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A B S T R A C T   

The uncertainties associated with the coronavirus disease 2019 (COVID-19) pandemic significantly reduced the 
accuracy of traditional econometric models in forecasting tourism demand, as the relationship between tourism 
demand and its determinants during the crisis changes over time. To address these inaccuracies, we apply three 
Factor mixed data sampling (MIDAS) models with different time-varying parameter (TVP) settings: Factor TVP- 
MIDAS, Factor MIDAS with stochastic volatility (Factor MIDAS-SV), and Factor TVP-MIDAS-SV. We examine the 
dynamic relationship between tourism demand and its influencing factors, capture the uncertainty and volatility 
in the data, and provide short-term forecasting and nowcasting. We expose the Factor MIDAS models with TVP 
specifications to different combinations of determinants to examine their performance. The empirical results 
show that the Factor MIDAS models with TVP settings performed better than the Factor MIDAS model in the 
short-term forecasting and nowcasting of tourism demand during COVID-19. The results also suggest that high- 
frequency data complement these Factor MIDAS models with TVP settings in improving the forecasting and 
nowcasting accuracy during crises.   

1. Introduction 

The unexpected coronavirus disease (COVID-19) outbreak in late 
2019 adversely affected human health and global economy. The econ
omy has now largely recovered from the initial shocks caused by travel 
restrictions and other public health measures taken to deal with the 
pandemic. The World Bank (2022) reported that global gross domestic 
product (GDP) fell by 5.7% in 2020 compared to 2019 due to the impact 
of the pandemic, but rose again in 2021. However, recurring outbreaks 
of COVID-19 continue to adversely affect the tourism industry, which is 
highly sensitive to crises. The United Nations World Tourism Organi
zation (UNWTO, 2022) reported that international tourist arrivals fell by 
73% in 2020 compared to 2019 and recovered only by 4% in 2021 
compared to 2020. Furthermore, the number of international tourist 
arrivals in 2022 was 63% of that in 2019 (UNWTO, 2023). This partial 
recovery led to more challenges, such as labor shortages and supply 
constraints, introducing further uncertainty. To sustain this recovery, 

policy and business decisions must be made based on timely short-term 
tourism forecasting and nowcasting (Foroni et al., 2022). 

The high degree of uncertainty associated with crises makes it 
difficult to accurate predicting their impact. Simple time-series models 
work well during normal periods but fail to capture the effects of un
expected crises as they require rich and readily available time-series 
data without drastic fluctuations to produce reliable forecasts and 
nowcasts (Larson Sinclair, 2022). Scholars have developed various 
econometric models with nonlinear specifications to attempt to capture 
the structural changes caused by unprecedented events, including 
Markov-switching (Guérin and Marcellino, 2013), threshold (Ferrara 
et al., 2015), and time-varying parameter (TVP; Page et al., 2012) 
models. To address the issue of parameter instability in the context of the 
COVID-19 crisis, vector autoregressive (VAR) frameworks have been 
proposed that enable models with TVPs (Götz and Hauzenberger, 2021) 
or relax the standard distribution of the error variance (Carriero et al., 
2022). These specifications can improve parameter stability and forecast 

☆ We gratefully acknowledge the constructive comments and suggestions from the editor and two anonymous reviews. 
* Corresponding author. School of Economics, University of Nottingham Ningbo, 330200, No.199 Taikang East Road, Ningbo, China. 

E-mail addresses: curley.liu@polyu.edu.hk (Y. Liu), long.wen@nottingham.edu.cn (L. Wen), hanliu@jlu.edu.cn (H. Liu), haiyan.song@polyu.edu.hk (H. Song).  

Contents lists available at ScienceDirect 

Economic Modelling 

journal homepage: www.journals.elsevier.com/economic-modelling 

https://doi.org/10.1016/j.econmod.2024.106706 
Received 16 December 2022; Received in revised form 27 February 2024; Accepted 28 February 2024   

https://data.mendeley.com/datasets/yn5f92xzj3/1
https://data.mendeley.com/datasets/yn5f92xzj3/1
https://data.mendeley.com/datasets/yn5f92xzj3/1
https://data.mendeley.com/datasets/yn5f92xzj3/1
mailto:curley.liu@polyu.edu.hk
mailto:long.wen@nottingham.edu.cn
mailto:hanliu@jlu.edu.cn
mailto:haiyan.song@polyu.edu.hk
www.sciencedirect.com/science/journal/02649993
https://www.journals.elsevier.com/economic-modelling
https://doi.org/10.1016/j.econmod.2024.106706
https://doi.org/10.1016/j.econmod.2024.106706
https://doi.org/10.1016/j.econmod.2024.106706
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econmod.2024.106706&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Economic Modelling 135 (2024) 106706

2

accuracy. 
Long delays in the release of official statistics are common, so the 

availability of current and complete data for real-time forecasting and 
nowcasting presents another challenge (Ferrara and Sheng, 2022). The 
issue of low frequency of official statistics has been addressed through 
short-term forecasting exercises using weekly labor market statistics, 
daily online search queries, and even hourly electricity consumption 
data (Jardet and Meunier, 2022; Schaer et al., 2019). Studies have 
shown that analyzing these and other types of high-frequency data can 
help in tracking economic changes during crises (Chen et al., 2020; 
Coibion et al., 2020; Jardet and Meunier, 2022). Yang et al. (2022) 
showed that daily search query data can help improve the accuracy of 
tourism demand forecasting for countries with relatively high numbers 
of confirmed COVID-19 cases, are highly dependent on inbound tourism, 
and/or have no land borders. 

Recent studies that have estimated and forecasted the impact of the 
COVID-19 pandemic have focused on key macroeconomic indicators 
such as GDP (Foroni et al., 2022), employment rate (Coibion et al., 
2020), and inflation (Bobeica and Hartwig, 2023), along with tourism 
demand indicators such as tourist arrivals (Liu et al., 2021) and hotel 
room demand (Zhang and Lu, 2022). However, few studies have 
examined real-time tourism demand forecasting and nowcasting during 
the pandemic, and the selected models do not consider the structural 
changes caused by the pandemic (Wu et al., 2022; Yang et al., 2022). 
The impact of the COVID-19 pandemic on tourism demand has been 
assessed through scenario analyses, which does not allow for accurate 
real-time estimates (Liu et al., 2021; Qiu et al., 2021; Zhang et al., 2021). 

To address this research gap, we investigate potential methods for 
providing accurate short-term forecasting and real-time nowcasting of 
tourism recovery while considering the impact of the COVID-19 crisis. 
We combine low-frequency statistics from official sources with daily 
online search query data as explanatory variables in our forecasting 
models. We consider three aspects in the process of model specification: 
(1) it is necessary to reduce the dimensionality of the data to minimize 
information loss when adding large quantities of high-frequency data 
econometric models (Nakajima and Sueishi, 2022); (2) we should 
consider the mismatch in data frequency when using both monthly and 
daily data to forecast monthly tourism demand; and (3) the specified 
model should be able to capture the structural changes induced by the 
COVID-19 pandemic. 

We use a two-step modeling approach to address these requirements. 
First, we use the factor model proposed by Stock and Watson (2002) to 
reduce dimensionality by extracting common factors from the 
high-frequency data. Second, we propose three mixed data sampling 
(MIDAS) models using different TVP settings, namely, TVP-MIDAS, 
MIDAS with stochastic volatility (MIDAS-SV), and TVP-MIDAS-SV, to 
examine the short-term forecasting and nowcasting performance of 
tourism demand during COVID-19. The proposed models can simulta
neously handle different frequencies of the dependent and independent 
variables and capture possible structural breaks and uncertainties by 
allowing parameters and the error variance to change over time. Bau
meister and Guérin (2021) and Foroni et al. (2022) used a basic 
MIDAS-type model to generate nowcasts of macroeconomic variables 
during the COVID-19 pandemic and adjust forecasts based on the pat
terns of identified impact of past crises (e.g., financial crises). However, 
these basic models cannot monitor pandemic-induced structural 
changes, and no study in the COVID-19 context has considered the 
nowcasting performance of the MIDAS model involving TVPs. Our study 
is, therefore, the first to apply Factor MIDAS models with different TVP 
specifications to predict post-COVID-19 pandemic tourism demand. The 
different time-varying specifications allow for variation in the intercept 
and parameters, as well as error variance over time. These features are 
expected to minimize the potential loss of forecasting accuracy during 
crises. 

Schumacher (2014) used the particle filtering algorithm to estimate 
the TVP-MIDAS model. However, as the particle filtering procedure only 

occurs in one iteration, the convergence of the model is vulnerable to 
initial values. In contrast, our application of the improved iterated 
filtering (IF2) algorithm proposed by Ionides et al. (2015) to estimate 
the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV 
models represents a novel approach and has a strong theoretical justi
fication for model convergence to maximum likelihood estimation. In 
addition to generating short-term forecasts and nowcasts of tourism 
recovery, we assess whether (1) our proposed Factor MIDAS models 
with TVP settings can improve the accuracy of short-term forecasting 
and nowcasting of tourism recovery amid the ongoing destabilization 
resulting from the COVID-19 pandemic-related mobility restrictions and 
public health measures; (2) the information sets generate additional 
marginal gains to improve nowcasting accuracy (and if so, when); and 
(3) the model can capture the sudden pandemic-induced decline, and if 
so, whether the TVP channel or the time-varying error variance channel 
contributes more to capturing this impact. 

We make the following contributions to the literature. First, we 
overcome the limitations of traditional constant-parameter econometric 
models using three Factor MIDAS models with distinct TVP settings. 
These new models use high-frequency search query data and capture the 
dynamic relationships between dependent and independent variables 
and uncertainty in the data. Second, we evaluate whether these models 
can provide marginal advantages in forecasting and nowcasting tourism 
recovery in the context of the COVID-19 pandemic. We find a comple
mentary relationship between the Factor TVP-MIDAS model and high- 
frequency data, as these data improve both the forecasting and now
casting performance of the model. Third, we examine the potential 
reasons for the probable superiority of the Factor MIDAS models with 
TVP over the Factor MIDAS model in nowcasting. We find that the 
Factor MIDAS-SV and Factor TVP-MIDAS-SV models can rapidly and 
accurately capture the impact of reoccurring outbreaks of the COVID-19 
on monthly tourist arrivals using only the daily indexes included as the 
determining factor. This provides useful information for destination 
stakeholders to develop the most effective policies for reducing potential 
economic losses during the crisis. 

The rest of this study is presented as follows. In Section 2, we review 
the literature on tourism demand forecasting and nowcasting during 
crises. Section 3 describes the methods and data used in this study. 
Section 4 discusses the forecasting and nowcasting strategies and 
empirical results. In Section 5, we discuss the limitations of the study 
and potential areas for future research. 

2. Literature review 

2.1. Forecasting and nowcasting during crises 

Econometric models dominate the tourism forecasting literature and 
are typically specified as multiple-equation or single-equation models 
(Bańbura et al., 2013). Multiple-equation models, such as vector 
autoregression (VAR) models (Kuzin et al., 2011) and simultaneous 
equations models (Li et al., 2006), forecast the co-movements of the 
dependent and independent variables. Single-equation models, such as 
the bridge equation model (Andreini et al., 2023) and MIDAS (Foroni 
and Marcellino, 2014), are used to analyze dependent variables. As both 
multiple- and single-equation models depend on historical data for 
consistent model estimation (Huber et al., 2023), external shocks such as 
epidemics and natural disasters can lead to structural changes, resulting 
in accurate forecasts by models. Specifying a reliable model that can 
capture real-time unprecedented downturns in a crisis context is chal
lenging because the relationship between the dependent and indepen
dent variables, the size of the shocks, and the drivers of the crisis can 
differ and change over time (Foroni et al., 2022). 

Many recent studies have focused on developing new frameworks of 
VAR-type models with multiple equations to improve the reliability of 
short-term forecasts and nowcasts during the COVID-19 pandemic. For 
example, Schorfheide and Song (2021) and Lenza and Primiceri (2020) 
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suggested that one can improve the nowcasting performance of VAR 
models by considering the extreme data variations in the first half of 
2020 as possible outliers and mixed distribution of the model error 
variance or models with stochastic volatility to reduce the impact of 
structural instability on nowcasting accuracy. Similarly, Bobeica and 
Hartwig (2023) and Carriero et al. (2022) found that the VAR models’ 
forecasting properties could be enhanced by relaxing the assumption of 
the standard Gaussian distribution of model errors to Student’s t-dis
tribution during the pandemic. Götz and Hauzenberger (2021) used 
mixed-frequency VAR models involving TVPs to predict the unprece
dented decline in macroeconomic variables caused by the COVID-19 
pandemic. They found that including a few independent variables 
with similarly large deviations, the forecasting models could accurately 
capture the pandemic’s impact. 

MIDAS-type models have also recently been used to generate fore
casts and nowcasts during the COVID-19 pandemic. These models can 
use high-frequency independent variables to explain low-frequency 
dependent variables without aggregation procedure and are therefore 
applicable to short-term forecasting and nowcasting research in the 
pandemic context. For example, Foroni et al. (2022) used MIDAS and 
unrestricted MIDAS (UMIDAS) models to generate forecasts and now
casts of the GDP of the US and other G7 countries during the pandemic 
and the recovery period. To account for the lack of historical data during 
the pandemic, which forecasting models require, they adjusted the 
forecasts and nowcasts based on the recovery patterns identified during 
the 2007–2008 global financial crisis. Similarly, Baumeister and Guérin 
(2021) used MIDAS and UMIDAS models to assess whether an indicator 
based on a set of global economic variables could help improve global 
GDP growth forecasts and nowcasts during normal times and the 
pandemic. However, no studies have tested the forecasting and now
casting performance of a TVP-MIDAS model in this context. 

2.2. Tourism demand forecasting amid the COVID-19 pandemic 

Tourism demand is particularly susceptible to the effects of crises 
such as natural disasters, terrorism, political turmoil, and epidemics 
because tourists are risk-averse, and any perceived threat to their health 
and safety can affect their travel decisions. The resulting decline in 
tourist arrivals can have economic consequences for destinations and 
the tourism industry in general (Speakman and Sharpley, 2012). The 
COVID-19 pandemic has had a major impact on the tourism industry 
since late 2019. The pandemic led to a severe economic and social crisis, 
and a series of travel bans and lockdown measures were introduced in 
various countries to prevent the spread of COVID-19 (Qiu et al., 2021). 
The pandemic’s impact on tourism demand has been specifically 
assessed in the literature. For example, Gössling et al. (2021) compared 
the pandemic to previous crises, such as the outbreak of severe acute 
respiratory syndrome, after examining its effects on global tourism 
through the end of March 2020. They argued that COVID-19-related 
travel restrictions have caused the greatest damage to global tourism 
since World War II. Hao et al. (2020) developed a COVID-19 manage
ment framework based on their analysis of the pandemic’s impact on the 
Chinese hotel industry. They suggested that various aspects of the in
dustry were permanently affected, such as investment preferences and 
product design. Liew (2022) examined the extent of the pandemic’s 
effects on the share prices of Booking.com, Expedia Group, and Trip. 
com, the three largest online tourism companies, and found that the 
overall tourism industry performance declined rapidly during the 
pandemic. Polyzos et al. (2021) assessed the impact of the COVID-19 
outbreak on tourist arrivals from China to the US and Australia and 
identified its adverse effects and suggested it could take nearly a year for 
arrivals to return to prepandemic levels. 

The increased levels of uncertainty that arises during protracted 
crises such as the COVID-19 pandemic can drastically influence future 
behavior in the tourism industry. Therefore, forecasting tourism demand 
is even more important for policymakers during crises than in normal 

times (Liu et al., 2021). However, few studies have focused on fore
casting tourism demand recovery during the COVID-19 pandemic. 
Korinth (2022) used the autoregressive integrated moving average 
(ARIMA) model to forecast passenger air traffic and the share of 
Poland’s accommodation options used in the first quarter of 2020. The 
results showed that the pandemic-related travel restrictions and public 
health measures negatively and substantially affected Poland’s tourism 
industry. Using traditional time-series models such as autoregressive 
moving average (ARMA) and ARMA with exogenous variable models, 
Wickramasinghe and Ratnasiri (2021) demonstrated that forecast ac
curacy was improved by incorporating Google search data into forecasts 
of guest night stay by international tourist arrivals to Sri Lanka in the 
first quarter of 2020. Yang et al. (2022) used the least absolute shrinkage 
and selection operator method with a series of regressors to forecast 
daily tourism demand across 75 countries during the pandemic. They 
showed that Google search data could improve the accuracy of these 
forecasts in certain situations, such as for countries that depend heavily 
on inbound tourism or those with no land borders. 

There is scarce information on tourism during the pandemic; there
fore, recent studies have adopted judgmental two-stage adjustments 
(Kourentzes et al., 2021; Liu et al., 2021; Polyzos et al., 2021; Qiu et al., 
2021; Zhang et al., 2021) to assess the future improvement in tourism 
demand. First, ex ante baseline forecasts are generated based on 
appropriate models estimated based on precrisis data and judgmental 
approaches, such as scenario analyses and Delphi methods, which are 
then used to adjust these forecasts by considering different pandemic 
scenarios. However, judgmental adjustments can be problematic 
because of subjective assessments, which may introduce bias, human 
error, and lead to a lack of replicability. Although the aforementioned 
studies have considered several scenarios, most have focused on the 
long-term implications of the pandemic rather than short-term fore
casting and nowcasting, which are also crucial for the timely imple
mentation of crisis management plans. 

3. Methodology and data 

3.1. Model setup 

We apply three Factor MIDAS models with different TVP settings to 
address the issues of high dimensionality, frequency mismatch, and 
possible structural changes. Using high-frequency data to capture the 
impact of the COVID-19 pandemic, the models are expected to improve 
the accuracy of forecasting and nowcasting tourist arrivals during such 
crises. We take a two-step modeling approach to construct our Factor 
TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV models. First, 
the factor model extracts common factors from high-frequency data. We 
then introduce different TVP specifications into the Factor MIDAS model 
to build the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP- 
MIDAS-SV models and include the extracted factors as independent 
variables into the models. 

We sequentially introduce the Factor MIDAS, Factor TVP-MIDAS, 
Factor MIDAS-SV, and Factor TVP-MIDAS-SV models for a better un
derstanding of the model construction process. These models are built 
using a two-step method, in which we first introduce the factor model, 
which reduces the dimensionality of huge high-frequency time-series 
data by extracting a few common factors and is commonly used to 
forecast and construct leading factors (Forni et al., 2004). In specifying 
the factor model, {x(m)

i,tm , i= 1,…n, tm = 1,…,Tm} denotes a large set of 
high-frequency time series that correspond to the low-frequency 
dependent variable {yt , t = 1,…,T}, which is only observable every m 
period, where Tm = mT. For example, m = 3 if yt is a quarterly variable 
and x(m)

i,tm 
is a monthly variable. The specification of the factor model can 

be expressed as follows: 

x(m)

i,tm = λi1f (m)

1,tm + λi2f (m)

2,tm + … + λirf (m)
r,tm + ei,tm (1) 
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where λij is the factor loading and f (m)

j,tm 
is a common factor, with j = 1,…,

r. The idiosyncratic component ei,tm is the part of x(m)

i,tm 
not explained by 

the factors. The number of factors is determined by the information 
criterion ICp2 proposed by Bai and Ng (2002), and we use the static 
principal component analysis model introduced by Stock and Watson 
(2002) to estimate the factor model.  

(1) Factor MIDAS model 

The Factor MIDAS model proposed by Marcellino and Schumacher 
(2010) uses the MIDAS model to regress low-frequency dependent var
iables on extracted high-frequency common factors {f (m)

j,tm , j = 1, …, r}. 
The specification of the Factor MIDAS model for forecasting yt+1 can be 
written as follows: 

yt+1 = c+
∑r

j=1
βjbj

(
Lm, θj

)
f (m)

j,t + εt (2)  

bj
(
Lm, θj

)
=

∑Kj

k=0
c
(
k, θj

)
Lm

k , c
(
k, θj

)
=

exp
(
θ1,jk + θ2,jk2

)

∑Kj

k=0
exp

(
θ1,jk + θ2,jk2

)
(3)  

where the polynomial bj(Lm, θj) =
∑Kj

k=0c(k, θj)Lm
k assigns weights to lags 

0 to K of the j-th high-frequency factor based on the exponential Almon 
specification, which is the most commonly used weighting scheme and 
highly flexible in generating different weight shapes (Ghysels et al., 
2007). Lm is the high-frequency lag operator, and Lm

k f (m)

j,t = f (m)

j,t− k/m. Kj is 
the maximum lag on the j-th high-frequency variable. εt represents the 
independent white noise processes with a mean of zero and variance 
denoted by σ2

ε . The nonlinear least squares (NLS) method is used to es
timate the Factor MIDAS model. 

The Factor MIDAS model can be further extended to include autor
egressive terms and variables measured at a frequency identical to that 

of the independent variable, which can be expressed as follows: 

yt+1 = c+ γyt +
∑P

p=1
αpxp,t +

∑r

j=1
βjbj

(
Lm, θj

)
f (m)

j,t + εt (4) 

The AR coefficient γ and the coefficients αp of the low-frequency 
variables xp,t can be estimated alongside other coefficients using the 
NLS method.  

(2) Factor TVP-MIDAS model 

We include the extracted common factors {f (m)

i,t , j= 1,…, r} into the 
TVP-MIDAS model proposed by Schumacher (2014) to specify the Fac
tor TVP-MIDAS model. The specification of this model with one lag of 
yt+1 and low-frequency independent variables {xp,t , p= 1,…,P} for 
forecasting yt+1 can be written as follows: 

yt+1 = ct + γtyt +
∑P

p=1
αp,txp,t +

∑r

j=1
βj,tbj,t

(
Lm, θj,t

)
f (m)

j,t + εt (5)  

bj,t
(
Lm, θj,t

)
=

∑Kj

k=0
c
(
k, θj,t

)
Lm

k , c
(
k, θj,t

)
=

exp
(
θ1,j,tk + θ2,j,tk2

)

∑Kj

k=0
exp

(
θ1,j,tk + θ2,j,tk2

)
(6)  

ct = ct− 1 + εc,t (7)  

γt = γt− 1 + εγ,t (8)  

αp,t =αp,t− 1 + εαp ,t (9)  

βj,t = βj,t− 1 + εβj ,t (10)  

θ1,j,t = θ1,j,t− 1 + ε1,j,t, θ2,j,t = θ2,j,t− 1 + ε2,j,t (11)  

Unlike their counterparts in the Factor MIDAS model, parameters ct , γt, 
αp,t, βj,t , θ1,j,t, and θ2,j,t of the Factor TVP-MIDAS model follow the 
random-walk process, which is commonly used in the TVP literature, 
especially when multiple parameters are allowed to change over time 
(Primiceri, 2005). εt , εγ,t , εαp ,t, εβj ,t , ε1,j,t , and ε2,j,t are independent white 
noise processes, which have a mean of zero and variances of σ2

ε , σ2
c , σ2

γ , 
σ2

αp
, σ2

βj
, σ2

ε1,j
, and σ2

ε2,j
, respectively. To ensure the stability of the 

weighting scheme, we impose some restrictions on θ2,j,t (Lütkepohl, 
1981) and create a newly defined variable θ∗2,j,t by setting θ2,j,t = −

exp(θ∗2,j,t) rather than allowing θ2,j,t to evolve freely as a random-walk 
process. Equations (6) and (11) then become Equations (12) and (13), 
respectively. 

bj,t
(
Lm, θj,t

)
=

∑Kj

k=0
c
(
k, θj,t

)
Lm

k , c
(
k, θj,t

)
=

exp
(

θ1,j,tk − exp
(

θ∗
2,j,t

)
k2
)

∑Kj

k=0
exp

(
θ1,j,tk − exp

(
θ∗

2,j,t

)
k2
)

(12)  

θ1,j,t = θ1,j,t− 1 + ε1,j,t, θ∗
2,j,t = θ∗

2,j,t− 1 + ε2,j,t (13) 

The Factor TVP-MIDAS model can be represented in a nonlinear 
state–space form for estimation: 

yt+1 =ΦtFt(λt) + εt, εt～N
(
0, σ2

ε
)

(14)  

[
λt
Φt

]

=

[
λt− 1
Φt− 1

]

+ wt,wt～N(0,W) (15)  

where Equation (14) is the measurement equation and Equation (15) is 
the transition equation. All states are classified into Φt and λt based on 
the nonlinearity of the system to convert the Factor TVP-MIDAS model 

Table 1 
IF2 algorithm pseudocode.  

Input 

Simulator for p(S0|θ)
Simulator for p(St |St− 1,θ), t in 1 : T 
Evaluator for p(Dt |St ,θ), t in 1 : T 
Data, D∗

1:T 
Number of iterations, M 
Number of particles, J 
Initial parameter sample, {Φ0

j , j in 1 : J}
Perturbation sequence, σ1:M 

Procedure  
1 For m in 1 : M.  
2 ΦF,m

0,j ∼ N(Φm− 1
j , σm) for j in 1 : J.  

3 SF,m
0,j ∼ p(S0

⃒
⃒
⃒ΦF,m

0,j ) for j in 1 : J.  
4 For t in 1 : T.  
5 ΦP,m

t,j ∼ N(ΦF,m
t− 1 , σm) for j in 1 : J.  

6 SP,m
t,j ∼ p(St

⃒
⃒
⃒SF,m

t− 1,j,ΦP,m
t,j ) for j in 1 : J.  

7 wm
t,j = p(D∗

t

⃒
⃒
⃒SP,m

t,j ,ΦP,m
t,j ) for j in 1 : J.  

8 Draw k1:J with p(kj = i) = wm
t,i/

∑J
u=1wm

t,u.  

9 ΦF,m
t,j = ΦP,m

t,kj 
and SF,m

t,j = SP,m
t,kj 

for j in 1 : J.  
10 End For.  
11 Set Φm

j = ΦF,m
T,j for j in 1 : J.  

12 End For. 

Notes: (1) The superscript F in ΦF,m
t,j and SF,m

t,j represents solutions to the filtering 

problem, and the superscript P in ΦP,m
t,j and SP,m

t,j represents solutions to the 
prediction problem; (2) the weights wm

t,j yield the likelihood of the designated 
data D∗

t .  
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into a state–space form. Specifically, the vector λt = (θ1,1,t ,…, θ1,r,t , θ∗2,1,t ,
…, θ∗2,r,t) includes all nonlinear states not amenable to Kalman filtering, 
while the vector Φt = (ct , γt ,α1,t ,…, αP,t , β1,t ,…, βr,t) contains all linear 
states. 

For Equations (14) and (15), Ft(λt), wt and W are defined as: 

Ft(λt)
′
=
(

1 yt x1,t … xP,t b1,t
(
Lm, θ1,t

)
f (m)

1,t … br,t
(
Lm, θr,t

)
f (m)
r,t

)
(16)   

wt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1,1,t
⋮

ε1,r,t
ε2,1,t

⋮
ε2,r,t
ct
εγt

εα1,t

⋮
εαP,t

εβ1,t

⋮
εβr,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,W

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
ε1,1,t

⋯ 0 0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 ⋮ σ2

ε1,r,t
0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0

0 0 0 σ2
ε2,1,t

⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 0 0 ⋮ σ2

ε2,r,t
0 0 0 ⋯ 0 0 ⋯ 0

0 0 0 0 ⋮ 0 σ2
ct

0 0 ⋯ 0 0 ⋯ 0
0 0 0 0 ⋮ 0 0 σ2

γt
0 ⋯ 0 0 ⋯ 0

0 0 0 0 ⋮ 0 0 0 σ2
α1,t

⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮
0 0 0 0 ⋮ 0 0 0 0 ⋮ σ2

αP,t
0 ⋯ 0

0 0 0 0 ⋮ 0 0 0 0 ⋮ 0 σ2
β1,t

⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ σ2

βr,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17)    

(3) Factor MIDAS-SV model 

We incorporate stochastic volatility into the MIDAS model to 
develop the MIDAS-SV model. We allow the error variance of the MIDAS 
model to change over time using an AR(1) process (Götz and Hau
zenberger, 2021). Subsequently, we integrate the derived common 
factors {f (m)

j,tm , j= 1,…, r} into the MIDAS-SV model to define the Factor 
MIDAS-SV model. The model specification for the Factor MIDAS-SV 
model, which includes one lag of yt+1 and low-frequency independent 
variables {xp,t , p= 1,…,P} to forecast yt+1, can be expressed as follows: 

yt+1 = c + γyt +
∑P

p=1
αpxp,t +

∑r

j=1
βjbj

(
Lm, θj

)
f (m)

j,t +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp (ht)

√
εt (18)  

bj
(
Lm, θj

)
=

∑Kj

k=0
c
(
k, θj

)
Lm

k , c
(
k, θj

)
=

exp
(

θ1,jk − exp
(

θ∗
2,j

)
k2
)

∑Kj

k=0
exp

(
θ1,jk − exp

(
θ∗

2,j

)
k2
) (19)  

ht = ρht− 1 + εh,t, |ρ|< 1 (20)  

where εt represents a white noise process, which have a mean of zero 
and a variance of one. ht represents the stochastic volatility estimate and 
follows a stationary AR(1) specification. εh,t is an independent white 
noise process whose associated variance σ2

h follows an inverse gamma 
distribution, denoted as σ2

h～IG(vh, Vh). The initial values of the pa
rameters associated with stochastic volatility are selected based on Götz 
and Hauzenberger (2021). 

The following state–space form can be used to estimate the Factor 
MIDAS-SV model: 

yt+1 =ΦFt(λ)+ vt, vt ∼ N(0,Vt(ht)) (21)  

ht = ρht− 1 + εh,t, |ρ|< 1 (22)  

where λ = (θ1,1,…, θ1,r, θ∗2,1,…, θ∗2,r)
′, Ft(λ)′ = (1 yt x1,t⋯xP,t b1(Lm,

θ1)f (m)

1,t ⋯br(Lm, θr)f (m)
r,t ), Φ = (γ, α1,…, αP, β1,…, βr)

′, vt =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp (ht)εt

√
, 

and Vt(ht) = exp(ht)σ2
ε .  

(4) Factor TVP-MIDAS-SV model 

We develop the Factor TVP-MIDAS-SV model by introducing sto
chastic volatility into the TVP-MIDAS model proposed by Schumacher 
(2014) and incorporating the obtained high-frequency common factors 
{f (m)

j,tm , j= 1,…, r} as independent variables. We consider two distinct 
channels of time variation to capture potential structural breaks in 
tourism demand and the uncertainties evolving from the COVID-19 
pandemic. The first channel allows parameters to vary over time, 
including intercepts, coefficients, and the shape parameters of the 
nonlinear lag polynomial of the high-frequency common factors. The 
second channel allows for variation in error variance. The specification 
of the Factor TVP-MIDAS-SV model for forecasting yt+1 can be written as 
follows: 

yt+1 = ct + γtyt +
∑P

p=1
αp,txp,t +

∑r

j=1
βj,tbj,t

(
Lm, θj,t

)
f (m)

j,t +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp (ht)

√
εt (23)  

bj,t
(
Lm, θj,t

)
=

∑Kj

k=0
c
(
k, θj,t

)
Lm

k , c
(
k, θj,t

)
=

exp
(

θ1,j,tk − exp
(

θ∗
2,j,t

)
k2
)

∑Kj

k=0
exp

(
θ1,j,tk − exp

(
θ∗

2,j,t

)
k2
)

(24)  

ct = ct− 1 + εc,t (25)  

γt = γt− 1 + εγ,t (26)  

αp,t =αp,t− 1 + εαp ,t (27)  

βj,t = βj,t− 1 + εβj ,t (28)  

θ1,j,t = θ1,j,t− 1 + ε1,j,t, θ∗
2,j,t = θ∗

2,j,t− 1 + ε2,j,t (29)  

ht = ρht− 1 + εh,t, |ρ|< 1 (30) 

The Factor TVP-MIDAS-SV model uses the same TVP setting as the 
Factor TVP-MIDAS model, while the stochastic volatility setting follows 
that of the MIDAS-SV model. The Factor TVP-MIDAS-SV model can be 
converted to the following state–space form: 

yt+1 =ΦtFt(λt) + vt, vt～N(0,Vt(ht)) (31)  

⎡

⎣
λt
Φt
ht

⎤

⎦ =

⎡

⎣
λt− 1
Φt− 1
ρht− 1

⎤

⎦+

[
wt
εh

]

,wt ∼ N

⎛

⎝0,W

⎞

⎠, εh ∼ N
(
0, σ2

h

)
(32) 
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where the states λt and Φt are defined as λt =

(θ1,1,t ,…, θ1,r,t , θ∗2,1,t ,…, θ∗2,r,t)
′ and Φt = (ct , γt , α1,t ,…, αP,t, β1,t ,…, βr,t)

′, 

Ft(λt)
′
= (1 yt x1,t⋯xPs ,t b1,t(Lm, θt)f (m)

1,t ⋯br,t(Lm, θt)f (m)
r,t ), vt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp (ht)

√
εt, Vt(ht) = exp (ht)σ2

ε , and wt and W are defined as 

wt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1,1,t
⋮

ε1,r,t
ε2,1,t

⋮
ε2,r,t
ct
εγt

εα1,t

⋮
εαP,t

εβ1,t

⋮
εβr,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,W

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
ε1,1,t

⋯ 0 0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 ⋮ σ2

ε1,r,t
0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0

0 0 0 σ2
ε2,1,t

⋯ 0 0 0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 0 0 ⋮ σ2

ε2,r,t
0 0 0 ⋯ 0 0 ⋯ 0

0 0 0 0 ⋮ 0 σ2
ct

0 0 ⋯ 0 0 ⋯ 0
0 0 0 0 ⋮ 0 0 σ2

γt
0 ⋯ 0 0 ⋯ 0

0 0 0 0 ⋮ 0 0 0 σ2
α1,t

⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮
0 0 0 0 ⋮ 0 0 0 0 ⋮ σ2

αP,t
0 ⋯ 0

0 0 0 0 ⋮ 0 0 0 0 ⋮ 0 σ2
β1,t

⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0 ⋯ σ2

βr,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(33)  

3.2. Model estimation 

As the states θ1,j,t , θ∗2,j,t , and ht are nonlinear in the transition equation 
of the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV 
models, the standard Kalman filter cannot be used as it can only estimate 
linear models. Therefore, we use a particle filter, a sequential Monte 
Carlo method that simulates and mutates state (particle) samples ac
cording to the state–space dynamics in the model, to estimate the 
MIDAS-type models with nonlinear TVPs (Schumacher, 2014). 

We use the Factor TVP-MIDAS-SV model as a case study to illustrate 
the estimation process. If we denote all states ct , γt , αp,t , βj,t, θ1,j,t, θ∗2,j,t, 
and ht as St, designate data up to t as Dt = {Dt− 1,yt ,xt}, and denote the 
variances of the white noise processes εt, and unknown initial states S0 
as θ, then the particle filter sequentially produces new particles based on 
the transition densities p(St |St− 1, θ) in the prediction step. The particle 
filter also adjusts the particles’ weights using measurement density 
p(Dt |St ,θ), and the sample is updated in the filtering step. However, the 
time-invariant parameters represented by θ are often unknown and must 
be estimated. The particle filter method includes an additional artificial 
random-walk process for θ with small variances. With this added noise, 
the particles and their associate θt can be produced sequentially during 
each period. The resulting samples can then be used to infer the prop
erties of θ. However, this method involves only one iteration of the 

filtering procedure and its convergence property is not guaranteed. 
In contrast, the convergence of iterated filtering to the maximum 

likelihood estimation has been theoretically justified (Ionides et al., 
2011, 2015). Such filtering involves multiple repetitions of the particle 
filtering procedure, during which the intensity of the random pertur
bations of θ decreases toward zero and the parameters converge to 
maximum likelihood estimates. The IF2 proposed by Ionides et al. 
(2015) is considerably more effective than the single-iteration particle 
filter. We, therefore, use the IF2 algorithm in this study to estimate the 
Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV 
models. Table 1 shows the algorithm pseudocode for the model 
estimation. 

The T loop, spanning lines 4 through 10 in Table 1, constitutes a 
fundamental particle filter used to first obtain the maximum likelihood 
estimates of the TVPs θ and to address model parameter stochasticity. 
The particle filter is then repeated several times with decreasing 
random-walk intensities (σ1:M) through the M loop. The random-walk 
intensity, often called the temperature, decreases with successive 
filtering iterations according to a cooling schedule. Thus, σm becomes 
smaller as m increases. We focus on the initial value parameters, which 
represent the initial states in this study and are a subset of the time- 
invariant parameters of the Factor TVP-MIDAS model. Only the early 
time points contain information about the initial states; therefore, these 
parameters are usually estimated inconsistently with increasing length 
of the time series. Therefore, the IVPs are only perturbed at time zero. 
More details related to the iterated filtering method are given by Ionides 
et al. (2015). 

3.3. Data 

Fig. 1 shows the data obtained on monthly overnight tourist arrivals 
into Hainan province from the Wind database to measure demand for 
tourism (Yang et al., 2015; Zhang et al., 2017). Daily data are only 
available on the Baidu search engine from January 2011; therefore, the 
sample period is from January 2011 to December 2021. We convert the 
number of tourist arrivals into a natural logarithm using the model 
specifications used in earlier studies (Wen et al., 2021). Hainan province 
is a popular tourist destination in China, recording more than 87 million 
tourist arrivals in 2019, representing an annual growth rate of 9% 
(Hainan Tourism Bureau, 2020). The initial COVID-19 outbreak in 
December 2019 was detrimental to tourism demand. There were 64 
million tourist visits in 2020, down 23% drop from the previous year. 
The numbers gradually began to recover in February 2020; however, it 
was one of the first provinces to reopen for tourism during the pandemic. 
Tourist arrivals exceeded 81 million in 2021, almost returning to pre
pandemic levels. Although the unexpected reemergence of COVID-19 
later in the year resulted in another substantial drop in arrivals (Fig. 1). 

We use two types of data as the independent variables to model and 
forecast tourism demand recovery: monthly macroeconomic variables 
and daily search query data. First, economic theory suggests that a 
destination’s tourism demand is affected by its specific prices, prices in 
competing destinations (substitute prices), and the country of origin, or 
by the region’s tourism income (Song and Li, 2008; Song and Lin, 2010; 
Song et al., 2003, 2009). Therefore, we include the relative tourism 
price, PHainan, of Hainan province and the tourism income of source re
gions in mainland China (excluding Hainan), Y, as influencing factors in 
the model. We calculate PHainan based on the consumer price index in 
Hainan compared to that of China as a whole and express it as 
CPIHainan/CPIChina. GDP, which is often used to measure tourism income, 
is released quarterly with considerable time lags; therefore, we select 
monthly industrial value added as a proxy for GDP (Chatziantoniou 
et al., 2016). The substitute prices should be determined from the top 
five tourist destinations in mainland China. However, Hainan province’s 
particular climate and natural landscape offer tourists a unique tropical 
island experience in mainland China. Thus, it is difficult for Hainan 
province to identify substitute tourist destinations, so we omit substitute 
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prices (Li et al., 2017a). We include monthly time-varying seasonal 
dummies to capture seasonality (Shen et al., 2009; Zhang et al., 2021). 

Second, research has shown that relevant real-time data can be 

useful in modeling and forecasting tourism demand, particularly in a 
crisis context (Kourentzes et al., 2021). We therefore collect daily search 
query data related to tourism and the COVID-19 pandemic from Baidu, 
which we use in the modeling process to determine the most effective 
method for measuring the impact of the pandemic on tourism demand. 
Search queries are typically derived through intuition and domain 
knowledge (Li et al., 2017b; Yang et al., 2015). We follow other tourism 
demand forecasting studies to initially consider search queries related to 
lodging, dining, attractions, transportation, tours, and shopping as as
pects of tourism planning (Wen et al., 2021). We also consider 
pandemic-related queries, which reflect tourists’ perceived risk about a 
destination. We develop our search queries in Baidu as follows.  

(i) We define the categories of search queries related to aspects of 
tourism planning and the COVID-19 pandemic. Each category 
initially contains various selected search queries.  

(ii) We further expand the pool of queries by adding other queries 
strongly correlated with the initial queries using functions in the 
Baidu Index. We repeat this step until we reach convergence. 

(iii) The numbers of queries below a certain threshold are not re
ported on Baidu; therefore, we manually check the availability of 
each search. 

(iv) Finally, we select 90 Baidu search queries. Table A in the Ap
pendix presents the details. 

The large number of relevant search queries results in high dimen
sionality, hence daily data cannot be directly analyzed. Therefore, we 
use the factor model to reduce the dimensionality and extract infor
mation from the large volume of daily data. We finally construct two 
indexes: (1) a tourism index constructed from the search queries related 
to the six aspects of tourism planning mentioned earlier and (2) a 
COVID-19 Index constructed using information from two sources: the 
search queries related to the pandemic and China’s stringency index 
(collected from Our World Data (https://ourworldindata.org/coro 
navirus)), which represents the overall severity of China’s pandemic- 
related measures. Fig. 2 shows the relationships between the daily 
search query indexes and the log of monthly tourist arrivals. 

Fig. 2. Daily indexes and log of tourist arrivals.  

Fig. 1. Tourist arrivals (in logarithm form).  
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4. Empirical results 

Our empirical study focuses on forecasting and nowcasting tourism 
recovery during COVID-19 pandemic. We aim to test the feasibility of 
capturing the tourism recovery process after demand suddenly due to 
the pandemic using a time-varying, mixed-frequency model with 
various information sets. We chose Hainan province, one of China’s 
most popular tourist destinations, as the research context because do
mestic tourism resumed in this province soon after the pandemic, 
although COVID-19 continued to reemerge intermittently. 

4.1. Forecasting and nowcasting strategies 

We monitor the impact of the pandemic on real-time tourism de
mand during COVID-19 resurgence. We assess the one-step-ahead 
forecasting and nowcasting performance of the Factor TVP-MIDAS 
model. One-step-ahead short-term forecasting involves analyzing data 
for the independent variables available at the end of the month to pre
dict the dependent variable for the following month (Baffigi et al., 
2004). In contrast, nowcasting involves predicting the current month’s 
dependent variable using the real-time high-frequency variables of the 
same month. The nowcasts are continuously updated with data on the 
high-frequency independent variables as they become available 
(Bańbura et al., 2011). 

We use data from January 2011 (2011M1) to December 2020 
(2020M12) for the model estimates and that from January 2021 
(2021M1) to December 2021 (2021M12) to evaluate the one-step-ahead 
forecasting and nowcasting performance of the selected models. Using 
an expanding window, we create one-step-ahead forecasts and now
casts. In the forecasting process, we use the independent variables up to 
month t − 1 and the dependent variables up to month t for model esti
mation. Using data on the dependent variables at time t, we generate the 
one-step-ahead forecasts for month t+ 1. In the nowcasting process, we 
use the information available at the beginning of month t+ 1 and then 
re-estimate the model to update the same month’s nowcasts when new 
daily data become available. As the search query data are updated every 
day, we repeat this process for each day of the month. 

We use three common forecast error measures to evaluate the ac
curacy of model forecasts and nowcasts: the mean absolute percentage 
error (MAPE); the root mean square error (RMSE), based on the growth 
rate; and the mean absolute scaled error (MASE). These can be expressed 
as follows: 

MAPE=
1
N

∑N

t=1

⃒
⃒
⃒
⃒
ŷt − yt

yt

⃒
⃒
⃒
⃒ (34)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

t=1
(Δŷt − Δyt)

2

√
√
√
√ (35)  

MASE =

∑N
t=1 |ŷt − yt|

/
N

∑T
t=2 |yt − yt− 1|

/
(T − 1)

(36)  

where ŷt is the forecast or nowcast at time t, yt is the actual value, Δŷt =

(ŷt − yt− 1)/yt− 1 × 100, Δyt = (yt − yt− 1)/yt− 1 × 100, N is the length of 
the forecast period, and in this study N = 12. The use of multiple 
measures can help in better comprehension of the forecasting accuracy 
of the models being evaluated and assess whether their forecasting 
performance is stable during the out-of-sample period. 

For comparison, we select three commonly used models as bench
marks to test the performance of tourism demand forecasting methods: 
the seasonal naïve (SNaïve), seasonal ARIMA (SARIMA), and single 
exponential smoothing (ETS) models (Hyndman, 2018). The SNaïve 
model assumes that the future values of a time series will correspond to 
the most recent value from the previous seasonal period. The SARIMA 
model, which combines an autoregressive (AR) component, a moving 
average component, and seasonal patterns into a single model, has 
become increasingly popular in recent years. The ETS model uses a 
weighted average of past observations with exponentially decreasing 
weights (Athanasopoulos et al., 2011). We then add the Factor MIDAS, 
Factor TVP-MIDAS, and Factor MIDAS-SV models to determine whether 
the different specifications of TVPs can improve forecasting and now
casting accuracy. We set the number of lags of daily indexes Kj to 30 
(Wen et al., 2021). The initialization of parameters to be estimated in 
these models is given by the estimation results of the Factor MIDAS 
model. The residual variance of this model is used to initialize the 
variance of the particle sets, while the initial variances of the shocks in 
the TVPs are determined based on those by Schumacher (2014). Given 
the data, we then use the iterated filtering algorithm to estimate the 
posterior distribution of the parameters. We specify several particles (e. 
g., 2000) for the iterated filtering algorithm, allowing us to explore 
various possible parameter values. 

To evaluate the marginal gains of different information sets, we 
consider three model specifications in the Factor MIDAS and TVP- 
MIDAS models: (1) we use the full set of information, including the 

Table 2 
One-step-ahead forecasting results.  

A. Model with macro variables, lagged tourist arrivals, and daily indexes  

SNaïve SARIMA ETS Factor 
MIDAS 

Factor 
TVP-MIDAS 

Factor 
MIDAS-SV 

Factor 
TVP-MIDAS-SV 

MAPE 41.59% 22.03% 19.69% 18.37% 18.22% 18.30% 18.06% 
RMSE 45.52% 29.31% 23.87% 22.57% 21.26% 22.42% 22.15% 
MASE 3.04 1.44 1.22 1.15 1.13 1.14 1.12 

B. Model with lagged tourist arrivals and daily indexes  
SNaïve SARIMA ETS Factor 

MIDAS 
Factor 
TVP-MIDAS 

Factor 
MIDAS-SV 

Factor 
TVP-MIDAS-SV 

MAPE 41.59% 22.03% 19.69% 20.85% 20.95% 20.88% 20.84% 
RMSE 45.52% 29.31% 23.87% 26.46% 25.95% 26.49% 26.11% 
MASE 3.04 1.44 1.22 1.33 1.36 1.33 1.32 

C. Model with daily indexes  
SNaïve SARIMA ETS Factor 

MIDAS 
Factor 
TVP-MIDAS 

Factor 
MIDAS-SV 

Factor 
TVP-MIDAS-SV 

MAPE 41.59% 22.03% 19.69% 23.49% 23.04% 23.49% 23.21% 
RMSE 45.52% 29.31% 23.87% 29.25% 26.92% 29.25% 28.64% 
MASE 3.04 1.44 1.22 1.64 1.50 1.64 1.61 

Note: The figures displayed in bold represent the best forecasting performance for each measurement error. 
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monthly macroeconomic variables, monthly lagged dependent vari
ables, and daily indexes for modeling and forecasting; (2) we construct 
models by combining the lagged dependent variables and daily indexes 
to assess the marginal gains of integrating the macroeconomic variables; 
and (3) we use only the daily indexes for modeling and forecasting to 
evaluate whether such data can be used solely to generate reliable 
forecasts and nowcasts during crises. 

4.2. Short-term forecasting results 

This subsection presents the one-step-ahead forecasting results of 
tourism recovery during the COVID-19 pandemic using various infor
mation sets. Table 2 shows the one-step-ahead forecast accuracy results 
for each model, with Panels A to C corresponding to the forecasting 
results of the mixed-frequency models with three information sets. The 
error measures indicate that the SNaïve model demonstrates worst 
performance as the COVID-19 pandemic led to a substantial decline in 
tourist arrivals in early 2020. The SARIMA model performs better than 
the SNaïve model, indicating that including lagged dependent variables, 
current and lagged random shocks, and degrees of integration improves 
forecasting performance (Song et al., 2019). The ETS model outperforms 
the other time-series models, suggesting that it is suitable for consid
ering the different characteristics of time-series data by incorporating 
level, trend, and seasonal components (Kourentzes et al., 2014). The 
Factor MIDAS-type models with daily indexes, or with lagged tourist 
arrivals and daily indexes, have lower forecasting performance than the 
ETS model when compared with the time-series models. However, the 
Factor MIDAS-type models that include macroeconomic variables, lag
ged tourist arrivals, and daily indexes have better forecasting accuracy. 
The results show that adding macroeconomic variables can provide 
more comprehensive information about the overall economic environ
ment than just adding the lagged tourist arrivals and daily indexes. This 
is consistent with our expectation that using additional explanatory 
variables can improve the accuracy of short-term forecasting. 

Furthermore, the Factor TVP-MIDAS-SV model with the full information 
set outperforms other models, according to the MAPE and MASE met
rics, as shown in Panel A of Table 2. These results indicate that incor
porating the SV model helps capture the impact of COVID-19 more 
accurately when using a dataset that includes macroeconomic variables 
and daily indexes for the short-term forecasting of tourism demand. 

We also obtain the rolling RMSEs of the one-step-ahead forecasting 
results shown in Table 2 to examine the time-varying forecasting per
formance of the models (Escribano and Wang, 2021). We calculate the 
rolling RMSEs based on growth rates over a two-month moving window 
to capture possible short-term fluctuations in the forecast errors. Fig. 3 
shows the rolling RMSEs for the one-step-ahead forecasting results of 
models with three sets of information sets. The SNaïve model is the least 
robust across all forecast horizons and has the highest RMSEs, followed 
by the SARIMA model. In contrast, the ETS and MIDAS-type models 
show relatively stable performance across all forecast periods, with 
significant RMSE spikes observed only in August 2021 owing to the 
impact of COVID-19. These results suggest that the ETS and MIDAS 
models are more robust and reliable for one-step-ahead forecasting, 
except under exceptional circumstances such as the pandemic. 

4.3. Nowcasting results 

Given the COVID-19 pandemic, timely nowcasts of tourism demand 
are especially crucial for policymakers and stakeholders developing 
flexible crisis management plans. However, it is challenging to create 
accurate nowcasts during unexpected events (Larson and Sinclair, 
2022). The daily updated nowcasts of tourist arrivals during the 
COVID-19 pandemic generated by MIDAS-type models with 
high-frequency search query data are presented in this subsection. We 
also examine whether it is possible to capture the unexpected effects of 
the pandemic using these models during the nowcasting process. 
MIDAS-type models can generate daily updated nowcasts upon avail
ability of new search query data, unlike the benchmark models of SNaïve 

Fig. 3. One-step-ahead forecasting rolling RMSEs.  
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and SARIMA, which cannot incorporate independent variables to 
generate nowcasts. Nowcasting performance can also be improved by 
the status of tourists’ travel intentions and the pandemic’s severity, as 
shown by the relevant daily search queries. 

Fig. 4 shows a comparison of nowcasting performance between the 
Factor MIDAS, Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP- 
MIDAS-SV models. This allows us to assess whether diverse TVP set
tings can improve the nowcasting performance in scenarios with varied 
information sets. The horizontal lines on each panel of Fig. 4 represent 
the one-step-ahead forecasting performance of the corresponding 
MIDAS-type models. First, the comparison of the nowcasts with their 
corresponding forecasts in Fig. 4 shows that most nowcasts for the same 
mixed-frequency model are below the corresponding forecasting results 

and the gaps widen as new daily indexes become available, suggesting 
that the accuracy of nowcasting for the same mixed-frequency model is 
better than that of forecasting. Second, even with different information 
sets, the evolution of the nowcasts for MIDAS-type models slopes 
downward over the month in most cases, indicating that integrating 
more daily updated data can help improve nowcasting accuracy. This 
result is consistent with that of Wen et al. (2021). Third, we observe that 
the nowcasts for the Factor MIDAS-SV model are similar to those for the 
Factor MIDAS model, regardless of the information sets used. This sug
gests that including the SV model may not substantially improve the 
nowcast accuracy without adding real-time data for the current month. 
However, the Factor TVP-MIDAS-SV model reflects the improved now
casting performance of the Factor TVP-MIDAS model and outperforms 

Fig. 4. Comparison of nowcasting performance by the Factor MIDAS-type models.  
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the benchmark Factor MIDAS and Factor MIDAS-SV models. These 
findings suggest that incorporating the TVP method, which can capture 
changes in the relationships between variables, into the Factor MIDAS 
model is more effective in improving nowcasting accuracy than 
depending on the SV model alone. 

Fig. 5 presents a comparison of the nowcasting performance of the 
same model using different information sets, which helps examine 
whether adding the macroeconomic variables, lagged dependent vari
able, and high-frequency indexes can lead to marginal gains in now
casting accuracy. We first examine the Factor MIDAS model’s 
nowcasting performance. Fig. 5(a), (d), and (g) show that the Factor 
MIDAS model with daily indexes (bright blue dashed line) represents the 
worst performance in terms of all error measures. Adding lagged 
dependent variables improves nowcasting performance and adding the 
macroeconomic variables results in remarkable nowcasting accuracy 
gains. Similarly, Fig. 5(c), (f), and (i) show that the Factor TVP-MIDAS- 
SV model with the full information set outperforms the other datasets. 

Regarding the nowcasting results of the Factor TVP-MIDAS model, 
Fig. 5(b), (e), and (h) shows that this model performs worst with lagged 
tourist arrivals and daily indexes. However, the accuracy of the updated 
nowcasts improves on the availability of more daily data. The Factor 
TVP-MIDAS model with full information (red solid lines in Fig. 5(b), (e), 
and (h)) performs the best in the first half of the month. Surprisingly, the 
Factor TVP-MIDAS model that includes only daily indexes outperforms 
all competing models in the second half of the month, and the error 
measures for this model are relatively small. For example, MAPE values 
remain below 10% and MASE values below 0.8 in the second half of the 
month. This indicates that the Factor TVP-MIDAS model outperforms 
the benchmark models in terms of the nowcasting performance and 
better utilizes the valuable information in high-frequency data. 

As shown earlier, the TVP-MIDAS model with full information 

performs best in the first half of the month, while the model with daily 
indexes performs best only in the second half of the month. To further 
understand this change in the nowcasting performance for the model 
that includes only daily indexes, we compare the actual nowcasts 
generated by the MIDAS-type models with the full information set and 
those with daily indexes only. Fig. 6 plots the actual nowcasts generated 
on the 1st, 5th, 10th, 15th, 20th, and 25th days of the month from the 
Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV 
models with full information and those with daily indexes only. As 
Fig. 6 shows, we also use tourist arrivals in Hainan province to compare 
the actual numbers and nowcasts. The resurgence of the COVID-19 
pandemic in China in 2021M8 led to a significant drop in tourist ar
rivals, making it difficult to capture the unexpected impact of the 
COVID-19 pandemic on tourism demand. 

Fig. 6(a) shows the actual nowcasts generated by the MIDAS-type 
model with full information. The Factor TVP-MIDAS model out
performs the Factor MIDAS-SV and Factor TVP-MIDAS-SV models in the 
normal period, when there is no reemergence of the COVID-19 in
fections (e.g., 2021M1 to 2021M7 and 2021M10 to 2021M12). Any 
volatility or uncertainty in the data is typically absorbed by MIDAS-type 
models with stochastic volatility, generating nowcast values that are 
often lower than the actual values during the normal period. However, 
none of the MIDAS-type models with TVP settings accurately nowcast 
the sudden drop in tourist arrivals caused by the recurrence of the 
COVID-19 pandemic in 2021M8. 

The nowcasts of the MIDAS-type models integrating only the daily 
indexes are shown in Fig. 6(b). Our findings indicate that, first, consis
tent with the results in Fig. 6(a), the Factor TVP-MIDAS model out
performs the Factor MIDAS-SV and Factor TVP-MIDAS-SV models in the 
normal period; however, its nowcasts during this period show greater 
fluctuations than those generated by the Factor TVP-MIDAS model with 

Fig. 5. Comparison of nowcasting performance with different information sets.  
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the full information set. Second, the nowcast values of the MIDAS-type 
models remain below the actual tourist arrivals in the normal period, 
particularly for the Factor MIDAS-SV and Factor TVP-MIDAS-SV models, 
indicating that the MIDAS models with stochastic volatility overestimate 
the negative impact of the pandemic when there are no COVID-19 cases. 
Third, in Fig. 6(b), the nowcasts obtained on the first day of the month 
show that none of the MIDAS-type models can capture the sudden drop 
in tourist arrivals in 2021M8 quickly enough and that the actual now
casts generated on the 5th and 10th days of the month do not change 
substantially as more data become available. The nowcasts generated by 
the MIDAS models with stochastic volatility on the 20th day of the 
month, however, show a remarkable decrease in tourist arrivals in 
2021M8 than the nowcasts generated by the Factor TVP-MIDAS model. 
By the end of the month, the nowcasts generated by all models are 
similar to the actual numbers. 

In summary, daily index data provide timely signals of sudden de
clines arising from unexpected crises. Compared with the Factor TVP- 
MIDAS model, combining the SV approach with the Factor MIDAS or 
Factor TVP-MIDAS models can rapidly and accurately nowcast the un
expected impact of the COVID-19 pandemic on tourist arrivals on the 
availability of more daily data. However, all models can predict the 
impact of COVID-19 with the availability of sufficient accessible daily 
data, such as after 20 days in each month. Adding the SV model, which 
can capture the uncertainty or volatility in the data, to the Factor MIDAS 
and Factor TVP-MIDAS models yield nowcasts that consistently under
estimate the actual values during the normal period. This is shown by 
the nowcasting performance of the Factor TVP-MIDAS model with daily 
indexes, which improves substantially in the middle of the month. 
Furthermore, there is no evidence of the relative nowcasting power of 
daily indexes after we add macroeconomic variables and lagged tourist 
arrivals, as the sudden drop in tourist arrivals in 2021M8 cannot be 
captured by MIDAS-type models with a full information set. However, 
such statistical data can enhance the nowcasting accuracy during 

normal times by providing more information on past trends and cyclical 
changes of the dependent variable, whereas daily data can better reflect 
the current situation. The information lag of macroeconomic variables, 
especially during rapidly changing economic situations (such as that 
caused by the COVID-19 pandemic), may thus limit their usefulness in 
nowcasting. 

The major differences between the Factor TVP-MIDAS, Factor 
MIDAS-SV, and Factor TVP-MIDAS-SV models using the same daily in
dexes arise because of the distinct configurations of the TVPs. In the 
Factor TVP-MIDAS and Factor TVP-MIDAS-SV models, all parameters, 
including the intercept, coefficients, and shape parameters of the 
nonlinear lag polynomial of the explanatory variables, follow random 
walks, while the error variance in the Factor MIDAS-SV and Factor TVP- 
MIDAS-SV models vary over time. These characteristics may help in 
determining the relationship between variables and possible structural 
breaks in case of unexpected events (Schumacher, 2014). Therefore, to 
identify the source of the differences in the results between MIDAS-type 
models with daily indexes, we further analyze the changes in the TVPs. 
We first examine the changes in the weights of the tourism and 
COVID-19 indexes calculated using the shape parameters of the Factor 
TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV models. As 
we can obtain 360 group weights (12 months, 30 nowcasts per month) 
for each daily index in each model when generating nowcasts from 
2021M1–2021M12, we use 2021M8—the period when the nowcasts 
demonstrate the maximum change—as an example to analyze the dif
ferences in the MIDAS-type models. Fig. 7 shows the evolution of the 
weights of the tourism index and the COVID-19 Index obtained using the 
Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV 
models on the 5th, 15th, and 25th days of the month. The weights of 
each index are shown as a function of the lags, with the maximum lag 
increasing as new daily data become available. 

The evolution of the weights of the tourism index in Fig. 7 shows that 
the maximum weight obtained with the Factor TVP-MIDAS-SV model 

Fig. 6. Evolution of the actual nowcasts of MIDAS-type models with different information sets.  
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consistently occurs at a smaller lag than using the Factor MIDAS-SV 
model. For example, when nowcasting on the 5th day of the month, 
the maximum weight of the tourism index obtained with the Factor TVP- 
MIDAS-SV model occurs at approximately lag 13, whereas that obtained 
by the Factor MIDAS-SV model occurs at about lag 16. Moreover, as 
more daily data become available, the Factor TVP-MIDAS model assigns 
greater importance to the updated data than other models. Regarding 
the weights of the COVID-19 Index, we observe that on the 5th day of the 
month, the Factor MIDAS-SV model attaches more importance to the 
latest data than the Factor TVP-MIDAS and Factor TVP-MIDAS-SV 
models. 

However, no substantial difference is found in the evolution of the 
weights of the COVID-19 Index generated by the TVP-MIDAS and Factor 
MIDAS-SV models, indicating that on availability of more daily data, the 
daily indexes on tourism arrivals obtained using the Factor TVP-MIDAS 
model have a greater impact on the latest data than the Factor MIDAS- 
type models with stochastic volatility. Furthermore, in the nowcasting 
process, the weights of lags greater than 31 days tend toward zero, 
implying that more recent data are important for monitoring shifting 
tourism demand dynamics and that earlier data should therefore be 
discounted. This agrees with the findings of Schorfheide and Song 

(2021). 
Finally, we analyze the difference in the TVPs of the Factor TVP- 

MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV models. Fig. 8 
shows the evolutions of the intercepts and the time-varying coefficients 
of the daily indexes and stochastic volatilities generated by the Factor 
TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV models that 
incorporate only daily indexes for nowcasting on the 5th, 15th, and 25th 
days of 2021M8. The stochastic volatilities are plotted in terms of the 
standard deviations exp (ht /2). 

First, we observe that the changes in the intercept can be estimated 
using the changes in the long-term growth rate of tourist arrivals. Fig. 8 
(a) shows that the intercepts of the Factor TVP-MIDAS and Factor TVP- 
MIDAS-SV models increased by approximately 0.5 on a logarithmic scale 
from 2011 to 2019, which correspond to more than 3 million additional 
tourist arrivals. However, the outbreak of COVID-19 in 2020 led to a 
significant decline in arrivals. Second, we observe that the tourism index 
and tourist arrivals in Hainan province are positively correlated, indi
cating a corresponding increase in the number of tourist arrivals as 
tourism-related Baidu searches increase. Third, the coefficients of the 
COVID-19 Index in Fig. 8(c) show a substantial downward trend since 
2020. A negative relationship is expected between the COVID-19 Index 

Fig. 7. Evolution of the exponent Almon lag weights over time in 2021M8.  
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and tourist arrivals as an increase in the COVID-19 Index (indicating 
greater severity and stricter prevention measures) may negatively 
impact tourist arrivals. However, the overall analysis reveals a positive 
correlation between these factors. This unexpected outcome can be a 
result of the index reflecting both the severity of the pandemic in Hainan 
province and the strictness of China’s prevention and control measures. 
The slight increase in the COVID-19 Index when the situation in Hainan 
was relatively stable may have been the result of the severity of the 
epidemic in other parts of China; thus, the index may not have shown a 
negative correlation with the tourist arrivals, and thereby indicating 
that the impact of COVID-19 Index on tourist arrivals is influenced by 
factors outside Hainan province. Fourth, Fig. 8(d) shows the evolution of 
stochastic volatility for both the Factor MIDAS-SV and Factor TVP- 
MIDAS-SV models, showing a significant spike at the beginning of 
2020 with some minor fluctuations. This indicates that the COVID-19- 
related uncertainty significantly affected the tourism industry in 
Hainan province. We also see that the time-varying coefficients of the 
Factor TVP-MIDAS-SV model evolve more smoothly than those of the 
Factor TVP-MIDAS model, as the SV model introduced into the former 
accounts for fluctuations and uncertainties in the data. Overall, we find 
that the feasibility and utility of the TVPs increase the likelihood of 
detecting potential instability when unexpected crises arise. 

5. Conclusions 

In this study, we generate short-term forecasts and real-time now
casts of tourism recovery in China’s Hainan province, a destination 
affected by the intermittent measures implemented to minimize the 
spread of COVID-19. It is difficult to determine a reliable method for 
generating accurate forecasts and nowcasts from a large amount of data 
during crises. We accurately capture the impact of the pandemic on 
tourism demand using Factor MIDAS models with different TVP settings. 
Such methods can simultaneously deal with the problems of high 
dimensionality, frequency mismatch resulting from high-frequency 
data, and any structural changes. We also consider different informa
tion sets and examine their marginal improvements in forecasting and 
nowcasting performance during the COVID-19 pandemic. 

The empirical results show that the Factor TVP-MIDAS-SV model 
that includes all collected data outperforms the benchmark models in 

short-term forecasting. This indicates that short-term forecasting accu
racy can be improved by combining as much available information as 
possible. A comparison of the forecasts and nowcasts obtained using 
MIDAS-type models with different information sets shows that the 
nowcasting performance of MIDAS-type models is consistently better 
than their forecasting performance. The evolution of the nowcasts shows 
that the Factor TVP-MIDAS model that integrates only daily indexes 
demonstrates outstanding nowcasting performance in the second half of 
the month as the impact of the COVID-19 pandemic on tourism demand 
can be more accurately captured as daily data become available. 
Although the integration of the SV approach into the Factor MIDAS or 
Factor TVP-MIDAS models can provide faster and more accurate now
casting of the unexpected impact of the COVID-19 pandemic on tourist 
arrivals than the Factor TVP-MIDAS model, it may lead to nowcasts that 
consistently underestimate the actual values during the normal period. 
The addition of monthly macroeconomic variables and lagged depen
dent variables also weakens the predictive power of the daily indexes. 
Thus, macroeconomic variables appear to be less useful for increasing 
nowcasting accuracy in times of crises than daily indexes that are 
updated in real time. 

In conclusion, we find that high-frequency data and the Factor 
MIDAS models with TVPs share a mutually reinforcing relationship. 
Owing to the lack of regularly updated high-frequency data, these 
models cannot accurately capture the negative impact of the COVID-19 
pandemic. Similarly, the Factor MIDAS model is unable to use the 
valuable information gained from high-frequency data without TVP 
specifications. This validates the proposition by Foroni et al. (2022) that 
finding a reliable TVP model with explanatory variables that change 
over time is the best solution to improve the accuracy of forecasting and 
nowcasting during a crisis. 

The findings of this study have significant policy implications for the 
management and recovery of the tourism industry during crises, such as 
the COVID-19 pandemic. Our study highlights the importance of using 
reliable forecasting and nowcasting methods that can accurately capture 
the impact of such crises on tourism demand. Combining a large amount 
of available and preferably high-frequency data can improve the accu
racy of short-term forecasting. Factor MIDAS models with TVPs accu
rately capture the impact of the pandemic on tourism demand. However, 
it is essential to update these models with real-time data to ensure their 

Fig. 8. Evolution of time-varying coefficients from 2011M1–2021M8.  
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effectiveness. Our study also highlights that the macroeconomic vari
ables have limited utility in improving nowcasting accuracy during 
crises compared with daily indexes. Therefore, policymakers should 
prioritize the integration of real-time data and adjust their forecasting 
and nowcasting approaches accordingly. The study also reveals the 
significance of using a TVP model with explanatory variables that 
change over time, as this can enhance forecasting and nowcasting ac
curacy during crises. Overall, this study can serve as an alternative 
benchmark for tourism demand nowcasting during crises, as the base
line forecasts or nowcasts produced by traditional time series or 
econometric models will rapidly become outdated. 

Our study has some limitations that can be addressed in future 
research. We focus on domestic tourism demand in a single destination 
in China, but with the lifting of travel restrictions, the patterns of do
mestic and international tourism demand will differ greatly from the 
case of Hainan. Therefore, the generalizability of the empirical results to 
other countries is likely to be limited. In addition, the high-frequency 
daily data used in our study are obtained exclusively from the Baidu 
search engine. Future studies may consider other types of high- 
frequency data, such as those of reviews and hotel bookings. Finally, 
we limited our study to generating and evaluating point forecasts and 
nowcasts. Interval and density forecasts can provide information about 

the uncertainties associated with forecasts and nowcasts, which can be 
valuable to decision makers in crisis and postcrisis periods. Therefore, 
these approaches could also be considered in future studies. 
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Appendix  

Table A 
Basic search queries.  

No. Search query No. Search query No. Search query No. Search query  

Dining  Transportation 47 Wenchang tourism 71 Yanoda Rainforest Cultural Tourism Zone 
1 Hainan cuisine 24 Hainan map 48 Wanning tourism  Lodging 
2 Hainanese chicken rice 25 Haikou map 49 Sanya tourism 72 Hainan accommodation 
3 Coconut chicken 26 Sanya map 50 Sanya tourism tips 73 Hainan hotels 
4 Wenchang chicken 27 Sanya tourist map 51 Sanya travel agencies 74 5-star hotels in Hainan 
5 Hainan specialty 28 Hainan tourist map 52 Sanya travel cost 75 Resorts in Hainan 
6 Hainan specialty snacks 29 Hainan road trip 53 Hainan self-guided tour 76 Sheraton Sanya Resort 
7 Hainan specialty fruits 30 Sanya road trip 54 Sanya self-guided tour 77 Haikou hotels 
8 Haikou specialty 31 Hainan car rental 55 Sanya self-guided tour tips 78 Sanya hotels 
9 Sanya specialty 32 Sanya car rental 56 Wuzhizhou island tips 79 Atlantis Sanya 
10 Sanya seafood 33 Haikou car rental 57 Hainan weather 80 Resort Intime Sanya 
11 Wenchang cuisine 34 Hainan airlines 58 Sanya weather 81 Sanya hotel booking 
12 Hainan fruit 35 China Eastern Airlines 59 Haikou weather 82 Best hotels in Sanya 
13 Sanya cuisine 36 China Southern Airlines 60 Wenchang weather 83 Seaview hotels in Sanya 
14 Haikou cuisine 37 Airline tickets to 

Hainan 
61 Wanning weather 84 Haitang Bay hotels  

Shopping 38 Airline tickets to Sanya  Attractions 85 Yalong Bay hotels 
15 Hainan duty-free shops 39 Cheap flights to Sanya 62 Hainan tourist attractions 86 The Ritz-Carlton Sanya 
16 Hainan duty-free shop official 

website 
40 Airline tickets to Haikou 63 Nanwan Monkey Island 87 Mandarin Oriental, Sanya 

17 Haikou duty-free shops 41 Haikou airport 64 Haikou tourist attractions 88 InterContinental Sanya Resort 
18 Haikou duty-free shop official 

website 
42 Sanya airport 65 Holiday Beach  COVID-19-related 

19 Sanya shopping  Tours 66 Yalong Bay Underwater 
World 

89 Coronavirus pandemic latest news in 
Hainan 

20 Sanya duty-free shop tips 43 Hainan tourism 67 Haikou Arcade Streets 90 Coronavirus pandemic latest news in Sanya 
21 Sanya duty-free shops 44 Haikou tourism 68 Dongjiao Coconut Forest   
22 Sanya duty-free shop address 45 Hainan tourism tips 69 Sanya tourist attractions   
23 Sanya duty-free shop opening hours 46 Sanya one-day trip 70 Sanya Forest Park   

Note: Search queries in bold represent the initial keywords. 
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