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nowcasting accuracy during crises.

1. Introduction

The unexpected coronavirus disease (COVID-19) outbreak in late
2019 adversely affected human health and global economy. The econ-
omy has now largely recovered from the initial shocks caused by travel
restrictions and other public health measures taken to deal with the
pandemic. The World Bank (2022) reported that global gross domestic
product (GDP) fell by 5.7% in 2020 compared to 2019 due to the impact
of the pandemic, but rose again in 2021. However, recurring outbreaks
of COVID-19 continue to adversely affect the tourism industry, which is
highly sensitive to crises. The United Nations World Tourism Organi-
zation (UNWTO, 2022) reported that international tourist arrivals fell by
73% in 2020 compared to 2019 and recovered only by 4% in 2021
compared to 2020. Furthermore, the number of international tourist
arrivals in 2022 was 63% of that in 2019 (UNWTO, 2023). This partial
recovery led to more challenges, such as labor shortages and supply
constraints, introducing further uncertainty. To sustain this recovery,

policy and business decisions must be made based on timely short-term
tourism forecasting and nowcasting (Foroni et al., 2022).

The high degree of uncertainty associated with crises makes it
difficult to accurate predicting their impact. Simple time-series models
work well during normal periods but fail to capture the effects of un-
expected crises as they require rich and readily available time-series
data without drastic fluctuations to produce reliable forecasts and
nowecasts (Larson Sinclair, 2022). Scholars have developed various
econometric models with nonlinear specifications to attempt to capture
the structural changes caused by unprecedented events, including
Markov-switching (Guérin and Marcellino, 2013), threshold (Ferrara
et al., 2015), and time-varying parameter (TVP; Page et al., 2012)
models. To address the issue of parameter instability in the context of the
COVID-19 crisis, vector autoregressive (VAR) frameworks have been
proposed that enable models with TVPs (Gotz and Hauzenberger, 2021)
or relax the standard distribution of the error variance (Carriero et al.,
2022). These specifications can improve parameter stability and forecast
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accuracy.

Long delays in the release of official statistics are common, so the
availability of current and complete data for real-time forecasting and
nowecasting presents another challenge (Ferrara and Sheng, 2022). The
issue of low frequency of official statistics has been addressed through
short-term forecasting exercises using weekly labor market statistics,
daily online search queries, and even hourly electricity consumption
data (Jardet and Meunier, 2022; Schaer et al., 2019). Studies have
shown that analyzing these and other types of high-frequency data can
help in tracking economic changes during crises (Chen et al., 2020;
Coibion et al., 2020; Jardet and Meunier, 2022). Yang et al. (2022)
showed that daily search query data can help improve the accuracy of
tourism demand forecasting for countries with relatively high numbers
of confirmed COVID-19 cases, are highly dependent on inbound tourism,
and/or have no land borders.

Recent studies that have estimated and forecasted the impact of the
COVID-19 pandemic have focused on key macroeconomic indicators
such as GDP (Foroni et al., 2022), employment rate (Coibion et al.,
2020), and inflation (Bobeica and Hartwig, 2023), along with tourism
demand indicators such as tourist arrivals (Liu et al., 2021) and hotel
room demand (Zhang and Lu, 2022). However, few studies have
examined real-time tourism demand forecasting and nowcasting during
the pandemic, and the selected models do not consider the structural
changes caused by the pandemic (Wu et al., 2022; Yang et al., 2022).
The impact of the COVID-19 pandemic on tourism demand has been
assessed through scenario analyses, which does not allow for accurate
real-time estimates (Liu et al., 2021; Qiu et al., 2021; Zhang et al., 2021).

To address this research gap, we investigate potential methods for
providing accurate short-term forecasting and real-time nowcasting of
tourism recovery while considering the impact of the COVID-19 crisis.
We combine low-frequency statistics from official sources with daily
online search query data as explanatory variables in our forecasting
models. We consider three aspects in the process of model specification:
(1) it is necessary to reduce the dimensionality of the data to minimize
information loss when adding large quantities of high-frequency data
econometric models (Nakajima and Sueishi, 2022); (2) we should
consider the mismatch in data frequency when using both monthly and
daily data to forecast monthly tourism demand; and (3) the specified
model should be able to capture the structural changes induced by the
COVID-19 pandemic.

We use a two-step modeling approach to address these requirements.
First, we use the factor model proposed by Stock and Watson (2002) to
reduce dimensionality by extracting common factors from the
high-frequency data. Second, we propose three mixed data sampling
(MIDAS) models using different TVP settings, namely, TVP-MIDAS,
MIDAS with stochastic volatility (MIDAS-SV), and TVP-MIDAS-SV, to
examine the short-term forecasting and nowcasting performance of
tourism demand during COVID-19. The proposed models can simulta-
neously handle different frequencies of the dependent and independent
variables and capture possible structural breaks and uncertainties by
allowing parameters and the error variance to change over time. Bau-
meister and Guérin (2021) and Foroni et al. (2022) used a basic
MIDAS-type model to generate nowcasts of macroeconomic variables
during the COVID-19 pandemic and adjust forecasts based on the pat-
terns of identified impact of past crises (e.g., financial crises). However,
these basic models cannot monitor pandemic-induced structural
changes, and no study in the COVID-19 context has considered the
nowcasting performance of the MIDAS model involving TVPs. Our study
is, therefore, the first to apply Factor MIDAS models with different TVP
specifications to predict post-COVID-19 pandemic tourism demand. The
different time-varying specifications allow for variation in the intercept
and parameters, as well as error variance over time. These features are
expected to minimize the potential loss of forecasting accuracy during
crises.

Schumacher (2014) used the particle filtering algorithm to estimate
the TVP-MIDAS model. However, as the particle filtering procedure only
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occurs in one iteration, the convergence of the model is vulnerable to
initial values. In contrast, our application of the improved iterated
filtering (IF2) algorithm proposed by lonides et al. (2015) to estimate
the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV
models represents a novel approach and has a strong theoretical justi-
fication for model convergence to maximum likelihood estimation. In
addition to generating short-term forecasts and nowcasts of tourism
recovery, we assess whether (1) our proposed Factor MIDAS models
with TVP settings can improve the accuracy of short-term forecasting
and nowcasting of tourism recovery amid the ongoing destabilization
resulting from the COVID-19 pandemic-related mobility restrictions and
public health measures; (2) the information sets generate additional
marginal gains to improve nowcasting accuracy (and if so, when); and
(3) the model can capture the sudden pandemic-induced decline, and if
so, whether the TVP channel or the time-varying error variance channel
contributes more to capturing this impact.

We make the following contributions to the literature. First, we
overcome the limitations of traditional constant-parameter econometric
models using three Factor MIDAS models with distinct TVP settings.
These new models use high-frequency search query data and capture the
dynamic relationships between dependent and independent variables
and uncertainty in the data. Second, we evaluate whether these models
can provide marginal advantages in forecasting and nowcasting tourism
recovery in the context of the COVID-19 pandemic. We find a comple-
mentary relationship between the Factor TVP-MIDAS model and high-
frequency data, as these data improve both the forecasting and now-
casting performance of the model. Third, we examine the potential
reasons for the probable superiority of the Factor MIDAS models with
TVP over the Factor MIDAS model in nowcasting. We find that the
Factor MIDAS-SV and Factor TVP-MIDAS-SV models can rapidly and
accurately capture the impact of reoccurring outbreaks of the COVID-19
on monthly tourist arrivals using only the daily indexes included as the
determining factor. This provides useful information for destination
stakeholders to develop the most effective policies for reducing potential
economic losses during the crisis.

The rest of this study is presented as follows. In Section 2, we review
the literature on tourism demand forecasting and nowcasting during
crises. Section 3 describes the methods and data used in this study.
Section 4 discusses the forecasting and nowcasting strategies and
empirical results. In Section 5, we discuss the limitations of the study
and potential areas for future research.

2. Literature review
2.1. Forecasting and nowcasting during crises

Econometric models dominate the tourism forecasting literature and
are typically specified as multiple-equation or single-equation models
(Banbura et al., 2013). Multiple-equation models, such as vector
autoregression (VAR) models (Kuzin et al., 2011) and simultaneous
equations models (Li et al., 2006), forecast the co-movements of the
dependent and independent variables. Single-equation models, such as
the bridge equation model (Andreini et al., 2023) and MIDAS (Foroni
and Marcellino, 2014), are used to analyze dependent variables. As both
multiple- and single-equation models depend on historical data for
consistent model estimation (Huber et al., 2023), external shocks such as
epidemics and natural disasters can lead to structural changes, resulting
in accurate forecasts by models. Specifying a reliable model that can
capture real-time unprecedented downturns in a crisis context is chal-
lenging because the relationship between the dependent and indepen-
dent variables, the size of the shocks, and the drivers of the crisis can
differ and change over time (Foroni et al., 2022).

Many recent studies have focused on developing new frameworks of
VAR-type models with multiple equations to improve the reliability of
short-term forecasts and nowcasts during the COVID-19 pandemic. For
example, Schorfheide and Song (2021) and Lenza and Primiceri (2020)
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suggested that one can improve the nowcasting performance of VAR
models by considering the extreme data variations in the first half of
2020 as possible outliers and mixed distribution of the model error
variance or models with stochastic volatility to reduce the impact of
structural instability on nowcasting accuracy. Similarly, Bobeica and
Hartwig (2023) and Carriero et al. (2022) found that the VAR models’
forecasting properties could be enhanced by relaxing the assumption of
the standard Gaussian distribution of model errors to Student’s t-dis-
tribution during the pandemic. Gotz and Hauzenberger (2021) used
mixed-frequency VAR models involving TVPs to predict the unprece-
dented decline in macroeconomic variables caused by the COVID-19
pandemic. They found that including a few independent variables
with similarly large deviations, the forecasting models could accurately
capture the pandemic’s impact.

MIDAS-type models have also recently been used to generate fore-
casts and nowcasts during the COVID-19 pandemic. These models can
use high-frequency independent variables to explain low-frequency
dependent variables without aggregation procedure and are therefore
applicable to short-term forecasting and nowcasting research in the
pandemic context. For example, Foroni et al. (2022) used MIDAS and
unrestricted MIDAS (UMIDAS) models to generate forecasts and now-
casts of the GDP of the US and other G7 countries during the pandemic
and the recovery period. To account for the lack of historical data during
the pandemic, which forecasting models require, they adjusted the
forecasts and nowcasts based on the recovery patterns identified during
the 2007-2008 global financial crisis. Similarly, Baumeister and Guérin
(2021) used MIDAS and UMIDAS models to assess whether an indicator
based on a set of global economic variables could help improve global
GDP growth forecasts and nowcasts during normal times and the
pandemic. However, no studies have tested the forecasting and now-
casting performance of a TVP-MIDAS model in this context.

2.2. Tourism demand forecasting amid the COVID-19 pandemic

Tourism demand is particularly susceptible to the effects of crises
such as natural disasters, terrorism, political turmoil, and epidemics
because tourists are risk-averse, and any perceived threat to their health
and safety can affect their travel decisions. The resulting decline in
tourist arrivals can have economic consequences for destinations and
the tourism industry in general (Speakman and Sharpley, 2012). The
COVID-19 pandemic has had a major impact on the tourism industry
since late 2019. The pandemic led to a severe economic and social crisis,
and a series of travel bans and lockdown measures were introduced in
various countries to prevent the spread of COVID-19 (Qiu et al., 2021).
The pandemic’s impact on tourism demand has been specifically
assessed in the literature. For example, Gossling et al. (2021) compared
the pandemic to previous crises, such as the outbreak of severe acute
respiratory syndrome, after examining its effects on global tourism
through the end of March 2020. They argued that COVID-19-related
travel restrictions have caused the greatest damage to global tourism
since World War II. Hao et al. (2020) developed a COVID-19 manage-
ment framework based on their analysis of the pandemic’s impact on the
Chinese hotel industry. They suggested that various aspects of the in-
dustry were permanently affected, such as investment preferences and
product design. Liew (2022) examined the extent of the pandemic’s
effects on the share prices of Booking.com, Expedia Group, and Trip.
com, the three largest online tourism companies, and found that the
overall tourism industry performance declined rapidly during the
pandemic. Polyzos et al. (2021) assessed the impact of the COVID-19
outbreak on tourist arrivals from China to the US and Australia and
identified its adverse effects and suggested it could take nearly a year for
arrivals to return to prepandemic levels.

The increased levels of uncertainty that arises during protracted
crises such as the COVID-19 pandemic can drastically influence future
behavior in the tourism industry. Therefore, forecasting tourism demand
is even more important for policymakers during crises than in normal
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times (Liu et al., 2021). However, few studies have focused on fore-
casting tourism demand recovery during the COVID-19 pandemic.
Korinth (2022) used the autoregressive integrated moving average
(ARIMA) model to forecast passenger air traffic and the share of
Poland’s accommodation options used in the first quarter of 2020. The
results showed that the pandemic-related travel restrictions and public
health measures negatively and substantially affected Poland’s tourism
industry. Using traditional time-series models such as autoregressive
moving average (ARMA) and ARMA with exogenous variable models,
Wickramasinghe and Ratnasiri (2021) demonstrated that forecast ac-
curacy was improved by incorporating Google search data into forecasts
of guest night stay by international tourist arrivals to Sri Lanka in the
first quarter of 2020. Yang et al. (2022) used the least absolute shrinkage
and selection operator method with a series of regressors to forecast
daily tourism demand across 75 countries during the pandemic. They
showed that Google search data could improve the accuracy of these
forecasts in certain situations, such as for countries that depend heavily
on inbound tourism or those with no land borders.

There is scarce information on tourism during the pandemic; there-
fore, recent studies have adopted judgmental two-stage adjustments
(Kourentzes et al., 2021; Liu et al., 2021; Polyzos et al., 2021; Qiu et al.,
2021; Zhang et al., 2021) to assess the future improvement in tourism
demand. First, ex ante baseline forecasts are generated based on
appropriate models estimated based on precrisis data and judgmental
approaches, such as scenario analyses and Delphi methods, which are
then used to adjust these forecasts by considering different pandemic
scenarios. However, judgmental adjustments can be problematic
because of subjective assessments, which may introduce bias, human
error, and lead to a lack of replicability. Although the aforementioned
studies have considered several scenarios, most have focused on the
long-term implications of the pandemic rather than short-term fore-
casting and nowcasting, which are also crucial for the timely imple-
mentation of crisis management plans.

3. Methodology and data
3.1. Model setup

We apply three Factor MIDAS models with different TVP settings to
address the issues of high dimensionality, frequency mismatch, and
possible structural changes. Using high-frequency data to capture the
impact of the COVID-19 pandemic, the models are expected to improve
the accuracy of forecasting and nowcasting tourist arrivals during such
crises. We take a two-step modeling approach to construct our Factor
TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV models. First,
the factor model extracts common factors from high-frequency data. We
then introduce different TVP specifications into the Factor MIDAS model
to build the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-
MIDAS-SV models and include the extracted factors as independent
variables into the models.

We sequentially introduce the Factor MIDAS, Factor TVP-MIDAS,
Factor MIDAS-SV, and Factor TVP-MIDAS-SV models for a better un-
derstanding of the model construction process. These models are built
using a two-step method, in which we first introduce the factor model,
which reduces the dimensionality of huge high-frequency time-series
data by extracting a few common factors and is commonly used to
forecast and construct leading factors (Forni et al., 2004). In specifying

the factor model, {xETm), i=1,..n,tn=1,...,Tyn} denotes a large set of
high-frequency time series that correspond to the low-frequency
dependent variable {y;,t = 1, ..., T}, which is only observable every m
period, where T,, = mT. For example, m = 3 if y; is a quarterly variable
and xf':;) is a monthly variable. The specification of the factor model can
be expressed as follows:

X =2+ dafs) + o Aaf ) ey, )

it st
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Table 1
IF2 algorithm pseudocode.

Input

Simulator for p(So|0)

Simulator for p(S¢|S¢-1,0), tin1: T
Evaluator for p(D¢|S;,0), tin1: T

Data, D}

Number of iterations, M

Number of particles, J

Initial parameter sample, {d>]9 Jinl:J}
Perturbation sequence, 67.y

Procedure

1 Forminl:M.

2 mg;;" ~ N(@,6p) forjin1:J.

3 8§ ~ p(So|@f]) forjin1:J.

4 Fortinl:T.

5 O} ~ N(®{"}, 0m) forjin1:J.
6SPm~p(S[Sl 1 J)for]ml J.
7 Wz‘.:p(D*s O [J‘. ™) forjin1:J.

8 Draw ky,y withp(k; =1i) =
F, P, F|
9 @ =@ and S, =
10 End For.
11 Set & = @ forjin1:J.
12 End For.

J
LATDIELR
Seiy forjin1:J.

Notes: (1) The superscript F in <I>F ™ and SF ™ represents solutions to the filtering
problem, and the superscript P in @ _j"' and S J'."' represents solutions to the
prediction problem; (2) the weights w; yield the likelihood of the designated

data D;.

where J; is the factor loading and fj('t'"? is a common factor, withj = 1,...,

r. The idiosyncratic component e;,, is the part of xf"t:") not explained by
the factors. The number of factors is determined by the information
criterion ICp; proposed by Bai and Ng (2002), and we use the static
principal component analysis model introduced by Stock and Watson

(2002) to estimate the factor model.
(1) Factor MIDAS model

The Factor MIDAS model proposed by Marcellino and Schumacher
(2010) uses the MIDAS model to regress low-frequency dependent var-
iables on extracted high-frequency common factors {f}(zl), j=1,...r}

The specification of the Factor MIDAS model for forecasting y,,; can be
written as follows:

ver=c+ 3 Bbi(Lu O + &, @
J=1
uJ exp(&ljk + 6,87
bi(Ln, 0;) = > c(k,0) L} ¢ (k, 0)) = —————1—— 3
k=0 z exp(6y,k + 6,k7)

k=0

where the polynomial bj(Ly,, 0;) = Zk oC(k,0;)L}! assigns weights to lags
0 to K of the j-th high-frequency factor based on the exponential Almon
specification, which is the most commonly used weighting scheme and
highly flexible in generating different weight shapes (Ghysels et al.,

f; rte/m- K 18
the maximum lag on the j-th high-frequency variable. ¢ represents the
independent white noise processes with a mean of zero and variance
denoted by af,. The nonlinear least squares (NLS) method is used to es-
timate the Factor MIDAS model.

The Factor MIDAS model can be further extended to include autor-
egressive terms and variables measured at a frequency identical to that

2007). L™ is the high-frequency lag operator, and L’"f
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of the independent variable, which can be expressed as follows:

Yt =c+ryi+ Zapx,,ﬁ Zﬂb (L, 0)f + & )
p=1 j=1
The AR coefficient y and the coefficients @, of the low-frequency
variables x,, can be estimated alongside other coefficients using the
NLS method.

(2) Factor TVP-MIDAS model

We include the extracted common factors {fi(T), j=1,...,r} into the

TVP-MIDAS model proposed by Schumacher (2014) to specify the Fac-
tor TVP-MIDAS model. The specification of this model with one lag of

Yer1 and low-frequency independent variables {x,,p=1,...,P} for
forecasting y;.1 can be written as follows:
Y =ci+yyi+ Ea,,,x,,,+ Eﬂ,,b,, (L, 0.0 + &, (5)
p=1 j=1
K 2
L 0,k + 0,k
]r Lrn70]t C k 0“ L C k 0]{)7 Kéxp( Ljt 2, ) (6)
5 exp(01.k +02,)
prd
C=Cr—1 + Ecy @
V=Vt € ®
Oy =0pi—1 + Eq, s (C)]
ﬁj‘z :ﬂj‘z—l + Ept (10)
O1ju=01u-1 + €11, Oy = 02,1 + €2, 11)

Unlike their counterparts in the Factor MIDAS model, parameters ¢, 7,,
Aty Birs Ojes and 6, of the Factor TVP-MIDAS model follow the
random-walk process, which is commonly used in the TVP literature,
especially when multiple parameters are allowed to change over time
(Primiceri, 2005). &, &,¢, €q,.t €5 €15 and e, are independent white
noise processes, which have a mean of zero and variances of 62, 62, 02

2
ap

weighting scheme, we impose some restrictions on 6y, (Liitkepohl,
1981) and create a newly defined variable ¢3;, by setting 0, = —

o2, aﬂ, 02 » and 0 » respectively. To ensure the stability of the

exp(65;,) rather than allowing 65, to evolve freely as a random-walk

process. Equations (6) and (11) then become Equations (12) and (13),
respectively.

K; exp (lei,rk exp (92 l)kz)
bj.x(eroj,t) = Z c(k,aj_r)L;:',(,‘(k, ofv’) = K; -
k=0 > exp (6’u_tk — exp <92J ,) k2>
=0
(12)
01js =011+ €11, 05, =65, + &2 13)

The Factor TVP-MIDAS model can be represented in a nonlinear
state-space form for estimation:

Vi1 :q)rFr()'r) + &, & NN(Oa 5?) 14
11 _ /l/—l ~
{(p‘} = {‘PH} +w,w,~N(0,W) (15)

where Equation (14) is the measurement equation and Equation (15) is
the transition equation. All states are classified into @, and A, based on
the nonlinearity of the system to convert the Factor TVP-MIDAS model



Y. Liu et al.

into a state-space form. Specifically, the vector & = (01 1¢, .., 016,051
...,05,,) includes all nonlinear states not amenable to Kalman filtering,
while the vector ®; = (¢, 7,, a1, ..., Aps, P14 -, Br,) contains all linear
states.

For Equations (14) and (15), F(4), w; and W are defined as:

F,(4) = < Ly X, oo xps by (Lm701.r)f1(,’:l> br.r(L:rlyor.r)ﬁyl) > 1e6)
11y
Elrt
€211
€21
w, = :_} W
7
6(1,,
Eap,
€
b
o, 0 0 0 00 0 0 0 0
0 2.0 0 00 0 0 0 0
0 0 0 o, 0 0 0 0 0 0 0
0 0 0 0 ol 0 0 0 - 0
0 0 0 0 0 o, 0 0 0 0 - 0
1o 0o 0 o 0 2 0 0 0 = 0
00 0 0 0 0 o 0 0 - 0
0 0 0 0 0 o, O 0
0 o 0 o
0 0 0 0 0 0 0 O 0 0 L
a7

(3) Factor MIDAS-SV model

We incorporate stochastic volatility into the MIDAS model to
develop the MIDAS-SV model. We allow the error variance of the MIDAS
model to change over time using an AR(1) process (Gotz and Hau-
zenberger, 2021). Subsequently, we integrate the derived common
factors {f]('t“)7 j=1,...,r} into the MIDAS-SV model to define the Factor
MIDAS-SV model. The model specification for the Factor MIDAS-SV
model, which includes one lag of y;;; and low-frequency independent
variables {x,;,p=1, ..., P} to forecast y.,1, can be expressed as follows:

P r
Yer1 =C+ ¥y + Z ApXps + Zﬁjbj (Lm,Hj)];f,m) +Vexp (h)e 18
p=1 Jj=1
K exp( 0 jk —exp( ;| K
by (L 8) = D" ek 6) L7 c(k0) = (o (%)) a9
k=0 ];)exp (le,k — exp <6‘§_j> kz)
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he=ph_1 + €n, p|< 1 (20)

where et represents a white noise process, which have a mean of zero
and a variance of one. h, represents the stochastic volatility estimate and
follows a stationary AR(1) specification. ¢, is an independent white
noise process whose associated variance o7 follows an inverse gamma
distribution, denoted as 6,21 ~IG(vp, Vy). The initial values of the pa-
rameters associated with stochastic volatility are selected based on Gotz
and Hauzenberger (2021).

The following state-space form can be used to estimate the Factor
MIDAS-SV model:

Yev1 :(I)Fr(l) + Ve, Ve~ N(O, Vt(ht)) @D

he=ph_1 + €ns, Ip|< 1 22)

'

where A = (611,...,01,,6051,..,65,), Fe(d) = (1ye x10-%p, b1(Lm,
OV br(Lm, O)FT), @ = (r.on,.coap.fr, s f)s Ve =
and Vy(h;) = exp(h)o2.

exp (he),»

(4) Factor TVP-MIDAS-SV model

We develop the Factor TVP-MIDAS-SV model by introducing sto-
chastic volatility into the TVP-MIDAS model proposed by Schumacher
(2014) and incorporating the obtained high-frequency common factors

{fj(f;), j=1,...,r} as independent variables. We consider two distinct
channels of time variation to capture potential structural breaks in
tourism demand and the uncertainties evolving from the COVID-19
pandemic. The first channel allows parameters to vary over time,
including intercepts, coefficients, and the shape parameters of the
nonlinear lag polynomial of the high-frequency common factors. The
second channel allows for variation in error variance. The specification
of the Factor TVP-MIDAS-SV model for forecasting y;.; can be written as
follows:

P r
Y1 =6ty i+ Z Ay Xps + Zﬂj,,bj.z (Lmﬁj.f)ﬁg") + v/ exp (h,)é‘, (23)
=1 =

Kj exp( 61,k —exp(6;,, )k
by (Lns0y) = > e(k.0) L c(k,60;) =+ ( (00)")

k=0 > exp (91,,-_,k — exp (H;_jy,> k2)

k=0
@4)

Cr=Cr1 T+ &y (25)
Ye=Vi1 T & (26)
Ay =0Qpr—1 + Eqp 1 (27)
ﬁj,z :ﬁj.l—l + 8/1}.,1 (28)
01j, =011+ €10, 05, =05, | + €4 (29)
hy=ph,_y + &y, ‘/7|< 1 (30)

The Factor TVP-MIDAS-SV model uses the same TVP setting as the
Factor TVP-MIDAS model, while the stochastic volatility setting follows
that of the MIDAS-SV model. The Factor TVP-MIDAS-SV model can be
converted to the following state-space form:

Y1 = (Dze()-z) + Vv N(07 Vr(hr)) 31

j-1 Az—l
[@,} - {ID,]} + {Z’},w,~N(0,W),£,,~N(O,af) (32)
hy phi '
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where the defined as A=
(91,1_:-,---,91,r,t-,‘9§_1,p----,'93“)/ and @, = (Cts}’t:al.n---aaP,taﬂl,tv----,/))r,t)/’
Ft(lt)/ = (1 y: x1xp¢ b1e(Lm, ot)f{T)'“br,t(Lmv ot)fr(,rtn)): Ve =

vexp (he)ee, Ve(he) = exp (ht)af, and w, and W are defined as

states A, and @, are

E11t
Elrr
€1t
E2rt

w, = ;’ W
Tt
8(11.1
Sllp.r
€,
€.,
. 0 0 0 0 0 O 0 0 0

?, 0 - 0

0 0 0 o, 0 0 0 0
0 0 0 0 . 0 0 0 0 -« 0
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"1 o 0o o0 o 0 0o O 0 0 - 0
0 0 0 0 0 0 0 o 0 0 - 0
0 0 0 0 0 0 0 0 . 0
0 0 0 0 0 0 0 o},“ 0
0 0 0 0 0 0 0 0 0 0 78

(33)

3.2. Model estimation

As the states 0y j, 05, i and h; are nonlinear in the transition equation
of the Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV
models, the standard Kalman filter cannot be used as it can only estimate
linear models. Therefore, we use a particle filter, a sequential Monte
Carlo method that simulates and mutates state (particle) samples ac-
cording to the state-space dynamics in the model, to estimate the
MIDAS-type models with nonlinear TVPs (Schumacher, 2014).

We use the Factor TVP-MIDAS-SV model as a case study to illustrate
the estimation process. If we denote all states c;, y,, ap,, B> Ojes 05 e
and h; as S;, designate data up to t as Dy = {D;_1,Y,X;}, and denote the
variances of the white noise processes ¢;, and unknown initial states Sy
as 0, then the particle filter sequentially produces new particles based on
the transition densities p(S;|S;-1,6) in the prediction step. The particle
filter also adjusts the particles’ weights using measurement density
p(D¢|S;,0), and the sample is updated in the filtering step. However, the
time-invariant parameters represented by 6 are often unknown and must
be estimated. The particle filter method includes an additional artificial
random-walk process for 6 with small variances. With this added noise,
the particles and their associate 6, can be produced sequentially during
each period. The resulting samples can then be used to infer the prop-
erties of 6. However, this method involves only one iteration of the
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filtering procedure and its convergence property is not guaranteed.

In contrast, the convergence of iterated filtering to the maximum
likelihood estimation has been theoretically justified (Ionides et al.,
2011, 2015). Such filtering involves multiple repetitions of the particle
filtering procedure, during which the intensity of the random pertur-
bations of 6 decreases toward zero and the parameters converge to
maximum likelihood estimates. The IF2 proposed by Ionides et al.
(2015) is considerably more effective than the single-iteration particle
filter. We, therefore, use the IF2 algorithm in this study to estimate the
Factor TVP-MIDAS, Factor MIDAS-SV, and Factor TVP-MIDAS-SV
models. Table 1 shows the algorithm pseudocode for the model
estimation.

The T loop, spanning lines 4 through 10 in Table 1, constitutes a
fundamental particle filter used to first obtain the maximum likelihood
estimates of the TVPs 0 and to address model parameter stochasticity.
The particle filter is then repeated several times with decreasing
random-walk intensities (61.y) through the M loop. The random-walk
intensity, often called the temperature, decreases with successive
filtering iterations according to a cooling schedule. Thus, ¢, becomes
smaller as m increases. We focus on the initial value parameters, which
represent the initial states in this study and are a subset of the time-
invariant parameters of the Factor TVP-MIDAS model. Only the early
time points contain information about the initial states; therefore, these
parameters are usually estimated inconsistently with increasing length
of the time series. Therefore, the IVPs are only perturbed at time zero.
More details related to the iterated filtering method are given by lonides
et al. (2015).

3.3. Data

Fig. 1 shows the data obtained on monthly overnight tourist arrivals
into Hainan province from the Wind database to measure demand for
tourism (Yang et al., 2015; Zhang et al., 2017). Daily data are only
available on the Baidu search engine from January 2011; therefore, the
sample period is from January 2011 to December 2021. We convert the
number of tourist arrivals into a natural logarithm using the model
specifications used in earlier studies (Wen et al., 2021). Hainan province
is a popular tourist destination in China, recording more than 87 million
tourist arrivals in 2019, representing an annual growth rate of 9%
(Hainan Tourism Bureau, 2020). The initial COVID-19 outbreak in
December 2019 was detrimental to tourism demand. There were 64
million tourist visits in 2020, down 23% drop from the previous year.
The numbers gradually began to recover in February 2020; however, it
was one of the first provinces to reopen for tourism during the pandemic.
Tourist arrivals exceeded 81 million in 2021, almost returning to pre-
pandemic levels. Although the unexpected reemergence of COVID-19
later in the year resulted in another substantial drop in arrivals (Fig. 1).

We use two types of data as the independent variables to model and
forecast tourism demand recovery: monthly macroeconomic variables
and daily search query data. First, economic theory suggests that a
destination’s tourism demand is affected by its specific prices, prices in
competing destinations (substitute prices), and the country of origin, or
by the region’s tourism income (Song and Li, 2008; Song and Lin, 2010;
Song et al., 2003, 2009). Therefore, we include the relative tourism
price, Pyginan, of Hainan province and the tourism income of source re-
gions in mainland China (excluding Hainan), Y, as influencing factors in
the model. We calculate Pygingn based on the consumer price index in
Hainan compared to that of China as a whole and express it as
CPlyginan / CPIching. GDP, which is often used to measure tourism income,
is released quarterly with considerable time lags; therefore, we select
monthly industrial value added as a proxy for GDP (Chatziantoniou
et al., 2016). The substitute prices should be determined from the top
five tourist destinations in mainland China. However, Hainan province’s
particular climate and natural landscape offer tourists a unique tropical
island experience in mainland China. Thus, it is difficult for Hainan
province to identify substitute tourist destinations, so we omit substitute
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tourism planning and the COVID-19 pandemic. Each category

strongly correlated with the initial queries using functions in the

ported on Baidu; therefore, we manually check the availability of
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Fig. 2. Daily indexes and log of tourist arrivals.

prices (Li et al., 2017a). We include monthly time-varying seasonal
dummies to capture seasonality (Shen et al., 2009; Zhang et al., 2021).
Second, research has shown that relevant real-time data can be

indexes: (1) a tourism index constructed from the search queries related
to the six aspects of tourism planning mentioned earlier and (2) a
COVID-19 Index constructed using information from two sources: th