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Abstract: The safety and reliability of undivided two-way highway–rail grade crossings (HRGCs)
are of paramount importance in transportation systems. Utilizing crash data from the Federal
Railroad Administration between 2020 and 2021, this study aims to predict crash injury severity
outcomes and investigate various factors influencing injury severities. The χ2 test was first used to
select variables that were significantly associated with injury outcomes. By employing the eXtreme
Gradient Boosting (XGBoost) model and interpretable SHapley Additive exPlanations (SHAP), a
cross-category safety assessment that offers an evidence-based hierarchy and statistical inference
of risk factors associated with crashes, crossings, vehicles, drivers, and environment was provided
for killed, injured, and uninjured outcomes. Some significant predictors overlapped between the
killed and injured models, such as old driver, driver was in vehicle, main track, went around the
gate, adverse crossing surface, and truck, while the other different significant factors revealed that
the model could distinguish between different severity levels. Additionally, the results suggested
that the model has varying performances in predicting different injury severities, with the killed
model having the highest accuracy of 93.36%. The SHAP dependency plots for the top three features
also ensure reliable predictions and inform potential interventions aimed at strengthening traffic
safety and risk management practices, such as enhanced warning systems and targeted educational
campaigns for older drivers.

Keywords: transportation system; traffic safety; reliability estimation and mathematical statistics;
risk management; injury severity; HRGC crashes; XGBoost; SHAP
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1. Introduction

Highway–rail grade crossings (HRGCs) represent pivotal junctures within the trans-
portation network where the controlled flow of vehicular traffic intersects with rail in-
frastructure. Although integral to multimodal transportation systems, HRGCs continue
to pose substantial safety challenges worldwide. For example, in the United States, the
Federal Railroad Administration reports there were 2146 HRGC crashes in 2021, resulting
in considerable casualties and property damage [1]. Within this context, it warrants special
attention that the interplay between undivided two-way traffic highways and railways
carries an increased risk. The lack of separation between opposing traffic flows could
introduce a variety of hazard factors that can lead to catastrophic accidents. Vehicles may
inadvertently drift into the opposing lane, leading to head-on collisions, or encroach upon
railway tracks, placing them directly in the path of oncoming trains. In this regard, Ref. [2]
pointed out that varying median separations on rural two-lane roads have a considerable
impact on how drivers behave, specifically in terms of their lateral positioning and driving
trajectories, along with the related safety risks. Furthermore, it has been observed that
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collisions tend to happen more frequently on undivided two-way roads, which is attributed
to the fluctuating traffic circumstances [3]. The statistics also reveal that nearly 95% of
HRGC incidents take place in two-way traffic scenarios without divisions [1], highlighting
the critical necessity to identify associated determinants and improve crossing safety in
this scenario.

Studies on the safety of HRGCs have traditionally focused on the statistical analysis of
accident data to model injury severity outcomes [4,5]. For instance, Ref. [6] employed an
ordered probit approach to investigate how age and gender influence the severity of injuries
sustained by motor vehicle drivers at HRGCs, uncovering significant differences in the
behavioral and physiological attributes of male and female drivers engaged in collisions.
Based on the structural equation model, Ref. [7] analyzed the self-reported data from
Nebraska households to identify socioeconomic, personality, and attitudinal factors linked
to inattentive driving at HRGCs. The results revealed that factors such as female drivers,
younger drivers, higher incomes, and limited exposure to safety information regarding
HRGCs caused a higher risk of inattentive driving at HRGCs. In the study of Ref. [8],
the zero inflated negative binomial model alongside the empirical Bayes technique was
used to forecast incidents at HRGCs for various warning mechanisms. Their outcomes
showed improved congruence with actual field data when compared to the latest model
from the Federal Railroad Administration. Subsequently, discrete choice models have also
been utilized to identify the determinants considering the discrete nature of HRGC crash
variables. For example, Ref. [9] investigated the HRGC crashes in the United States by
employing a random parameters logit model with heterogeneity in means to account for
varied factors influencing crashes. It highlighted specific behaviors and driver attributes,
such as non-compliance with stop signals, old driver, and female driver, would raise the
possibility of severe injuries.

Compared to statistical or econometric models, machine learning approaches have
the advantage of being capable of processing big data and capturing intricate relationships
between input variables and outcome predictions [10,11]. Although machine learning
models have been extensively studied for real-time risk prediction [12–14], the application
of these models to analyze injury severities at undivided two-way traffic HRGCs has not
been investigated to the best of our knowledge. As a typical technique in the domain of
machine learning, the XGBoost model has gained recognition as a powerful algorithm for
classification and regression tasks. In traffic safety research, XGBoost has been utilized
for its efficiency and accuracy in predicting road accident severity and identifying critical
incident-related features [15,16]. Additionally, it is worth noting that some previous studies
have utilized the XGBoost model to evaluate highway crash injury severities, although these
studies may not specifically focus on non-divided two-way highway and railway crashes.
For example, Ref. [17] proposed a data-driven consolidation model for highway–rail grade
crossings in the United States utilizing the XGBoost algorithm and incorporating various
engineering variables. The developed model achieved an overall accuracy of 0.991 and
provided insights into the relative importance of the input variables. Through a 10-fold em-
pirical analysis of various performance metrics, Ref. [18] found that the XGBoost technique
had superior collective predictive performance and individual class accuracies for injury
severity compared to other machine learning models. The XGBoost feature importance
analysis identified collision type, weather status, road surface conditions, on-site damage
type, lighting conditions, and vehicle type as sensitive variables for predicting crash in-
jury severity outcomes. Numerous studies have compared the performance of machine
learning techniques with statistical models, finding that machine learning approaches have
comparable predictive accuracy metrics [10,19,20]. Given that the XGBoost model could
provide useful insights into crash severity analysis, this study specifically focuses on the
application of this algorithm to investigate the influence of various determinants on injury
severity outcomes at undivided two-way traffic HRGCs.

Despite these remarkable achievements, it should be noted that data-driven ap-
proaches may lack the interpretability needed for direct application in safety enhancement
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strategies (i.e., deeply comprehend the causal impact of certain characteristics on HRGC
accident likelihoods and the corresponding probability of injury outcome). The inter-
pretability of predictive models is critical, especially in domains where decision making
can have life-altering consequences. The advancement of machine learning methodologies
has made it possible for SHAP values to provide a consistent and cohesive method of
interpreting models [21]. By attributing prediction output to individual features, SHAP
values provide transparency to otherwise ‘black-box’ models in the analysis of HRGC
crashes. While SHAP’s use in various predictive modeling scenarios has been documented,
its application in conjunction with the XGBoost model for undivided two-way traffic HRGC
safety analysis remains minimal.

Therefore, to predict crash injury severity outcomes and investigate various factors
influencing injury severities at undivided two-way traffic HRGCs, the current study em-
ployed an advanced machine learning algorithm, XGBoost, alongside a comprehensive
interpretative approach using SHAP values. This could assist policymakers and transporta-
tion authorities in reducing the frequency and severity of accidents at undivided two-way
traffic HRGCs. The paper is organized as follows: Section 2 delivers a statistical analysis
of independent variables. Section 3 delineates the analytical methods employed in the
research. Detailed model outputs, interpretation, and policy implications are discussed in
Section 4. The paper concludes with Section 5, which summarizes the key findings and
pinpoints avenues for future research.

2. Data Description

In this study, the crash data were gathered from the Safety Analysis System of the
Federal Railroad Administration [1]. HRGC crash records in the United States between 2020
and 2021 were collected from two distinct sources: (1) HRGC accident data and (2) current
crossing inventory data. Comprehensive information on variables, including speed, vehicle,
time, weather, visibility, and driver demographics, is provided by the accident database.
The inventory database offers detailed information on each crossing, such as the location,
illumination, traffic volumes, and signals.

A three-point ordinal scale is used in this study to code the injury severity outcomes:
1—uninjured, 2—injured, or 3—killed. This discrete variable is referred to as the dependent
variable in the following analysis. Using distinct identification numbers assigned to each
crossing, the information contained in the current crossing inventory is combined with the
extracted crash database.

This combination facilitates a holistic identification of factors contributing to the sever-
ity of crash injuries. Subsequently, the merged data were subjected to thorough verification
and screening to remove samples with missing information in variables. The variables were
subsequently categorized into several classifications, including crash, crossing, vehicle,
driver, and environmental characteristics. These exploratory variables were then converted
into binary indicator variables, i.e., Yes (1) or No (0). A detailed partition and descriptive
analysis of these independent variables can be seen in Table 1. After eliminating the records
with incomplete variable information, the final dataset used for the following analysis
comprised 1503 accident records, including 1009 records of no injuries (67.13%), 384 records
of injuries (25.55%), and 110 records of fatalities (7.32%). Figure 1 delineates the geospatial
distribution of these HRGC crashes.
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Table 1. The descriptive statistics of independent variables.

Category Variables Frequency Percentage (%)

Crash characteristics

Train speed ≤ 45 MPH 1256 83.57
Train speed > 45 MPH 247 16.43
Unobstructed view 1444 96.10
Obstructed view * 59 3.90
Estimated vehicle speed ≤ 25 MPH 1374 91.40
Estimated vehicle speed > 25 MPH 129 8.60
Did not stop 574 38.19
Stopped and then proceeded 333 22.16
Stopped on the crossing 214 14.24
Went around the gate 290 19.29
Other actions 92 6.12

Crossing characteristics

Private crossing type 32 2.13
Public crossing type 1471 97.87
Highway speed limit ≤ 25 MPH 405 26.95
Highway speed limit > 25 MPH 1098 73.05
Annual average daily traffic (AADT) ≤ 5000 1047 69.66
Annual average daily traffic (AADT) > 5000 456 30.34
Estimated percent of trucks ≤ 10% 1093 72.72
Estimated percent of trucks > 10% 410 27.28
Crossing without signs or signals 32 2.10
Crossing with signs or signals 1471 97.90
Unpaved Highway 148 9.85
Paved Highway 1355 90.15
Land without commercial power 144 9.58
Land with commercial power 1359 90.42
Both-side crossing warning 1423 94.68
Single-side crossing warning 80 5.32
Crossing without illumination 928 61.74
Crossing with illumination 575 38.26
Dry crossing surface 1290 85.83
Adverse crossing surface * 213 14.17
Industry track 82 5.46
Main track 1328 88.36
Siding track 9 0.60
Yard track 84 5.59

Vehicle characteristics

Auto 790 52.56
Bus 2 0.13
Motorcycle 9 0.60
Truck 32 2.13
Van 1374 91.40
Other vehicles 527 35.06

Driver characteristics

Middle driver 643 42.78
Old driver 483 32.14
Young driver 377 25.08
Female driver 392 26.08
Male driver 1111 73.92
Driver was not in vehicle 236 15.70
Driver was in vehicle 1267 84.30

Environmental characteristics

Day 847 56.35
Dusk 167 11.11
Dark 360 23.95
Dawn 129 8.58
Clear 1060 70.53
Cloudy 313 20.83
Fog 13 0.86
Rain 90 5.99
Sleet 3 0.20
Snow 24 1.60

* Adverse crossing surface encompasses conditions such as moisture, ice, snow, slush, sand, mud, or oil on
roadways. Obstructed view arises from factors including vehicles, trains, railroad apparatus, infrastructure,
terrain, flora, or similar obstructions.
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3. Method

The XGBoost model, an ensemble method that aggregates the forecasts from numerous
decision trees, was applied in assessing the severity of injuries from HRGC accidents in
this study [10,20,22]. The objective function of XGBoost is defined as follows [23]:

L(θ) =
n

∑
i=1

l(yi, ŷl) +
K

∑
t=1

Ω(ht) (1)

where l(yi, ŷi) is the loss function that measures the difference between the predicted value
ŷi and the actual injury severity label yi and K is the number of weak learners in the
ensemble. The regularization term that penalizes the models’ complexity is

Ω(ht) = γJ +
1
2

λ
J

∑
j=1

w2
tj (2)

where J represents the total leaf count; γ is the parameter that controls the leaf quantity;
the coefficient for the L2 regularization term, represented by λ, increases the model’s
conservatism with each increment; and wtj signifies the j-th leaf node’s optimum value in the
t-th decision tree. By minimizing the sum of the regularization term and the loss function,
the objective function is optimized. The objective function changes to the following form
when the second-order Taylor expansion is applied to it:

Obj =
J

∑
j=1

[
1
2
(

Htj + λ
)
w2

tj + Gtjwtj

]
+ γJ (3)

where Htj represents the sum of the second-order derivatives for each leaf node, and Gtj
denotes the total of the first-order derivatives for each individual leaf node. The optimal

value for wtj is equal to − Gij
Htj+λ at the point when the derivative of the objective function is

0. Subsequently, the optimal wtj is used to split the tree. This process of branching continues
until the depth of the node matches the predetermined maximum depth.
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In this study, three dichotomous crash severity levels are further split and determined
as follows:

yi =

{
1, i f the sample belongs to i, i = Uninjured, Injured, or Killed
0, otherwise

(4)

To evaluate the model’s performance, the five-fold cross-validation method is used [22].
The accuracy is also calculated to measure the performance of the model:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP represents a correct prediction of the specific injury severity; FP represents
a false classification of an injury severity case being predicted as a non-injury-severity
case; TN denotes a correct prediction of a non-injury-severity case; and FN indicates a
non-injury-severity case incorrectly predicted as an injury case.

Additionally, the performance of the model can be assessed by the Area Under the
Receiver Operating Characteristic Curve (AUC), which evaluates the model’s capacity to
discern between instances that are positive and negative. A higher AUC indicates better
performance [20].

SHAP is a unified measure of feature importance that leverages cooperative game
theory to allocate the contribution of each feature to the final prediction in a fair and
computationally efficient manner [21]. Each feature’s SHAP value can be interpreted as
the average marginal contribution of that feature across all possible feature subsets [21]. It
provides a powerful tool to interpret machine learning models such as XGBoost and deliver
transparent and trustworthy predictions. Therefore, SHAP was utilized in this study to
better interpret the results of the XGBoost models:

ϕi = ∑
S⊆N(i)

|S|!(k−|S|−1)!
k!

(v(S ∪ {i})− v(S)) (6)

where k represents the total number of features; ϕi denotes the influence of feature i; S signifies
a subset of features; and |S| is the total feature number.

The Shapley value is an additive attribution-assignment approach, with the prediction
from the model equating to the aggregate of these attributed values for every feature. This
results in the following representative linear model:

ζ
(
z′
)
= ϕ0 +

M

∑
i=1

ϕiz′i (7)

where ϕ0 indicates the average prediction across all training samples; M is the total feature
count; and zi

′ is a binary indicator that equals 1 if the feature is present, and 0 if not.
To ascertain the relative significance of each feature, the absolute values of the fea-

ture attributions across all samples are summed. Given n in the total sample count, the
cumulative influence of feature i is encapsulated by the following equation:

Ii =
n

∑
j=1

∣∣ϕi,j
∣∣ (8)

where ϕi,j denotes the attribution value of the i-th attribute for the j-th sample.

4. Results and Discussions

Table 2 presents the results of the χ2 test to examine the association between each
explanatory variable and the injury severity. A small p-value suggests that the observed
categorical data are unlikely to occur by chance. The variables with a significant associ-
ation with injury severity are listed in descending order based on the magnitude of the
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χ2 value and the corresponding p-value. Variables such as driver was in vehicle, train
speed > 45 MPH, and went around the gate show a strong correlation with injury severity
outcomes, as evidenced by their high χ2 values and negligible p-values. Only these indica-
tors less than the chosen significance level of 0.05 were selected to predict the severity of
the injury outcome in the XGBoost model.

Table 2. Test results of explanatory variables and the injury severity.

Variables χ2 p-Value

Driver was in vehicle 112.657 <0.01
Train speed > 45 MPH 73.143 <0.01
Went around the gate 45.152 <0.01
Stopped on the crossing 28.614 <0.01
Did not stop 24.230 <0.01
Estimated vehicle speed > 25 MPH 16.451 <0.01
Truck 16.424 <0.01
Main track 15.913 <0.01
Motorcycle 12.358 <0.01
Land with commercial power 10.242 <0.01
Old driver 9.721 <0.01
Yard track 9.608 <0.01
Dark 9.288 <0.01
Unpaved Highway 8.216 0.016
Went through the gate 7.754 0.021
Middle driver 7.422 0.024
Day 7.288 0.026
Female driver 7.215 0.027
Adverse crossing surface 6.785 0.034
Crossing without illumination 5.996 0.050

Modeling injury severities in HRGC crashes was approached as a binary classification
problem in this study, encompassing a range of categorical variables and dichotomous
outcomes (1 for Yes, 0 for No) corresponding to three distinct injury severity levels. Selection
and refinement of hyperparameters within the XGBoost framework, specifically max_depth
set to [3,5,7] and n_estimators within the range of 1 to 61 in steps of 2, were conducted to
enhance model accuracy. These selected parameters and their corresponding searching
ranges were subjected to preliminary tests to ascertain their influence on model sensitivity.
Additionally, to balance computational efficiency and predictive accuracy, the grid search
technique with selected parameters was adopted. The strategy includes a 5-fold cross-
validation method to ensure the robustness of the optimized model. Each dataset was
split into training and testing sets using an 80:20 ratio. This process involves training
and comparing the model with different parameter combinations to find the optimal
configuration. The validation set was used to measure the accuracy of the model for each
parameter combination. The parameter combination that yielded the highest accuracy on
the validation set was selected as the best set of parameters.

Figure 2 presents the model performance of the hyper-tunning process for the killed,
injured, and uninjured datasets. Each row contains two subplots corresponding to the
hyperparameter tuning curve and the ROC curve for each dataset. Subplots Figure 2a,c,e
show the variation in the chosen hyperparameters’ performance with respect to the re-
spective dataset. The best max_depths (3, 3, and 3 for the killed, injured, and uninjured
categories, respectively) and n_estimators (35, 9, and 35 for the killed, injured, and un-
injured categories, respectively) were utilized for the subsequent analysis. The trade-off
between the true positive rate and the false positive rate at various classification thresholds
is displayed by the ROC curves in subplots Figure 2b,d,f. It can be seen that the XGBoost
model achieved the best performance in predicting the killed category, with an accuracy
of 93.36% and an AUC of 0.79. However, the performance of the models in predicting
the injured and uninjured datasets was less impressive, with accuracy values of 74.75%
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and 69.10%, respectively. Due to the imbalanced dataset, the XGBoost model shows vary-
ing levels of accuracy across different injury severities, which is consistent with previous
studies [20,22].
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Figure 2. Model performance for killed, injured, and uninjured datasets: (a) Hyperparameter tuning
in XGBoost: killed; (b) ROC curve: killed; (c) Hyperparameter tuning in XGBoost: injured; (d) ROC
curve: injured; (e) Hyperparameter tuning in XGBoost: uninjured; (f) ROC curve: uninjured.

The impact of each feature variable on the predictions made by the XGBoost model is
shown in Figure 3. The beeswarm plot was employed to show each feature’s distribution of
SHAP values, with individual dots representing an undivided two-way traffic HRGC crash.
The respective features are delineated along the vertical axis of subplots Figure 3a,c,e, and
the SHAP values pertaining to each feature for the three datasets are plotted along the
horizontal axis. The sign of the SHAP value—be it positive or negative—denotes a positive
or negative impact on the predicted injury severity outcome. The feature value’s magnitude
is illustrated using different colors, where blue denotes lower values (interpreted as 0 for
each variable) and red signifies higher values (interpreted as 1 for each variable). For
example, it can be seen that the train speed > 45 MPH indicator was the most crucial impact
factor and was positively associated with killed crashes.
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The subplots in Figure 3b,d,f list the features by their importance for each injury sever-
ity dataset. According to the SHAP values, the top ten important feature indicators in the
killed model are as follows: train speed > 45 MPH, old driver, driver was in vehicle, main
track, did not stop, went around the gate, estimated vehicle speed > 25 MPH, middle driver,
adverse crossing surface, and truck. The top ten important feature indicators in the injured
model include driver was in vehicle, female driver, truck, main track, crossing without illu-
mination, unpaved highway, land with commercial power, went around the gate, adverse
crossing surface, and old driver. The corresponding top ten important feature indicators in
the uninjured model are driver was in vehicle, truck, train speed > 45 MPH, went around
the gate, old driver, main track, female driver, dark, crossing without illumination, and did
not stop.

Comparing the important features between the killed and injured models, it can be
seen that some important features overlapped, such as old driver, driver was in vehicle,
main track, went around the gate, adverse crossing surface, and truck. However, there
are also some differences, such as train speed > 45 MPH, did not stop, middle driver, and
estimated vehicle speed > 25 MPH, which were identified as important features in the killed
model but not in the injured model, while female driver, crossing without illumination,
unpaved highway, and land with commercial power were significant features in the injured
model but not in the killed model. The results also indicated that the XGBoost model could
distinguish between different severity levels.

The feature train speed > 45 MPH stood out in the killed model, which aligns with the
findings of previous studies emphasizing high train speed as a critical factor in the severity
of accidents at HRGCs [24]. This relationship is intuitive, as higher speeds reduce the time
available for a driver to react to an approaching train and come to a stop once a hazard is
noticed. For the injured model, the presence of female driver is notable, which suggests
gender-specific differences in driving behavior or risk exposure at crossings. This shows
that there are inherent differences in how different genders perceive and react to railway
crossing risks. The existing literature frequently presents opposite findings regarding the
role of gender as a risk factor in vehicular accidents, with some studies suggesting that
although males tend to be involved in more accidents, females may be at a higher risk due
to their vulnerability [25].

The driver was in vehicle indicator appeared as a significant feature in the XGBoost
models across all severity levels of HRGC crashes. This variable’s consistent significance
suggests that the presence of the driver during the accident plays a crucial role in the
injury severity outcome. One possible explanation is that any impact can directly affect the
driver’s safety due to their vulnerability to injury or fatality during the crash. Furthermore,
the implication of driver was in vehicle as a significant feature can also reflect the scenario
where a driver might not have the situational awareness or the reaction time necessary to
respond effectively to an approaching train [26]. This could be due to various factors such as
distractions, impairment, or other cognitive limitations. The literature supports the notion
that driver behavior is critical in road safety outcomes [7,25]. A study by Ref. [27] of drivers’
response to railroad crossings indicated that driver performance, including their ability
to detect an oncoming train and respond appropriately, was a decisive factor in accident
occurrences and injury severity outcomes. Therefore, measures such as increased visibility
and warning signals at HRGCs can help improve the driver’s situational awareness and
response. Additionally, automated systems that can take control to prevent a vehicle from
stalling or staying on the tracks when a train is approaching could also be effective.

The old driver indicator was also significant across all models, which may be indicative
of the declined perception and reaction ability that accompany older drivers, as documented
by Ref. [25]. These declines can impair older drivers’ ability to perceive and respond in a
timely manner to unexpected or complex driving situations, such as those encountered
at HRGCs. This suggests that special interventions at crossings are needed to account for
the age-related decline in driving performance. Potential measures may include extending
train warning times, launching educational campaigns targeted at older drivers to raise
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awareness about the specific risks at HRGCs, and implementing engineering controls like
grade separation to obviate direct crossings.

Intriguingly, unpaved highway and crossing without illumination emerged as signifi-
cant factors in the injured model but not in the killed model. This could imply that while
these factors contribute to the likelihood of an accident, they may not necessarily increase
its fatality rate, possibly due to a compensation mechanism and lower speeds typically
associated with such conditions. The literature corroborates that environmental conditions
markedly influence driver behavior, which in turn affects the accident severity [28].

Features such as went around the gate and did not stop were indicative of driver
non-compliance with traffic control devices, a well-documented issue in traffic safety
research [29]. These findings suggest that educational and enforcement measures targeting
driver behavior could be instrumental in reducing both the frequency and severity of
highway–rail crossing accidents. The presence of adverse crossing surfaces for both killed
and injured outcomes pointed to infrastructure issues that complicate navigation over
crossings and potentially contribute to accidents. This is supported by studies that have
identified poor crossing surface conditions as a hazard for road users [30]. Lastly, truck
being a common feature underscores the important role of vehicle type in HRGC accidents.
It might be that the proficiency of truck drivers, who generally follow safety regulations
and are careful at rail crossings, leads to the reduced severity of incidents observed [9].
Furthermore, trucks and other larger cars may offer their occupants superior protection,
reducing the risk of injuries or fatalities at crossings.

More detailed information regarding the relationships between determinants and in-
jury severity outcomes can be extracted by investigating the dependency plots of the SHAP
values. It can not only be used to understand the overall importance of a feature, but also
to explore the detailed distribution and the context-dependent nature of feature influences
on model predictions, thereby ensuring more reliable predictions and informing potential
interventions based on the predictive factors. Figure 4 displays SHAP dependency plots for
the three most influential features in killed, injured, and uninjured crashes, respectively. If
the SHAP values are highly concentrated within a certain range, this may indicate that the
model has a high sensitivity to the feature values within that range. In contrast, a sparse
distribution of SHAP values across a wide range of variables may suggest that there is a
significant variation in the model’s predictive influence for this feature. For example, the
driver was in vehicle indicator exhibited a very consistent and concentrated distribution
of SHAP values across three datasets representing varying levels of injury severity. This
observation implies that the influence of this particular feature on the model’s prediction is
rather stable and reliable across different injury severity outcomes.

For killed crashes, the partial levitation observed in Figure 4a suggests that there
were specific values of train speed > 45 MPH that led to higher SHAP values, indicating
a stronger impact on the prediction outcome. In addition, the SHAP values for certain
values of the old driver fluctuate throughout the subplot; this could indicate the presence
of interactions with other features, such as time of day (which might affect visibility) or
the type of area (urban vs. rural, which impacts driving speed and emergency medical
service response time). For injured crashes, a sparse distribution of SHAP values can
also be observed in Figure 4b for female driver and truck, reflecting the variability in
the impact of these factors. Notably, the partial levitation can only be seen for the truck
indicator in injured crashes, suggesting that this feature may have a heterogeneous impact
on predicting uninjured outcomes. Meanwhile, the train speed > 45 MPH indicator was
negatively associated with no injuries in Figure 4c, implying that higher train speeds were
less likely to be related to no-injury scenarios.
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5. Conclusions

Leveraging the crash data from the Federal Railroad Administration for the years
2020–2021, this study provides a predictive and statistical analysis of undivided two-way
traffic HRGC crashes by utilizing a robust machine learning approach, the XGBoost algo-
rithm, along with the interpretative power of SHAP values to investigate the dominant fac-
tors affecting injury severity outcomes. Multiple variables, including crash characteristics,
crossing characteristics, vehicle characteristics, driver characteristics, and environmental
characteristics, were analyzed to ascertain their impacts on three injury severity outcomes:
killed, injured, and uninjured.

The findings underscore the complex interplay between various influencing factors
and their respective contributions to the severity of injuries sustained in HRGC accidents.
The relationship between each explanatory factor and the injury severity was first examined
using the χ2 test, and only the factors with a significant association with injury severities
were chosen to predict the outcomes. The XGBoost model, optimized through hyperpa-
rameter tuning and validated by five-fold cross-validation, demonstrated proficiency in
distinguishing different injury severities, particularly in predicting fatal outcomes, with
a highest degree of accuracy of 93.36% and an AUC of 0.79. The model’s performance
in predicting the injured and uninjured datasets was less impressive, with accuracy val-
ues of 74.75% and 69.10%, respectively. Furthermore, the top ten most important feature
indicators for the killed, injured, and uninjured datasets were identified. It was found
that some of them overlapped, such as old driver, driver was in vehicle, main track, went
around the gate, adverse crossing surface, and truck, while there were also some differences.
The diverse features highlight the nuanced nature of risk factors across different severity
levels. The application of SHAP values further enhanced the interpretability of XGBoost
models, offering a granular perspective on the influence of individual features. The detailed
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distributions of the respective top three significant variables that emerged from the analysis
were presented, including train speed > 45 MPH, driver was in vehicle, truck, old driver,
and female driver.

The generated insights could provide a compelling foundation for policymakers and
practitioners to formulate strategic interventions that can significantly enhance safety at
HRGCs. For example, the driver was in vehicle indicator indicates a potential direction
for intervention, suggesting that the presence and attentiveness of the driver are vital.
The implementation of more effective warning systems, including advanced detection
and communication technologies, can provide drivers with timely and clear warnings,
thereby reducing the likelihood of severe crashes. For older drivers, who emerged as
a vulnerable group, extended warning times and targeted awareness campaigns could
be beneficial. Additionally, driver education programs tailored to improve awareness of
HRGC risks, combined with strategic enforcement campaigns, can mitigate risk behaviors
such as bypassing active warnings at crossings.

This study illustrates the potential of machine learning techniques in enhancing our
understanding of traffic safety and strengthening traffic risk management practices. Despite
these efforts, the study is not without limitations. One limitation is that the scope of the
data is confined to two years of HRGC incidents. In the context of crash injury severity
analysis, the impact of certain factors can vary at different times of the day, on certain
days of the week, or throughout the seasons [25]. Meanwhile, examining the fluctuations
over time can underscore the significance of driver behavior patterns. Elements like the
driver’s age, levels of distraction, and physical impairment can have varying impacts
on the severity of injuries. As accident dynamics and transportation practices evolve,
continuous data collection is paramount, and the model would benefit from using an
expanded temporal dataset to devise more targeted and effective safety strategies [25].
Additionally, while the XGBoost model illustrates solid predictive performance, the nature
of machine learning algorithms can obscure the causal relationship between variables
and outcomes. Therefore, the machine learning method could be coupled with statistical
models to guide the implementation of safety measures in the future. This integration
could enhance predictive accuracy and uncover complex, nonlinear relationships between
variables that affect crash injury severities [20]. By employing sensors, IoT devices, and
data analytics platforms, future studies could also integrate advanced analytics with
real-time road infrastructure monitoring to predict and prevent possible conflict points
between vehicular traffic and trains by adjusting signaling systems and improving the
design of crossings.
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