0.2
Mbps). The network condition was emulated by replaying
TCP throughput trace data captured from multiple pro-
duction mobile networks, including 3G, 4G, and Wi-Fi
[36,39,40]. The rest of the parameters are summarized in
Table 1.

Two primary performance metrics were adopted: 1)
mean playback latency is defined as the average playback la-
tency experienced in each streaming session, and 2) QoE is
calculated from the QoE function proposed by Yin et al. [11]
combined with a penalty for video data skipping [27] (the
component weight also follows [11] and [27]):

 


 

 
         

 
 

1 1

1
0 1

1 3.0 3.0 ' 0.2
K K

k k k
k k

Q r r r Z Z G
K

 (1)

where Z is the rebuffering duration, Z’ is the startup delay,
rk is the bitrate selected for segment k in Mbps, G is the
skipped video duration, K is the total number of segments
in one streaming session. We will further consider other
QoE metrics in Section 6.2.

We evaluated five state-of-the-art adaptive live stream-
ing algorithms: LOLYPOP [25], LAPAS [28], L2AC [27],
PID [23], DTBB [24]. We referred to the source codes pro-
vided by Zhao et al. [40] to train the neural networks in
L2AC. A total of 60 days throughput trace data (~50,000
streaming sessions) were used for the training and another
unseen 60 days traces were applied to evaluating the per-
formance of the five streaming algorithms.

Page 3 of 14 Transactions on Parallel and Distributed Systems

4

Fig. 2. Comparison of daily latency over a period of 40 days.

3.2 Results and Discussions
Observation 1. Fig. 1 compares the mean QoE and play-
back latency of the five streaming algorithms in all tested
streaming sessions. Most streaming algorithms (except
LAPAS) do not have latency awareness, so each of them
achieves only one specific point of tradeoff between QoE
and latency. This is a significant limitation in practice as
different types of live services or video contents can have
very different latency/QoE requirements. By comparison,
LAPAS obtains a continuous tradeoff frontier between
QoE and playback latency, as LAPAS supports the setup
of target latency and offers a streaming-parameter optimi-
zation to keep tracking the target. Interested readers can
refer to [28] for more details.

However, the performance of LAPAS is much worse
than L2AC. For example, there is a 15.2% QoE gap between
them under the playback latency 1.4s. We argue that this is
because LAPAS's adaptation logic is a fixed heuristic pre-
programmed by humans, which is inevitably restricted by
human intuitions, thus limiting the performance. In com-
parison, L2AC employs a deep learning technology (i.e.,
A3C [29]) and learns a better adaptation logic based on its
past experience. Nonetheless, as we mentioned, L2AC is
not a latency-aware algorithm (only have a single tradeoff
point), so it is incapable to achieve latency-QoE tradeoffs
based on requirements.

Observation 2. In Fig. 1, we found that there is a large
variation in latency across different algorithms, ranging
from 1.4s (L2AC) to 19s (DTBB), and their error bars indi-
cate that the latency achieved in different streaming ses-
sions vary over a wide range as well. Hence we plotted Fig.
2 to show latency variations over a period of 40 days by
using a 40-day TCP throughput trace. To appreciate the
variations in network conditions, we plotted the daily
mean TCP throughput in Fig. 1, which fluctuates signifi-
cantly from a low of 3.3 Mbps to a high of 7.8 Mbps.

As expected, the daily mean latency of most streaming
algorithms (except LAPAS) fluctuate substantially with the
changing network conditions, e.g., the latency of DTBB
ranges from 2s to 31s. This is clearly undesirable as they
even cannot keep consistent low latency, let alone achieve
the service-desired latency-QoE tradeoff. By contrast,
LAPAS exhibits more consistent latency over the 40 days
(we set a 2s target latency). This is because through analyz-
ing the throughput traces in past streaming sessions,
LAPAS’s streaming-parameter optimization can periodi-
cally tune the value of the streaming parameters to adapt
to the changing network conditions.

However, this is at the expense of extremely high com-
putational complexity, as the parameter optimization is
built upon brute-force search. Specifically, based on our
test, one-day optimization even costs ~1320 CPU hours (for
4-parameter tuning [28]). To keep playback latency con-
sistent, LAPAS requires the streaming server to run it on a
daily basis. This undoubtedly occupies a large amount of
computational resource, especially when the streaming cli-
ent scales, and thus hinders the large-scale deployment of
LAPAS on real streaming platforms.

Two insights. 1) Since most existing algorithms adopt
fixed adaptation logics with immutable streaming param-
eters (so-called one-size-fits-all mode), they don’t have la-
tency awareness. In contrast, LAPAS is latency-aware as it
is able to tune a specific set of streaming parameters ac-
cordingly for different latency requirements and network
conditions; 2) Although LAPAS is a feasible solution, only
tuning the parameters but without adapting the algorith-
mic logic may still be insufficient to achieve optimal per-
formance. Besides, LAPAS also suffers from deployment
issues in practice.

Our Approach. To tackle the limitation of the existing
approaches, we propose to optimize/train different
streaming algorithm logics specifically for different latency
requirements and network conditions (instead of only tun-
ing streaming parameters) where each logic covers a sub-
set of the target environment and together provide full
coverage. Equipped with these candidate algorithm logics,
the system can then conduct online algorithm selections
and adjustments to keep the most appropriate streaming
algorithm always in operation, so that a full spectrum of
latency-QoE tradeoffs can be offered under a broad set of
network conditions.

4 FLEXIBLE LATENCY AWARE STREAMING
Inspired by the insights from Section 3, we develop a uni-
fied framework called Flexible Latency Aware Streaming
(FLAS). FLAS is built upon two phases where most of the
complexities are consolidated into distributed offline training
phase to train a set of algorithm logics, and a lightweight
strategy is incorporated in online algorithm selection phase.
The system architecture of FLAS is depicted in Fig. 3.

While streaming a live video event, the network condi-
tion may change significantly, so the initial-selected algo-
rithm may no longer be optimal later on. We thus propose
to divide one streaming session into multiple sub-sessions
(henceforth called “epoch”) where each has a fixed video
duration (e.g., 300s), so the system can execute algorithmic
re-selection in the interval of each epoch (within the stream-
ing session) to adapt to the changing network conditions.
This is illustrated in Fig. 3 and we will introduce more de-
tails later.

In this section, we first introduce the design of the FLAS
framework and then demonstrate a use case of FLAS by
applying it to optimizing an existing streaming algorithm,
L2AC [27].

Page 4 of 14Transactions on Parallel and Distributed Systems

 5

Fig. 3. The system architecture of FLAS.

4.1 Distributed Offline Training
To quantify the latency-QoE tradeoff under different net-
work conditions, we define a two-dimensional state quan-
tizer (SQ), denoted by

  


, (2)

where the first dimension ω is called latency coefficient and
the second dimension ϖ is named as throughput level.

Latency Coefficient ω. The function is to extract the re-
lationship between playback latency and QoE. Specifically,
let μk be the time elapsed since the beginning of the live
event at the time of requesting segment k. The current play-
back time point, denoted by lk, is known to the video player
so that the playback latency αk can be computed from

   k k kl (3)

The mean playback latency over all video segments in one
epoch is then given by

  




 
1

0

1 K

k
kK

 (4)

where K is the total number of video segments in an epoch.
The mean latency β is then combined with the desired

QoE function (e.g., (1)) to form the objective function used
in the offline training:

    U Q (5)

where Q is the QoE function and ω is the latency coefficient.
The offline training will maximize the objective function U
where the playback latency β and QoE Q are conflicting
metrics with each other, so the latency coefficient ω can be
tuned to balance the tradeoff between them. For instance,
a larger value of ω will result in an algorithm trained with
lower latency but worse QoE.

Based on this principle, we define M values of ω, i.e.,
{ωp|p=0,1,…,M-1}, to generate M objective functions:

     , =0,1,..., 1p pU Q p M (6)

which can quantify M candidate latency-QoE tradeoff
points.

Throughput level ϖ. Since the playback latency varies
across different network conditions (c.f. Observation 2 in
Section 3.2), we introduce throughput level to differentiate
the network conditions where throughput level is defined
as the mean throughput during streaming video sessions
(we also tested some other metrics, e.g., throughput varia-
tion and network type, but they perform worse). While
throughput level can be calculated directly in offline as the

throughput trace data is given, it cannot be known before
streaming the actual video in online streaming. Therefore,
to keep the calculation process consistent, we propose the
following way to estimate throughput level.

Specifically, the throughput of a new video epoch j can
be estimated from the mean throughput of downloading
the last m segments in the last epoch j-1:





 
1

-1,

0 -1,

1 m
j k

j
k j k

s
V

m d
 (7)

where sj-1,k, and dj-1,k are the size and download time of seg-
ment k in epoch j-1. We then apply a linear quantization
policy to map the measured throughput Vj to a discrete
throughput Wj:

  
       

min , 1j
j

V
W N (8)

where Δ is the quantization step size and N is the
maximum value of the discrete throughput. The next step
is to segregate the throughput trace data of all epochs Sj,
j=0,1,…,J, into N network classes through throughput level
ϖq:

      , , 0,1, , 1q j j qC S W j q N (9)

where each throughput trace class will emulate a particu-
lar network condition in the offline training.

Training. With the two-dimensional SQ, i.e., M latency
coefficients and N throughput levels, FLAS can quantify a
total of M×N latency-QoE tradeoff states:

      = , 0,1,..., 1, 0,1,..., 1p qU C p M q N (10)

where Up is the objective functions (to be maximized) with
latency coefficient ωp (defined (6)) and Cp is the throughput
trace data with throughput level ϖq (defined in (9)). For
each state, FLAS runs a separate training process, denoted
by function Tx(), to train a specialized adaptation algo-
rithm for this state:

    , (,), 0,1,..., 1, 0,1,..., 1p q x p qA T U C p M q N (11)

where Ap,q is the trained algorithm set including M×N algo-
rithms. Fig. 3 illustrates the trained algorithm set where
each square represents an adaptation algorithm trained for
one state. During the training, FLAS also records the re-
sultant QoE, denoted by Qp,q, and mean playback latency,
denoted by βp,q, achieved by the algorithm of each state,
which will then be utilized in the online algorithm selec-
tion phase (c.f. Section 4.2).

Importantly, FLAS is designed as a general framework
that is able to operate upon any underlying adaptation al-
gorithms. For instance, when applying FLAS to L2AC (i.e.,
FLAS-L2AC), the training function (i.e., Tx(.) in (11)) is
deep reinforcement learning A3C [29], and the resultant al-
gorithm set (i.e., Ap,q in (11)) includes M×N neural networks
(we will evaluate the performance of FLAS-L2AC in Sec-
tion 4.3).

Page 5 of 14 Transactions on Parallel and Distributed Systems

6

TABLE 2 System Configurations of FLAS
System parameters Values

Epoch duration 300s
Latency coefficient A total of 18 coefficients ranging from 0.01 to 1.8
Throughput level A total of 10 levels with quantization step 1 Mbps

PI controller Kp=0.5, Ki=0.05 [35]

4.2 Online Algorithm Selection
The algorithm set trained in the offline training will be
downloaded to the video player (e.g., through DASH
metadata [32]) for online streaming. To cater to different
playback latency requirements, FLAS supports runtime
configuration of target playback latency (e.g., 2s), denoted
by λ, which can be input as a video player option. With the
target latency λ prescribed, the system’s goal is to prevent
the actual latency from deviating from the target while
maximizing QoE.

Initial Selection. FLAS client first selects the most ap-
propriate adaptation algorithm running at the beginning
of a streaming session, i.e., in epoch 0. Since all the trained
algorithms are labeled with different states, the state quan-
tizer (SQ) can be used to assist in the algorithm selection
process.

The streaming client begins a live streaming session by
prefetching m video segments with a pre-configured fixed
bitrate where the total prefetching video duration equals
to the target latency λ. FLAS client then measures the av-
erage throughput in downloading these m video segments:





 
1

0,
0

0 0,

1 m
k

k k

s
V

m d
 (12)

where s0,k, and d0,k are the size and download time of the
segment k in epoch 0. The average throughput V0 will then
be utilized to estimate throughput level:

 
  

      
0

* min , 1q

V
N (13)

where Δ is the quantization step size and N is the
maximum value of throughput levels.

After obtaining the throughput level, the next step is to
determine latency coefficient. Specifically, FLAS will select
the operational algorithm among the algorithms trained
with throughput level ϖq* and M different latency
coefficients {ωp|p=0,1,…,M-1}. The decision criteria is to
find which algorithm can achieve the highest QoE while its
playback latency does not exceed the latency target λ:

   , * , *max s.t. , =0,1,..., 1p q p qp
Q p M (14)

where Qp,q* and βp,q* are the QoE and playback latency
achieved by the algorithm trained with latency coefficient
ωp and throughput level ϖq* (these data are recorded in the
offline training, c.f. Section 4.1). Finally, the video player
will apply the matching adaptation algorithm to epoch 0.

Inter-epoch Selection. During streaming the subse-
quent epochs (e.g., epoch 1~epoch 4 in Fig. 3), network con-
ditions can change significantly, so the FLAS client will ad-
just the operational adaptation algorithm at the start of

each epoch to keep the actual latency from deviating from
the target λ.

Specifically, at the beginning of epoch j (j>0), FLAS acti-
vates a PI feedback controller:

 

  
   1

1 1 0

j
j p j i xx

u K e K e (15)

where Kp and Ki are tuning parameters representing the
proportional gain and integral gain of the PI controller [35],
and

    1 1j je (16)

is the deviation of the actual mean latency in epoch j-1, de-
noted by ξj-1, from the target latency λ.

To compensate for the latency deviation incurred in
epoch j-1, i.e. (16), the PI controller will adjust the target
latency of epoch j to λj by:

    1 -1j j ju (17)

where λj-1 is the target latency adopted in epoch j-1 and uj-

1 is the output of the PI feedback controller, i.e., (15). An in-
tuitive example to illustrate the principle of this feedback
mechanism is that, if the actual latency is higher than the
target latency in the current epoch, one can set a lower tar-
get in the next epoch to shorten the actual latency so that
the deviation can be reduced.

With the new target latency λj, the next step is to deter-
mine the operational algorithm for use in epoch j through
SQ. First, throughput level is estimated by the mean
throughput in downloading the last m segments in epoch
j-1:





 
1

-1,

0 -1,

1 m
j k

j
k j k

s
V

m d
 (18)

where sj-1,k, and dj-1,k are the size and download time of seg-
ment k in epoch j-1. The mean throughput Vj is then
mapped to a discrete throughput level by

 
  
       

min , 1j
q*

V
N (19)

where Δ is the quantization step size and N is the
maximum value of throughput level.

Latency coefficient is determined by

    , * , *max s.t. , 0,1,..., 1p q p q jp
Q p M (20)

where the underlying principle is identical with (14),
except λj replacing λ, which is adjusted by the PI feedback
controller in (15)~(17). After determining SQ, the video
player will apply the matching adaptation algorithm to
epoch j.

4.3 Performance Evaluation
FLAS is a general framework that can optimize existing
adaptive streaming algorithms to make them latency
aware. To evaluate this applicability, we applied FLAS to
optimizing the state-of-the-art algorithm L2AC [27]. The
resultant system is named as FLAS-L2AC.

Page 6 of 14Transactions on Parallel and Distributed Systems

 7

TABLE 3 QoE Performance Across Throughput Levels
(Target Latency=2s)

Algorithm

Throughput Level
0~1 2~3 4~5 6~7 8~9

FLAS-L2AC -1.11 1.72 3.06 4.83 6.97
LAPAS 0.21 1.79 2.79 4.07 5.20

Fig. 4. Comparison of QoE and playback latency between FLAS-L2AC
and the existing algorithms (error bars span streaming sessions with
top/bottom 5% latency).

We conducted the trace-driven simulation as described
in Section 3 where Table 1 summarizes the simulation set-
tings. For the configuration of FLAS, we adopted 14 la-
tency coefficients (defined in (6)) ranging from 0.01 to 1.8,
and 10 throughput levels (defined in (8)) with 1 Mbps
quantization step size. Unless stated otherwise, the live
events last for 3600s and the epoch duration is set to 300s.
The rest of the parameters are summarized in Table 2.

Fig. 4 compares the latency-QoE tradeoff of FLAS-L2AC
to the existing streaming algorithms. We observed that
FLAS configures L2AC to offer a continuous tradeoff fron-
tier. Remarkably, FLAS improves the QoE performance of
L2AC by 15.7% under the playback latency ~1.4s. This
strongly suggests that FLAS and L2AC can cooperate ef-
fectually to train more specialized neural networks that
better match the operating environments. Compared to
LAPAS, FLAS-L2AC achieves much higher QoE in lower
latency targets (≤3s), while performing similarly in higher
latency targets (>3s).

Fig. 5 plots the daily mean latency over a period of 40
days. Same as LAPAS, we set the target latency to 2s for
FLAS-L2AC. We observed that among all the algorithms,
only FLAS-L2AC and LAPAS exhibit consistent latency
and track the latency target closely over the 40 days. As
opposed to LAPAS requiring daily optimization (dis-
cussed in Section 3), FLAS-L2AC does not need to repeat
the training process at all, as the latency variations largely
due to network condition changes have already been ad-
dressed by FLAS. Moreover, FLAS’s training process car-
ries most of the system complexity and once it is completed
no need to be re-executed, so that the implementation and
deployment for FLAS are much simpler than LAPAS.

Limitations of FLAS-L2AC. Fig. 6 compares the daily
mean QoE achieved by FLAS-L2AC and LAPAS under 2s
target latency over the 40 days. We also plotted the daily
mean TCP throughput to appreciate the variation of net-
work conditions.

Fig. 5. Comparison of daily playback latency between FLAS-L2AC
and the existing algorithms over a period of 40 days.

Fig. 6. Comparison of daily QoE performance between FLAS-L2AC
and LAPAS over a period of 40 days.

We can see that the QoE tracks the throughput closely,
as the latter directly impacts the mean video bitrate deliv-
ered, which is the primary factor affecting QoE. Moreover,
a more interesting observation is that, compared to LAPAS,
FLAS-L2AC only achieves better QoE performance in 28 of
the 40 days but performs worse in the rest 12 days. Com-
paring the daily throughput, it appears that FLAS-L2AC
becomes less effective in networks with lower throughput
levels.

To this end, we further studied the QoE performance
across different throughput levels. We divided all stream-
ing sessions into 10 throughput levels, with level l=0,1,…,8
collecting sessions with average throughput within (l, l+1]
Mbps, plus level 9 with average throughput ≥9Mbps, and
then summarized the respective QoE performance of
FLAS-L2AC and LAPAS in Table 3. The results verify our
conjecture that FLAS-L2AC performs much worse in lower
throughput levels, especially at the lowest two throughput
levels (i.e., 0~1). We also found similar results in other tar-
get latency options.

One of the challenges in using machine-learning ap-
proaches to solve problems is that the resultant solutions
(e.g., neural network) are often opaque and difficult to an-
alyze so that the insights into their performance cannot be
easily obtained. To shed light on the results in Table 3, we
attempted to tackle the challenge by analyzing the stream-
ing algorithm’s bitrate adaptation behavior. Specifically,
by fixing other less critical parameters, e.g., set buffer oc-
cupancy to 2s and the last segment bitrate to 200kbps, we
can plot the bitrate decision (y-axis) versus measured
throughput (x-axis) for the adaptation logics.

Page 7 of 14 Transactions on Parallel and Distributed Systems

8

Fig. 7. Comparison of bitrate adaptation behavior in low (0), medium
(5), and high (9) throughput levels (target latency = 2s).

We plotted the results in Fig. 7 for low (0), medium (5),
and high (9) throughput levels where the calibration val-
ues of the y-axis indicate the available video bitrate ver-
sions. For FLAS-L2AC, the results reveal one of its behav-
ior – its bitrate adaptation logic is relatively aggressive.
While this may work well in high throughput levels, it
would cause disastrous consequences in low throughput
levels that typically have substantial throughput fluctua-
tions. Therefore, this clearly explains why FLAS-L2AC
cannot perform equally well across different throughput
levels. Another issue of FLAS-L2AC is the abrupt changes
of the bitrate decision boundary. For example, the bitrate
changes sharply from 0.2 Mbps to 1.2 Mbps (from 0.2 Mbps
to 2.2 Mbps in level 9) despite the availability of two inter-
mediate bitrate choices (0.4 Mbps and 0.8 Mbps). We con-
jecture that in spite of using the state-of-the-art deep rein-
forcement learning A3C, the resultant neural network
structure may still not be sufficiently flexible to explore the
complete solution space of the bitrate adaptation.

In comparison, LAPAS exhibits relatively conservative
behavior at throughput level 0, which is more reasonable.
However, limited by its fixed heuristic logic, the conserva-
tism in bitrate selection cannot be appropriately altered in
higher throughput levels, so this inevitably results in
suboptimal performance.

GP Scheme. To further explore FLAS’s potential, we
will turn to a new approach in Section 5 – Genetic Pro-
gramming (GP). The preliminary results of FLAS-GP (i.e.,
applying FLAS to GP) are plotted in Fig. 7 which presents
a far more reasonable bitrate adaptation behavior. We can
observe that, as the measured throughput raises, the se-
lected bitrate of FLAS-GP gradually increases without any
abrupt changes (unlike FLAS-L2AC). Specifically, at level
0 it is clear that FLAS-GP intentionally selects bitrates
much lower than the measured throughput, as the network
condition is judged to be poor and high measured through-
put would be treated as exceptions that are unlikely to last.
Thus not raising the bitrate too far would effectively pre-
vent rebuffering in the future. By comparison, at level 5,
FLAS-GP becomes more moderate and balanced in its bi-
trate selection. Finally, at level 9, FLAS-GP becomes more
aggressive, even occasionally selecting bitrates higher than
the measured throughput. Intuitively, at throughput level
9, the low measured throughput is likely short-term so
maintaining high video bitrates can prevent unnecessary
QoE degradations. We will introduce the design of FLAS-
GP in the next section.

Fig. 8. Illustration of the transform between adaptation algorithm and
GP expression tree (c, u are estimated throughput and buffer occu-
pancy respectively; γ and τ are numeric constants; b is video bitrate).

5 FLEXIBLE LATENCY AWARE VIA GP
Genetic Programming (GP) [30] is inspired by the process
of natural selection where a population evolves itself to
adapt to the changing environment through crossover,
mutation, and reproduction.

Why GP? GP encodes candidate solutions in the form
of expression trees and does not impose a rigid structure
on them, so GP-based schemes can be free to explore the
solution space. This is totally different from deep-rein-
forcement learning which holds a predefined fixed neural
network structure and only the neuron weights can be
tuned. Therefore, using GP can potentially resolve the lim-
itations of FLAS-L2AC.

In this section, we investigate the GP approach for FLAS
where adaptation algorithms are encoded with expression
trees. In addition, a new latency-aware evolutionary pro-
cess is developed to make GP more suitable for evolving
streaming algorithms in the scenario of live video stream-
ing. It is worth noting that other machine learning or heu-
ristic techniques can be operated by FLAS in a similar man-
ner, and this could be a fruitful direction for future work.

5.1 Adaptation Algorithm and Expression Tree
GP encodes candidate solutions using expression trees [30]
which are particularly suitable for representing streaming
algorithms. In fact, many existing adaptive streaming algo-
rithms can be mapped to relatively simple expression trees.
Fig. 8 shows an example in on-demand streaming: the
right-side expression tree is the equivalent of the left-side
expression, which is a hybrid-throughput-buffer-based ad-
aptation algorithm proposed by Liu et al. [14]. The algo-
rithm determines the bitrate b according to the estimated
throughput c and the buffer occupancy u. In the following,
we will apply expression trees to encoding playback/bitrate
adaptation algorithms for live video streaming.

Playback Adaptation. A fundamental problem in live
streaming is the accumulation of playback latency where
the primary source of latency is playback rebuffering. Spe-
cifically, rebuffering occurs when the video player runs out
of video data and thus has to suspend video playback until
more video data are received. The live event, on the other
hand, continues on and thus the time gap between the
video playback and the actual capturing will be widened
by the rebuffering duration. Worst still, as subsequent
video data are played back in sequence, the widened gap
will be eventually accumulated into the playback latency
for the rest of the streaming session. In fact, whenever a
rebuffering event occurs, the playback latency will be in-

Page 8 of 14Transactions on Parallel and Distributed Systems

 9

creased by the rebuffering duration. This is clearly unde-
sirable in live video streaming, as the latency would keep
increasing throughout the whole streaming session.

To the best of our knowledge, there are two effective
methods to address this problem. The first one is video
data skipping [25], i.e., by skipping the download/play-
back of the late-arriving video segments, the video player
can then catch up with the live event. However, this also
introduces playback glitch as a tradeoff thereby resulting
in QoE degradation [27]. By comparison, the second one,
i.e., regulating the playback rate [26,28], has much fewer
impacts on QoE. The idea is to increase the video playback
framerate slightly (e.g., within 5%) to catch up with the live
event. Such a slight change to the playback rate is much
less perceivable to viewers and thus can prevent the QoE
degradation [31].

Therefore, instead of using video data skipping, we em-
ploy playback rate regulation to control the playback la-
tency in our following design. Fig. 9 illustrates the relation-
ship between playback latency, rebuffering, and playback
rate adaptation. The x-axis is wall-clock time while the y-
axis is the playback point in the video stream. Assuming
the live streaming session starts at time point zero then the
live event’s timeline is a 45-degree line passing through the
origin. A video player streaming live events will first
buffer video data up to the target latency (2s in this exam-
ple) before commencing playback, thereby resulting in an
initial latency of 2s. When a rebuffering event occurs at
time t1, the client suspends video playback for 1s before re-
suming it at time t1+1. Due to the rebuffering event, the
playback latency is then increased to 3s, thus exceeding the
latency target of 2s. To reduce playback latency, the player
increases playback rate until the target is reached, after
which it reverts back to normal playback rate.

To control the playback rate automatically, we explore
the use of Genetic Programming (GP) to evolve playback
adaptation algorithms. GP encodes candidate solutions us-
ing expression trees (see Fig. 8) which comprise two types of
components: operands – leaf nodes, and operators – non-leaf
nodes. The choices of operands and operators determine
GP’s search space. For the playback rate adaptation, GP
captures network and streaming states as inputs in an ex-
pression tree via variable operands. We define a variable op-
erand set with four input variables:

  ={ , , , }z b (21)

where δ is the average TCP throughput in downloading
the past x (e.g., x=5) video segments; z is the current buffer
occupancy; b is the bitrate of the previous video segment;
and α is the playback latency. The first three variables are
commonly employed in on-demand adaptive streaming
algorithms while the last one is specific to live video
streaming.

In addition to input variables, one also needs numeric
constants for constructing algorithms. These are intro-
duced into GP expression tree via constant numeric oper-
ands, defined by an operand set  that comprises numeric
constants randomly generated over a given range D:

     { , }x D x D (22)

Fig. 9. Illustration of using adaptive playback to control playback

latency.

As opposed to operands, GP operators are non-leaf
nodes of an expression tree. An operator node performs a
specific operation on its child nodes to produce a result
which is then served as input to its parent operator node.
We employ a set of four arithmetic functions in the opera-
tors set :

     { , , , } (23)

The above operands and operators are specially chosen
such that the resultant expression tree can be presented in
the form of a mathematical equation that can be simply
implemented into video players. The output of the
expression tree is playback rate multiplier, denoted by .
Specifically, =1 means normal playback rate and >1 (<1)
speeds up (slows down) playback rate by a factor of .
Note that slowing down the playback rate serves the pur-
pose to assist in avoiding playback rebuffering by buffer-
ing up more data in the case of the actual latency lower
than the target.

In practice, one wants to make the playback rate change
imperceptible so that it does not degrade the user experi-
ence. Previous work [28,31] found that, for both video and
audio, playback rate changes within 5% are imperceiva-
ble to most viewers. To verify this, we tested a wider range
of playback rate changes (within 50%) via dash.js video
player [41] and our findings were consistent with the pre-
vious work. In fact, we found it is difficult for viewers to
notice even with a 15% playback rate change but conser-
vatively we adopted 5% maximum change limit in this
work. Interested readers can visit dash.js reference player
[41] to experience it. Finally, we limit the playback rate
multiplier computed by the expression tree to this range:

  

  
  

  
 
  

max

max

min(,1), 1
= , 1

max(,1), 1
 (24)

where κmax = 5% is the maximum playback rate change.
Bitrate Adaptation. For evolving bitrate adaptation al-

gorithms, we define a set Φ that includes five domain-spe-
cific inputs as variable operands:

   ={ , , , , }z b (25)

Comparing (25) to (21), an additional operand ρ – the play-
back rate calculated from (24) is added. This means that the

Page 9 of 14 Transactions on Parallel and Distributed Systems

10

bitrate adaptation algorithm has knowledge of the play-
back rate chosen to enable the two adaptation algorithms
to evolve jointly (c.f. Section 5.2).

The definitions of numeric constants operands and op-
erators in bitrate adaptation are identical with that in (22)
and (23) respectively. Same as the playback adaptation al-
gorithm, the choices of operands and operators in bitrate
adaptation also enable the expression trees to be converted
into mathematical equations that can be easily imple-
mented into the video player.

The output of the expression tree here is the video bi-
trate, denoted by r, of the next video segment, but as r is a
real number while bitrate choices are discrete, it needs to
be mapped to the closest available bitrate version by

 =arg min h
h

h r r (26)

where rh, h=0,1,…,H-1, are the available bitrate versions.

5.2 Latency-aware Evolutionary Process
The two types of algorithms (i.e., playback adaptation and
bitrate adaptation) defined in Section 5.1 are not independ-
ent but should work together to optimize QoE and play-
back latency in live video streaming. On one hand, given
the different functions performed by the two types of algo-
rithms, they should be evolved in separate GP populations.
On the other hand, system performance is a result of run-
ning them simultaneously so one also needs a way to
evolve them jointly. To this end, we drew on the method-
ology of cooperative coevolution [34] and developed a new
latency-aware evolutionary process to co-evolve the two
types of algorithms in live video streaming.

Populations. The evolutionary process begins with two
separate initial populations, one for playback rate adapta-
tion and the other for bitrate adaptation, each containing γ
(e.g., γ=800) randomly-generated individuals (i.e., expres-
sion trees). We adopted the method proposed by Koza et
al. [30] to generate the initial populations.

Let Iτ,g (Iπ,g) and Iτ,g,k∈Iτ,g (Iπ,g,k∈Iπ,g) be the population set
and individual k, k=0,1,…,K–1, in the population in gener-
ation g, g=0,1,…,G-1, for playback (bitrate) adaptation al-
gorithms respectively. We link each pair of individuals
(Iτ,g,k and Iπ,g,k) from the two populations (Iτ,g and Iπ,g) ac-
cording to the fixed order k to form a combined individual,
denoted by Ic,g,k:

  , , , , , ,{ , }c g k g k g kI I I (27)

It’s worth noting that, in the study of Potter et al. [34],
they proposed to link each individual in the current popu-
lation with the best-performing individuals from the rest
of the populations. However, this method is not suitable
for this work as the two types of individuals are not inde-
pendently optimized for separate fitness metrics but must
work together to determine the common fitness metric.
Therefore, we adopted the fixed linkage which makes ei-
ther individual evolve in accordance with its counterpart,
hence enables synergy between them.

Joint Fitness Evaluation. Each generation of population
evolves by means of reproducing offspring to form the
next generation. This is done by first evaluating the fitness

of each combined individual in the population which indi-
cates the goodness of each candidate solution in the prob-
lem domain. Fitness is determined by both bitrate and
playback adaptation algorithms in this work, so it should
be jointly evaluated upon a pair of the individuals, i.e., the
combination in (27).

This presents a challenge as the fitness of the adaptation
algorithm not only depends on the adaptation logic, but is
also affected by the network conditions as well as the eval-
uation metric adopted. To tackle this challenge, we pro-
pose to employ trace-driven simulations to evaluate the fit-
ness of a given combined individual according to a given
fitness function (e.g., (6)). To ensure that the fitness evalu-
ation covers a broad range of network conditions, each
combined individual is evaluated over L (e.g., L=200)
streaming sessions using throughput traces from a dataset
E. Now given the throughput trace data of session j in
dataset E, denoted by Sj∈E, the combined individual Ic,g,k
can be executed (denoted by the function F()) to produce
a set of performance metrics (e.g., bitrate, rebuffering
duration, playback latency and etc.), collectively denoted
by Pk,j:

 , , ,(,)k j c g k jP F I S (28)

Finally, the fitness of Ic,g,k, denoted by fc,g,k, is computed
from the mean of all L streaming sessions:





 
1

, , ,
0

1 ()
L

c g k k j
j

f U P
L

 (29)

where U() is the fitness (objective) function adopted (e.g.,
(6)).

Selection, Crossover, and Mutation. Once the fitness
values for all individuals are obtained, GP performs selec-
tion, crossover and mutation for the bitrate and playback ad-
aptation population separately to reproduce offspring. Se-
lection is to pick parent individuals with good fitness.
Crossover/Mutation is to explore the combination/modifi-
cation of genes in the parent individuals such that the gene
diversity of the offspring can be improved to broaden the
solution search space. Interested readers can refer to Potter
et al. [34] and Koza et al. [30] for more details.

Termination. The reproduced offspring forms the pop-
ulations in the next generation and then all the processes
repeat until a predefined maximum number of generation
G (e.g., G=50) is reached. As the evolutionary process goes
on, GP can explore a wide spectrum of candidate solutions
in the solution space to progressively evolve better-per-
forming individuals. In the end, the combined individual
with the best fitness in the final populations will be se-
lected as the adaptation algorithm for use in actual stream-
ing sessions.

5.3 FLAS-GP
Finally, we apply FLAS to the above GP scheme (i.e.,
FLAS-GP) to enable flexible playback latency control.
FLAS-GP is compatible with the unified FLAS framework
that operates in two phases. In distributed offline training
phase, FLAS-GP uses state quantizer (SQ) to quantify M×N
latency-QoE tradeoff states, i.e., (10). For each state, FLAS-

Page 10 of 14Transactions on Parallel and Distributed Systems

 11

GP runs the GP latency-aware evolutionary process sepa-
rate (c.f. Section 5.2), denoted by the function TGP(), to
evolve a particular adaptation algorithm specifically for
each state:

     , (,), 0,1,..., 1, 0,1,..., 1p q GP p qA T U C p M q N (30)

where Up denotes the objective function (it is called fitness
function in GP and will be maximized during the evolu-
tionary process) with latency coefficient ωp (defined in (6)),
Cq denotes throughput trace data in throughput level ϖq
(defined in (9)), and Ap,q is the evolved algorithm set in-
cluding a total of M×N adaptation algorithms (i.e., expres-
sion trees in GP). It is worth noting that GP is only one can-
didate scheme to carry out FLAS’s training phase, i.e., (11),
and other machine learning or heuristic paradigms can be
operated by FLAS in a similar manner.

Online algorithm Selection phase of FLAS-GP is identical
to that in Section 4.2. In particular, the video player does
not need any GP evolutionary components or expensive
computational operations online. The only modification
needed for deploying FLAS-GP is to append a lightweight
module into the video player to determine the runtime
state of each epoch and then apply the matching
algorithms to them, i.e., (12)~(20). Overall, in the two-
phase design, most of the computations are completed in
offline training, and a simple strategy is kept online, so that
FLAS-GP can be readily implemented into real streaming
platforms.

6 PERFORMANCE EVALUATION
In this section, we conduct a systematic and thorough eval-
uation for FLAS and compare it against the state-of-the-art
streaming algorithms.

6.1 Evaluation Setup
We employed trace-driven simulations where the simula-
tion settings are consistent with that in Section 3 (see Table
1) and the configurations of FLAS are summarized in Table
2. For the GP evolutionary process, we adopted a popula-
tion size of 800 (i.e., 800 combined individuals), and then
the population was evolved for 50 generations after which
the combined individual with the best fitness was selected
as the adaptation algorithm for use in actual streaming ses-
sions.

6.2 Latency-QoE Tradeoff
Among all the streaming algorithms evaluated, three of
them support the control of the target playback latency,
namely FLAS-GP, FLAS-L2AC, and LAPAS. The first ex-
periment is to evaluate how well the three algorithms track
the target latency. The results in Table 4 show that the three
algorithms perform similarly and the actual latency
achieved is close to the corresponding target one. To fur-
ther quantify the deviation of the actual latency from the
target, we defined a new metric –Mean Absolute Deviation
of latency that characterizes the average absolute difference
between the actual latency and the target (henceforth
called “latency-MAD”):

TABLE 4 Actual Mean Latency (s) vs Target Latency

Algorithm
Target Latency (s)

1 3 5 7 9
FLAS-GP 0.86 2.93 4.87 6.91 8.98

FLAS-L2AC 0.96 2.92 4.99 6.87 8.84
LAPAS 1.05 2.83 5.32 7.40 9.33

TABLE 5 Comparison of Latency-MAD (s)

Algorithm
Target Latency (s)

1 3 5 7 9
FLAS-GP 0.30 0.37 0.43 0.47 0.48

FLAS-L2AC 0.31 0.36 0.41 0.45 0.50
LAPAS 0.56 0.65 0.75 0.87 0.98

TABLE 6 QoE Performance Across Throughput Levels
(Target Latency=2s)

Algorithm

Throughput Level
0~1 2~3 4~5 6~7 8~9

FLAS-GP 0.64 2.04 3.47 5.31 7.76
FLAS-L2AC -1.11 1.72 3.06 4.83 6.97

LAPAS 0.21 1.79 2.79 4.07 5.20

1

0

1 | |
L

j
jL

  




  (31)

where βj is the actual mean latency during streaming epoch
j, λ is the target latency and L is the total number of
streamed epochs. The results are summarized in Table 5
where lower latency-MAD indicates the target latency be-
ing better tracked. We can see that the two FLAS-opti-
mized algorithms achieve significantly lower latency-
MAD than LAPAS. This benefits from FLAS’s online algo-
rithm selection which periodically adjusts the algorithm in
operation to avoid the actual latency deviating from the
target during streaming a live session. In contrast, LAPAS
does not have such a mechanism to make adjustments dur-
ing a session. Moreover, although FLAS-L2AC and FLAS-
GP perform similarly in latency-MAD, skipping video data
(adopted by FLAS-L2AC) introduces playback glitches
thus causing QoE degradation, while changing playback
rate within 5% (adopted by FLAS-GP) is imperceptible to
viewers so it is harmless to QoE. Therefore, FLAS-GP can
achieve better QoE performance (see the following results).

Next, we investigate the tradeoff performance between
QoE and playback latency. We observed in Fig. 10 that
FLAS-GP achieves a continuous frontier of latency-QoE
tradeoff where QoE is much higher than all other algo-
rithms across the latency ranging from 1.0s to 9.0s. Table 6
summarizes the QoE achieved by FLAS-GP, FLAS-L2AC
and LAPAS across throughput level 0~9. We only listed the
results under 2s target latency, as similar results were ob-
tained with other target options.

Remarkably, FLAS-GP resolves the performance flaw of
FLAS-L2AC, outperforming the other two algorithms sig-
nificantly at throughput level 0~1. In addition, FLAS-GP
also achieves substantially higher QoE in throughput level
2~9. This clearly demonstrates that with the flexible expres-
sion tree structure, GP enables FLAS to generate more spe-
cialized algorithms to match different network conditions
better.

Page 11 of 14 Transactions on Parallel and Distributed Systems

12

Fig. 10. Comparison of latency-QoE tradeoff under QoE function (1)
(error bars span streaming sessions with top/bottom 5% latency).

The insight from the above results is that, despite the
substantial performance gains in FLAS-L2AC, merely ap-
plying FLAS may not be sufficient on its own. FLAS also
needs an underlying scheme that can fully exploit special-
izations to explore and match the wide range of network
environments for optimal performance, and the GP
scheme presented in Section 5 offers such an option. More
work is warranted to explore other machine learning or
heuristic schemes to see if one can push the envelope even
further.

To see if the above observations are consistent under
different QoE metrics, we repeated the experiments with
another QoE function proposed by Mao et al. [17]:

   
 


 

 
       

 
 

1 1

1
0 1

1' 2.66 0.2
K K

k k k
k k

Q Z G
K

 (32)

where Z is the playback rebuffering duration, G is the
skipped video duration, K is the total number of segments
in one streaming session and

   minlog()k kr r (33)

where rk is the bitrate selected for segment k and rmin is the
lowest available bitrate in the profile.

Fig. 11 plots the latency-QoE tradeoff under this QoE
function. We can observe very similar patterns in the re-
sults which are consistent with the observations in Fig. 10.
FLAS-GP again consistently outperforms all other algo-
rithms, more so at the lower end of the latency range.

6.3 Robustness
In this section, we investigate the robustness of FLAS.
Again, we only show the performance under 2s target la-
tency, as similar results were obtained with other options.
We first consider temporal robustness – performance vari-
ation over time (i.e., days). Fig. 12 plots the daily latency-
MAD (defined by (31)) over a period of 40 days. As ex-
pected, the latency-MAD of LAPAS is much higher than
that of FLAS and exhibits far more fluctuations due to the
changing network condition (e.g., daily throughput varia-
tions) over the 40 days. We also plotted the corresponding
daily mean QoE in Fig. 12. FLAS-GP outperforms FLAS-
L2AC and LAPAS substantially, achieving the highest
daily QoE in 39 of the 40 days.

Fig. 11. Comparison of latency-QoE tradeoff under QoE function (32)
(error bars span streaming sessions with top/bottom 5% latency).

Fig. 12. Comparison of latency-MAD and QoE over a period of 40 days
(target latency = 2s).

Next, we consider spatial robustness – performance var-
iations over different network characteristics, e.g., network
types, service providers and etc., which presumably ex-
hibit different ranges of network conditions [38]. We con-
ducted a new set of simulations using a total of seven in-
dependent throughput trace datasets, i.e., #1~#7. Table 7
summarizes the key statistics for the seven datasets where
#1 to #5 were captured in 3G networks, and #6 and #7 were
obtained from 4G/LTE and Wi-Fi networks respectively
[36,39,40].

In order to explore the impact of trace-data usage mode
in the training, we experimented with two training meth-
ods for FLAS: (a) we trained FLAS using 60 days’ trace data
from dataset #1 only, which is indicated by the “-D1” suffix
(e.g., “FLAS-GP-D1”); and (b) we trained FLAS using 60
days’ trace data consisting of the data in #1~#7, which is
indicated by the “-Mix” suffix (e.g., “FLAS-GP-Mix”). In
both cases, unseen trace data were used to obtain the per-
formance results. Table 8 and Table 9 summarize the la-
tency-MAD and QoE respectively achieved by FLAS-GP,
FLAS-L2AC and LAPAS under the seven datasets.

FLAS achieves far more precise latency and better QoE
performance than LAPAS. Noticeably, FLAS-GP outper-
forms FLAS-L2AC in QoE by 6.3%~18.1% across the seven
datasets, which again exhibits the superiority of the GP
scheme in live video streaming. More interestingly, FLAS
trained with “-D1” and “-Mixed” perform similarly across
the seven datasets despite being trained using very differ-
ent trace data (e.g., the LTE network #6 has much higher
mean throughput than 3G network #1). This indicates that
FLAS is spatially robust.

Page 12 of 14Transactions on Parallel and Distributed Systems

 13

TABLE 7 Statistics of Seven Throughput Trace Datasets
 Datasets

Features #1 #2 #3 #4 #5 #6 #7
Throughput (Mbps) 5.6 4.7 3.3 2.9 1.2 11.1 3.1

Variation (CoV) 0.4 0.4 0.7 0.5 0.8 0.7 0.6
Network type 3G 3G 3G 3G 3G LTE WiFi

Location L1 L1 L2 L3 L4 L5 L6
ISP S1 S2 S1 S1 S3 S2 S4

TABLE 8 Latency-MAD (s) Across Seven Datasets
(Target Latency=2s)

Algorithm

Datasets
#1 #2 #3 #4 #5 #6 #7

FLAS-GP-D1 0.35 0.24 0.40 0.35 0.43 0.34 0.36
FLAS-GP-Mix 0.34 0.22 0.41 0.35 0.44 0.35 0.37

FLAS-L2AC-D1 0.34 0.24 0.40 0.36 0.43 0.35 0.36
FLAS-L2AC-Mix 0.35 0.23 0.39 0.34 0.44 0.33 0.33

LAPAS 0.63 0.45 0.74 0.67 0.88 0.57 0.63

Overall, the above results point to an important charac-

teristic of FLAS – it is both temporally and spatially robust.
This strongly suggests that as long as FLAS is trained with
a wide spectrum of network conditions, the resultant algo-
rithm set would be sufficiently general that could be ap-
plied to a much wider range of networks. Moreover, as the
variations in network conditions have already been ac-
counted for by the design of FLAS, it is not necessary to
repeat the training process at all (unless new networks
with completely different features are introduced). This
can greatly save the streaming server’s computing re-
sources and simplify system deployment.

6.4 Sensitivity Analysis
In this section, we analyze the sensitivity of FLAS with re-
spect to epoch duration and live event duration. FLAS ex-
ecutes algorithm selection at the beginning of each epoch
in the online phase. This leads to the question of epoch du-
ration choices. Table 10 compares the QoE of FLAS-GP
across epoch durations ranging from 50s to 600s. Again
only the results with 2s target latency were listed. Clearly,
a longer epoch can result in better QoE performance. This
is because each video epoch is regarded as a separate
streaming session and longer epoch duration offers more
room (i.e., time) for the adaptation algorithms to maneuver
so that they do not need to be too conservative.

However, longer epoch does have a tradeoff – higher
latency-MAD, as demonstrated in Table 10. We observed
that the MAD increases with longer epoch durations be-
cause longer epochs reduce the execution frequency of
FLAS’s online algorithm selection, thereby hampering the
client’s responsiveness to the changes in network condi-
tions. Meanwhile, the QoE improvement tapers off for the
epoch duration longer than 300s, so 300s is adopted as the
default epoch duration in this work.

Live events can have a very wide range of durations,
ranging from minutes to hours. Another advantage of
epoch-based FLAS is that the trained algorithm set is de-
coupled from the actual live event duration.

 TABLE 9 QoE Performance Across Seven Datasets
(Target Latency=2s)

Algorithm

Datasets
#1 #2 #3 #4 #5 #6 #7

FLAS-GP-D1 3.54 2.83 1.90 2.15 0.90 9.02 2.39
FLAS-GP-Mix 3.46 2.91 1.93 2.21 0.87 9.06 2.43

FLAS-L2AC-D1 3.04 2.61 1.63 1.91 0.81 8.01 2.13
FLAS-L2AC-Mix 3.01 2.66 1.71 1.93 0.75 7.87 2.09

LAPAS 2.64 1.92 1.40 1.60 0.77 6.73 1.84

TABLE 10 Impact of Epoch Duration
(Target Latency = 2s).

Epoch duration (s) 50 100 300 600
QoE 3.00 3.29 3.44 3.46

Latency-MAD (s) 0.22 0.30 0.39 0.58

TABLE 11 Impact of Live Event Duration
(Target Latency = 2s)

Live event duration 5
mins

10
mins

30
mins

1
hour

6
hours

24
hours

QoE 3.33 3.38 3.41 3.44 3.43 3.41
Latency-MAD (s) 0.41 0.40 0.39 0.39 0.37 0.39

For example, Table 11 shows the QoE and latency-MAD

for live event durations from 5 mins all the way up to 24
hours where FLAS-GP maintains consistent QoE and low
latency deviations in all cases. This strongly suggests that
FLAS can be applied to a wide range of live streaming ser-
vices from short-term events (e.g., live sports, live shows)
to round-the-clock services (e.g., news channels and video
surveillance).

7 SUMMARIES AND FUTURE WORK
The FLAS framework investigated in this paper offers a
new approach to flexible latency-QoE tradeoff control for
live streaming services. It not only enables precise control
of playback latency all the way down to 1s, but also can
achieve substantially better QoE performance than the
state-of-the-art streaming algorithms. Moreover, FLAS ex-
hibits remarkable robustness over time, mobile operators,
and even network types, thereby significantly reducing the
need to train streaming algorithms repeatedly. Its client-
side implementation is relatively simple and does not con-
tain any computationally intensive operations. Therefore,
FLAS can be readily implemented within the current
DASH/CMAF standards, offering service providers a new
tool for high-performance live video streaming.

This work is only the first step in this direction. There
are many opportunities for future research. For instance,
as the unified FLAS framework is decoupled from the un-
derlying streaming algorithms, it means that one can re-
place the later to explore the use of other machine learning
or heuristic paradigms to further improve the performance.
On the other hand, exploring FLAS’s robustness in a wider
range of network types (e.g., the emerging 5G or datacen-
ter networks) is also a fruitful direction for future work.

Page 13 of 14 Transactions on Parallel and Distributed Systems

14

REFERENCES
[1] Youtube Live [Online] https://www.youtube.com/channel/

UC4R8DWoMoI7CAwX8_LjQHig
[2] Facebook Live [Online] https://live.fb.com/
[3] Latency Options of YouTube Live. [Online]

https://support.google.com/youtube/answer/7444635?hl=en
[4] Latency Options of Twitch. [Online] https://help.twitch.tv/s/article/low-

latency-video?language=en_US
[5] Latency Options of Amazon Web Services for Live Streaming. [Online]

https://aws.amazon.com/media/tech/video-latency-in-live-
streaming/?nc1=h_ls

[6] G. Zhang and J.Y.B. Lee, “Ensemble Adaptive Streaming-A New
Paradigm to Generate Streaming Algorithms via Specializations,”
IEEE Transactions on Mobile Computing, Apr 2019.

[7] C. Liu, I. Bouazizi and M. Gabbouj, “Rate Adaptation for Adaptive
HTTP Streaming,” Proc. ACM Conf. Multimedia Syst. (MMSys'11),
San Jose, USA, Feb. 2011, pp.169-174.

[8] J. Jiang, V. Sekar and H. Zhang, “Improving Fairness, Efficiency, and
Stability in HTTP-based Adaptive Video Streaming with FESTIVE,”
Proc. Conf. Emerging Networking Experiments and Technologies
(CoNEXT'12), Nice, France, Dec. 2012, pp.97-108.

[9] T.Y. Huang, R. Johari, N. McKeown, M. Trunnell and M. Watson, “A
Buffer-Based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service,” Proc. ACM SIGCOMM, Chicago, Illinois,
USA, Aug. 2014, pp.187-198.

[10] K. Spiteri, R. Urgaonkar and R.K. Sitaraman, “BOLA: Near-Optimal
Bitrate Adaptation for Online Videos,” Proc. IEEE INFOCOM, San
Francisco, CA, USA, Apr 2016, pp.1-9.

[11] X. Yin, A. Jindal, V. Sekar and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” Proc.
ACM SIGCOMM, London, United Kingdom, Aug 2015, pp.325-338.

[12] A.H. Zahran, D. Raca, C. Sreenan. “ARBITER+: Adaptive Rate-Based
InTElligent HTTP StReaming Algorithm for Mobile Networks”. IEEE
Transactions on Mobile Computing, vol.17(12), Apr 2018, pp.2716-
2728.

[13] Y. Qin, R. Jin, S. Hao, K.R. Pattipati, F. Qian, S. Sen, B. Wang and C.
Yue, “A Control Theoretic Approach to ABR Video Streaming: A
Fresh Look at PID-based Rate Adaptation,” Proc. IEEE INFOCOM,
Atlanta, GA, USA, May 2017, pp.1-9.

[14] Y. Liu and J.Y.B. Lee. “A Unified Framework for Automatic Quality-
of-Experience Optimization in Mobile Video Streaming,” Proc. IEEE
INFOCOM, San Francisco, CA, USA., Apr 2016, pp.1-9.

[15] Y. Liu and J.Y.B. Lee, “Post-Streaming Rate Analysis - A New
Approach to Mobile Video Streaming with Predictable Performance,”
IEEE Transactions on Mobile Computing, vol.16(12), Dec 2017,
pp.3488-3501.

[16] Z. Akhtar, Y.S. Nam, R. Govindan, “Oboe: Auto-tuning Video ABR
Algorithms to Network Conditions” Proc. ACM SIGCOMM, Budapest,
Hungary, Aug 2018, pp.44-58.

[17] H. Mao, R. Netravali, M. Alizadeh, “Neural Adaptive Video Streaming
with Pensieve,” Proc. ACM SIGCOMM, Los Angeles, CA, USA, Aug
2017, pp.197-210.

[18] F. Chiariotti, S. D'Aronco, L. Toni, “Online Learning Adaptation
Strategy for DASH Clients,” Proc. ACM Multimedia Syst., Klagenfurt,
Austria, May 2016, pp.8:1-8:12.

[19] V. Martín, J. Cabrera, N. García, “Design, Optimization and Evaluation
of a Q-Learning HTTP Adaptive Streaming Client,” IEEE Transactions
on Consumer Electronics, vol. 62(4), Nov 2016, pp.380-388.

[20] M. Gadaleta, F. Chiariotti, M. Rossi, A. Zanella, “D-DASH: A Deep
Q-learning Framework for DASH Video Streaming,” IEEE
Transactions on Cognitive Communications and Networking, vol. 3(4),
Dec 2017, pp.703-718.

[21] N. Chen, S. Quan, S. Zhang et. al, "Cuttlefish: Neural Configuration
Adaptation for Video Analysis in Live Augmented Reality," IEEE
Transactions on Parallel and Distributed Systems, vol. 32(4), April
2021, pp. 830-841.

[22] L. De Cicco, S. Mascolo, V. Palmisano, “Feedback Control for
Adaptive Live Video Streaming,” Proc. ACM Multimedia Syst., San
Jose, USA, Feb 2011, pp.145-156.

[23] J. Wang, S. Meng, J. Sun, Z. Quo, “A General PID-based Rate
Adaptation Approach for TCP-based Live Streaming over Mobile
Networks,” Proc. IEEE ICME, Seattle, USA, Jul 2016, pp.1-6.

[24] L. Xie, C. Zhou, X. Zhang, “Dynamic Threshold Based Rate
Adaptation for HTTP Live Streaming,” Proc. IEEE ISCAS, Baltimore,
MD, USA, May 2017, pp.1-4.

[25] K. Miller, A.K. Al-Tamimi, A. Wolisz, “QoE-Based Low-delay Live
Streaming Using Throughput Predictions,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol. 13(1),
Jan 2017, pp.1-24.

[26] M. Lim, M.N. Akcay, A. Bentaleb, “When They Go High, We Go Low:
Low-latency Live Streaming in Dash.js with LoL,” Proc. ACM
Multimedia Systems Conference, Istanbul, Turkey, May 2020, pp. 321-
326.

[27] Y. Zhao, Q.W. Shen, W. Li, “Latency Aware Adaptive Video
Streaming using Ensemble Deep Reinforcement Learning,” Proc. ACM
International Conference on Multimedia, Nice, France, Oct 2019,
pp.2647-2651.

[28] G. Zhang and J.Y.B. Lee, “LAPAS: Latency-Aware Playback-
Adaptive Streaming,” Proc. IEEE Wireless Communications and
Networking Conference (WCNC), Marrakech, Morocco, April 2019,
pp.1-6.

[29] V. Mnih, A.P. Badia, M. Mirza, A. Graves, “Asynchronous Methods
for Deep Reinforcement Learning,” Proc. International Conference on
Machine Learning, New York City, NY, USA, Jun 2016, pp. 1928-
1937.

[30] J.R. Koza, “Genetic Programming as A Means for Programming
Computers by Natural Selection,” Springer Statistics and computing,
vol. 4(2), Jun 1994, pp.87-112.

[31] L. Golubchik, John C.S. Lui and R.R. Muntz, “Reducing I/O Demands
in Video-on-Demand Storage Servers,” Proc. ACM SIGMETRICS,
Ottawa, Canada, May 1995, pp.25-36.

[32] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP:
Standards and Design Principles,” Proc. ACM Multimedia Syst., San
Jose, USA, Feb 2011, pp.133-144.

[33] Common Media Application Format (CMAF) [Online] https://mpe-
g.chiariglione.org/standards/mpeg-a/common-media-application-
format

[34] M.A. Potter, K.A.D. Jong, “Cooperative Coevolution: An Architecture
for Evolving Coadapted Subcomponents,” Evolutionary Computation,
vol. 8(1), Spring 2000, pp.1-29.

[35] K.H. Ang, G. Chong and Y. Li, “PID Control System Analysis, Design,
and Technology,” IEEE Transactions on Control Systems Technology,
vol.13(4), Jul. 2005, pp.559-576.

[36] Mobile Throughput Trace Data. [Online]
http://sonar.mclab.info/tracedata/TCP/

[37] Best Practices for Creating and Deploying HTTP Live Streaming
Media for the iPhone and iPad, Apple Inc, retrieved on Aug 2016.
[Online] https://developer.apple.com/library/ios/technotes/
tn2224/_index.html

[38] G. Zhang, R.K.H. Ngan, J.Y.B. Lee, “EmuStream – An End-to-End
Platform for Streaming Video Performance Measurement,” IEEE
Access, vol. 8, Dec 2019, pp.669-680.

[39] H. Riiser, P. Vigmostad, C. Griwodz, P. Halvorsen, “Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications,”
Proc. ACM Multimedia Syst., Oslo, Norway, Feb 2013, pp.114-118.

[40] L2AC Source Code [Online] https://github.com/anlanzy/L2AC
[41] Dash.js Reference Player [Online] https://reference.dashif.org/dash.js

/latest/samples/low-latency/index.html

Page 14 of 14Transactions on Parallel and Distributed Systems

