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Abstract
In this paper, we first study the projections onto the set of unit dual quaternions, and the set
of dual quaternion vectors with unit norms. Then we propose a power method for comput-
ing the dominant eigenvalue of a dual quaternion Hermitian matrix. For a strict dominant
eigenvalue, we show the sequence generated by the power method converges to the dominant
eigenvalue and its corresponding eigenvector linearly. For a general dominant eigenvalue,
we establish linear convergence of the standard part of the dominant eigenvalue. Based upon
these, we reformulate the simultaneous localization and mapping problem as a rank-one dual
quaternion completion problem. A two-block coordinate descent method is proposed to solve
this problem. One block has a closed-form solution and the other block is the best rank-one
approximation problem of a dual quaternionHermitianmatrix, which can be computed by the
power method. Numerical experiments are presented to show the efficiency of our proposed
power method.

Keywords Dual quaternion Hermitian matrix · Dominant eigenvalue · Power method ·
Simultaneous localization and mapping

Mathematics Subject Classification 15A66 · 15A18 · 65F15

1 Introduction

Dual quaternion numbers and dual quaternion matrices are important in robotic research, i.e.,
the hand-eye calibration problem [7], the simultaneous localization and mapping (SLAM)
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problem [1–3, 5, 23, 25], and the kinematic modeling and control [20]. In [19], Qi and Luo
studied right and left eigenvalues of square dual quaternion matrices. If a right eigenvalue
is a dual number, then it is also a left eigenvalue. In this case, this dual number is called
an eigenvalue of that dual quaternion matrix. They showed that the right eigenvalues of a
dual quaternion Hermitian matrix are dual numbers. Thus, they are eigenvalues. An n-by-n
dual quaternion Hermitian matrix was shown to have exactly n eigenvalues. It is positive
semidefinite, or positive definite, if and only if all of its eigenvalues are nonnegative, or
positive and appreciable, dual numbers, respectively. A unitary decomposition for a dual
quaternion Hermitian matrix was also proposed. In [20], it was shown that the eigenvalue
theory of dual quaternion Hermitian matrices plays an important role in the multi-agent
formation control. However, the numerical methods for computing the eigenvalues of a dual
quaternion Hermitian matrix is blank.

The power method is one of the state of the art numerical approaches for computing eigen-
values, such as matrix eigenvalues [11], matrix sparse eigenvalues [27], tensor eigenvalues
[12], nonnegative tensor eigenvalues [17], and quaternion matrix eigenvalues [15]. In this
paper, we propose a power method for computing the dominant eigenvalue of a dual quater-
nion Hermitian matrix. We first study the projections onto the set of unit dual quaternions
and the set of dual quaternion vectors with unit norms. Then we propose a power method
for computing the dual quaternion Hermitian matrix eigenvalues. This fills the blank of dual
quaternion matrix computation. We also define the convergence of a dual number sequence
and study the convergence properties of the power method we proposed.

Dual quaternion is a powerful tool for solving the SLAM problem. The SLAM problem
aims to build a map of the environment and to simultaneously localize within this map,
which is an essential skill for mobile robots navigating in unknown environments in absence
of external referencing systems such as GPS. An intuitive way to solve the SLAM problem
is via graph-based formulation [10]. One line of work reformulates SLAM as a nonlinear
least square and solves it by the Gauss-Newton method [13]. However, as this problem is
nonconvex andGauss-Newtonmay be trapped in local minimal points, a good initialization is
important [5]. Severalmethods have been proposed to address the issue of global convergence,
including the majorization minimization [9] and the Lagrangian duality [4]. In this paper, we
reformulate SLAM as a rank-one dual quaternion completion problem and propose a two-
block coordinate descentmethod to solve it. One block subproblem has a closed form solution
and the other block subproblem can be solved by the dominant eigenpair. This connects the
dual quaternion matrix theory with the SLAM problem.

The distribution of the remainder of this paper is as follows. In the next section, we review
some basic properties of dual quaternions and dual quaternion matrices. We also define the
convergence of a dual number sequence there. In Sect. 3, we show the projections onto the set
of unit dual quaternions, and the projection onto the set of dual quaternion vectors with unit
norms, can be obtained by normalization for appreciable numbers and vectors, respectively.
In Sect. 4, we show that the sequence generated by the power method converges linearly to
a strict dominant eigenvalue and eigenvector of a dual quaternion Hermitian matrix. For a
general dominant eigenvalue, we show the convergence and the linear convergence rate of the
standard part of the sequence to the standard part of the dominant eigenvalue. In Sect. 5, we
present numerical experiment results on computing the eigenvalues of Laplacian matrices.
In Sect. 6, we reformulate SLAM as a rank-one approximation model and present a block
coordinate descent method for solving it. Some final remarks are made in Sect. 7.
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2 Dual Quaternions and Dual QuaternionMatrices

2.1 Dual Quaternions

The sets of real numbers, dual numbers, quaternion, unit quaternion, dual quaternion, and
unit dual quaternion are denoted as R, D, Q, U, Q̂, and Û, respectively. Denote R3 as V.

A quaternion q̃ = [q0, q1, q2, q3] is a real four-dimensional vector. We use a tilde symbol
to distinguish a quaternion. We may also write q̃ = [q0, �q], where �q = [q1, q2, q3] ∈ V. See
[6, 7, 22]. If q0 = 0, then q̃ = [0, �q] is called a vector quaternion. Suppose that we have two
quaternions

p̃ = [p0, �p], q̃ = [q0, �q] ∈ Q, where p = [p1, p2, p3], q = [q1, q2, q3] ∈ V. The
addition of p̃ and q̃ is defined as p̃ + q̃ = [p0 + q0, �p + �q]. Denote the zero element of Q
as 0̃ := [0, 0, 0, 0] ∈ Q. The multiplication of p̃ and q̃ is defined by

p̃q̃ = [p0q0 − �p · �q, p0 �q + q0 �p + �p × �q],
where �p · �q is the dot product, i.e., the inner product of �p and �q, with

�p · �q ≡ �p��q = p1q1 + p2q2 + p3q3,

and �p × �q is the cross product of �p and �q , with
�p × �q = [p2q3 − p3q2,−p1q3 + p3q1, p1q2 − p2q1] = −�q × �p.

Thus, in general, p̃q̃ �= q̃ p̃, and we have p̃q̃ = q̃ p̃ if and only if �p × �q = �0, i.e., either
�p = �0 or �q = �0, or �p = α�q for some real number α. We can also represent the product of p̃
and q̃ as the product of a matrix and a vector, i.e.,

R p̃q̃ = M( p̃)R(q̃), where M( p̃) =

⎡
⎢⎢⎣

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤
⎥⎥⎦ , R(q̃) =

⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦ .

Furthermore, let p̃ = [ p̃1, . . . , p̃n]� ∈ Q
n and q̃ = [q̃1, . . . , q̃n]� ∈ Q

n be two quaternion
vectors, and P̃ = [p̃1, . . . , p̃n] ∈ Q

n×n be a quaternion matrix. Then there is

R(p̃�q̃) = M(p̃�)R(q̃) and RP̃q̃ = M(P̃)R(q̃), (1)

where M(p̃�) = [M( p̃1), . . . ,M( p̃n)] ∈ R
4×4n , R(p̃) = [R( p̃1)�, . . . ,R( p̃n)�]� ∈

R
4n×1, and M(P̃) = (M( p̃i j )) ∈ R

4n×4n .
The conjugate of a quaternion q̃ = [q0, q1, q2, q3] ∈ Q is defined as q̃∗ =

[q0,−q1,−q2,−q3]. Let 1̃ := [1, 0, 0, 0] ∈ Q. Then for any q̃ ∈ Q, we have q̃1̃ = 1̃q̃ = q̃,
i.e., 1̃ is the identity element of Q. For any p̃, q̃ ∈ Q, we have ( p̃q̃)∗ = q̃∗ p̃∗. Suppose that
p̃, q̃ ∈ Q, p̃q̃ = q̃ p̃ = 1̃. Then we say that p̃ is invertible and its inverse is p̃−1 = q̃.

For a quaternion q̃ = [q0, q1, q2, q3] ∈ Q, its magnitude is defined by

|q̃| =
√
q20 + q21 + q22 + q23 .

If |q̃| = 1, then it is called a unit quaternion. If p̃, q̃ ∈ U, then p̃q̃ ∈ U. For any q̃ ∈ U, we
have q̃q̃∗ = q̃∗q̃ = 1̃, i.e., q̃ is invertible and q̃−1 = q̃∗. Furthermore,we have |q̃| = ‖R(q̃)‖.
For a quaternion vector q̃ = [q̃1, . . . , q̃n]� ∈ Q

n , we then have ‖q̃‖ = ‖R(q̃)‖.
A dual number a = ast + aIε consists of the standard part ast ∈ R and the dual part

aI ∈ R. The symbol ε is the infinitesimal unit. It satisfies ε �= 0 and ε2 = 0. If ast �= 0, then
a is appreciable, otherwise, a is infinitesimal [18].

123



   21 Page 4 of 23 Journal of Scientific Computing           (2024) 100:21 

For a = ast + aIε, b = bst + bIε ∈ D, the addition of a and b is defined as

a + b = ast + bst + (aI + bI)ε,

the multiplication of a and b is defined as

ab = astbst + (astbI + aIbst)ε,

and the division of a and b, when ast �= 0, or ast = 0 and bst = 0 is defined as

bst + bIε

ast + aIε
=
{

bst
ast

+
(
bI
ast

− bst
ast

aI
ast

)
ε, if ast �= 0,

bI
aI + cε, if ast = 0, bst = 0,

where c ∈ R is an arbitrary real number. One may show that the division of dual numbers is
the inverse operation of the multiplication of dual numbers.

The zero element of D is 0D := 0 + 0ε. The identity element of D is 1D = 1 + 0ε. The
absolute value of a ∈ D is defined in [18] as

|a| =
{ |ast| + sgn(ast)aIε, if ast �= 0,

|aI |ε, otherwise.

When a �= 0D , we have a
|a| = sgn(ast) if ast �= 0, and a

|a| = sgn(aI) + cε for any c ∈ R if
ast = 0.

The total order of dual numbers was defined in [18]: we say that a > b if ast > bst, or
ast = bst and aI > bI . Let a > 0D be a nonnegative dual number. Then the square root of
a is defined by [18]

√
a = √

ast + aI
2
√
ast

ε.

Let {ak = ak,st + ak,Iε : k = 1, 2, . . .} be a dual number sequence. We say that this
sequence is convergent and has a limit a = ast + aIε if both its standard part sequence
{ak,st : k = 1, 2, . . .} and its dual part sequence {ak,I : k = 1, 2, . . .} are convergent and
have limits ast and aI respectively.

Given a dual number sequence {ak : k = 1, 2, . . .} ⊂ D and a real number sequence
{ck : k = 1, 2, . . .} ⊂ R, we introduce a big OD notation as follows,

ak = OD(ck) if ak,st = O(ck) and ak,I = O(ck). (2)

Clearly, in this case, if the real number sequence {ck : k = 1, 2, . . .} is convergent, then the
dual number sequence {ak : k = 1, 2, . . .} is also convergent. Furthermore, if ck = O(ckh(k))
for a real positive number c < 1 and apolynomialh(k), thenwedenote ck = Õ(ck). Similarly,
we denote

ak = ÕD(ck) if ak,st = Õ(ck) and ak,I = Õ(ck). (3)

A dual quaternion q̂ = q̃st + q̃Iε consists of two quaternions q̃st, the standard part of q̂,
and q̃I , the dual part of q̂. We use a hat symbol to distinguish a dual quaternion. If q̃st �= 0̃,
then q̂ is appreciable, otherwise, q̂ is infinitesimal [18].

Let p̂ = p̃st + p̃Iε, q̂ = q̃st + q̃Iε ∈ Q̂. Then the sum of p̂ and q̂ is

p̂ + q̂ = ( p̃st + q̃st) + ( p̃I + q̃I)ε

and the product of p̂ and q̂ is

p̂q̂ = p̃stq̃st + ( p̃stq̃I + p̃I q̃st)ε.

123



Journal of Scientific Computing           (2024) 100:21 Page 5 of 23    21 

Again, in general, p̂q̂ �= q̂ p̂. The conjugate of p̂ = p̃st + p̃Iε is p̂∗ = p̃∗
st + p̃∗

Iε. Denote
0̂ = 0̃ + 0̃ε and 1̂ = 1̃ + 0̃ε.

A dual quaternion q̂ = q̃st + q̃Iε is called a unit dual quaternion if

|q̃st| = 1 and q̃stq̃
∗
I + q̃I q̃∗

st = 0̃.

The magnitude of a dual quaternion q̂ ∈ Q̂ is [18]

|q̂| =
{

|q̃st| + sc(q̃∗
st q̃I )

|q̃st | ε, if q̃st �= 0̃,
|q̃I |ε, otherwise.

Here, sc(q̃) = 1
2 (q̃ + q̃∗) is the scalar part of q̃ .

For any dual quaternion number q̂ = q̃st + q̃Iε and dual number a = ast + aIε with
ast �= 0, or ast = 0 and q̃st = 0̃, there is

q̃st + q̃Iε

ast + aIε
=
{

q̃st
ast

+
(
q̃I
ast

− q̃st
ast

aI
ast

)
ε, if ast �= 0,

q̃I
aI + c̃ε, if ast = 0, q̃st = 0̃,

where c̃ ∈ Q is an arbitrary quaternion number.

2.2 Dual QuaternionMatrices

We denote the set of m-by-n real, quaternion, unit quaternion, dual quaternion, and unit
dual quaternion matrices as Rm×n , Qm×n , Um×n , Q̂m×n , and Û

m×n , respectively. We use
Õm×n and Ôm×n to denote the m-by-n zero quaternion and zero dual quaternion matrices,
and Ĩm×m and Îm×m to denote the m-by-m identity quaternion and identity dual quaternion
matrices, respectively. Given Q̂ ∈ Q̂

m×n , if Q̃st �= Õm×n , then Q̂ is appreciable, otherwise,
Q̂ is infinitesimal.

The 2-norm of a dual quaternion vector x̂ = (x̂i ) ∈ Q̂
n×1 is

‖x̂‖2 =
⎧⎨
⎩

√∑n
i=1|x̂i |2, if x̃st �= Õn×1,√∑n

i=1|x̃i,I |2ε, if x̃st = Õn×1 and x̂ = x̃Iε.

A vector x̂ = (x̂i ) ∈ Û
n×1 is called a unit dual quaternion vector if each element in x̂

is a unit dual quaternion number. The set of n × 1 quaternion vectors with unit 2-norms is
denoted by Q

n×1
2 . A matrix Q̂ = (q̂i, j ) ∈ Û

m×n is called a unit dual quaternion matrix if
each element in Q̂ is a unit dual quaternion number.

Given a matrix Q̂ = (q̂i, j ) ∈ Q̂
m×n , the transpose of Q̂ is Q̂� = (q̂ j,i ) ∈ Q̂

n×m , and the
conjugate transpose of Q̂ is Q̂∗ = (q̂∗

j,i ) ∈ Q̂
n×m . If Q̂ = Q̂∗, then it is a dual quaternion

Hermitian matrix, and both its standard part and infinitesimal part are quaternion Hermitian
matrices.

The F-norm of a dual quaternion matrix Q̂ = (Q̂i j ) ∈ Q̂
m×n is

‖Q̂‖F =
{

‖Q̃st‖F + sc(tr(Q̃∗
stQ̃I ))

‖Q̃st‖F ε, if Q̃st �= Õm×n,

‖Q̃I‖Fε, if Q̃st = Õm×n and Q̂ = Q̃Iε,
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and the F∗-norm is

‖Q̂‖F∗ =
{

‖Q̃st‖F + ‖Q̃I‖2
2‖Q̃st‖F ε, if Q̃st �= Õm×n,

‖Q̃I‖Fε, if Q̃st = Õm×n and Q̂ = Q̃Iε,

For convenience in the numerical experiments, we define the 2R-norm of a dual quaternion
vector x̂ = (x̂i ) ∈ Q̂

n×1 as

‖x̂‖2R =
√

‖x̃st‖22 + ‖x̃I‖22,
and the FR-norm of a dual quaternion matrix Q̂ = (q̂i j ) ∈ Q̂

m×n as

‖Q̂‖FR =
√

‖Q̃st‖2F + ‖Q̃I‖2F ,

respectively. The 2R-norm and FR-norm here are not norms since they do not satisfy the
scaling condition of norms. For instance, let α = 1 + ε, then ‖α‖2R = √

2, and

‖αx̂‖FR =
√

‖x̃st‖2F + ‖x̃st + x̃I‖2F �= √
2
√

‖x̃st‖22 + ‖x̃I‖22 = ‖α‖2R‖x̂‖FR .

We only use the 2R-norm and FR-norm to present the numerical results since they are real
numbers, while the 2-norm and F-norm are dual numbers that are more complicated.

Let A ∈ Q̂
n×n , x ∈ Q̂

n be appreciable, and λ ∈ Q̂. If

Ax = xλ, (4)

then λ is called a right eigenvalue of A, with x as its corresponding right eigenvector. If

Ax = λx, (5)

then λ is called a left eigenvalue of A, with a left eigenvector x. It was proved in [19]
that all the right eigenvalues of a dual quaternion Hermitian matrix A are dual numbers. As
dual numbers are commutative with dual quaternions, they are also left eigenvalues. Thus,
we may simply call them eigenvalues of A. Note that A may still have other left eigenvalues,
which are not dual numbers. See an example of a quaternion matrix in [28].

3 Projection Onto the Set of Dual Quaternions with Unit Norms

Given a quaternion number q̃ �= 0̃ and a quaternion vector q̃ �= Õn×1, we have

PU(q̃) = q̃

|q̃| and P
Q
n×1
2

(q̃) = q̃
‖q̃‖2 .

Here,Qn×1
2 is the set of n dimensional quaternion vectors with unit 2-norms. In the following,

wewill show that for the dual quaternionnumber and the dual quaternionvector, the projection
has a similar formulation.

Theorem 1 Given a dual quaternion number q̂ = q̃st + q̃Iε ∈ Q̂, we have the following
conclusions.

(i) If q̃st �= 0̃, the normalization of q̂ is the projection of q̂ onto the unit dual quaternion set.
Namely,

û = q̂

|q̂| with ũst = q̃st
|q̃st| , ũI = q̃I

|q̃st| − q̃st
|q̃st| sc

(
q̃∗
st

|q̃st|
q̃I
|q̃st|

)
(6)
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is a unit dual quaternion number and

û ∈ argmin
v̂∈Û

|v̂ − q̂|2. (7)

(ii) If q̃st = 0̃ and q̃I �= 0̃, then the projection of q̂ onto the unit dual quaternion set is
û = ũst + ũIε, where

ũst = q̃I
|q̃I | , ũI is any quaternion number satisfying sc(q̃∗

I ũI) = 0. (8)

Proof (i) The normalization formula in equation (6) follows from

q̂

|q̂| = q̃st + q̃Iε

|q̃st| + sc(q̃∗
st q̃I )

|q̃st | ε
= q̃st

|q̃st| +
(

q̃I
|q̃st| − q̃st

|q̃st| sc
(

q̃∗
st

|q̃st|
q̃I
|q̃st|

))
ε.

By direct computations, we have ũ∗
stũst = 1̃ and ũ∗

stũI + ũ∗
I ũst = 0. Furthermore, by

|v̂ − q̂|2 = |ṽst − q̃st|2 + 2sc((ṽst − q̃st)
∗(ṽI − q̃I))ε

and the definition of the total order of dual numbers, we have

ũst = argmin
ṽst∈U

|ṽst − q̃st|2 = q̃st
|q̃st| . (9)

Moreover, we have sc((ũst − q̃st)∗(ṽI − q̃I)) = −sc((ũst − q̃st)∗q̃I) for all ṽI satisfying
sc(q̃∗

st ṽI) = 0. In other words, any û with the standard part ũst = q̃st
|q̃st | and the infinitesimal

part satisfying sc(q̃∗
st ũI) = 0 is an optimal solution. Hence, we conclude that û in (6) is an

optimal solution of (7).
(i i) When q̃st = 0, we have

|v̂ − q̂|2 = |ṽst|2 + 2sc(ṽ∗
st(ṽI − q̃I))ε = 1 − 2sc(ṽ∗

stq̃I)ε

for any v̂ ∈ Û. By the definition of the total order of dual numbers, there is

ũst = argmin
ṽst∈U

−sc(ṽ∗
stq̃I).

Hence, ũst = q̃I|q̃I | . As the objective function is independent of ṽI , the infinitesimal part of û
can be any quaternion number satisfying sc(q̃∗

I ũI) = 0. This completes the proof. ��
For problem (7), any ũI satisfying sc(q̃∗

stũI) = 0 is an optimal solution. However, the
choice of ũI in (6) is geometric meaningful, as shown in the following proposition.

Proposition 2 Suppose q̃st �= 0̃. Then ũI defined by (6) is a solution to the following
optimization problem,

min
ṽ∈Q

∣∣∣∣ṽ − q̃I
|q̃st|

∣∣∣∣
2

s.t. sc(ṽ∗q̃st) = 0. (10)

Furthermore, û = q̂
|q̂| is the optimal solution to the following problem

û = argmin
v̂∈Û

|ṽst − q̃st|2 +
∣∣∣∣ṽI − q̃I

|q̃st|
∣∣∣∣
2

ε.
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Proof Problem (10) is a convex quaternion optimization problem [21] since the objective
function is convex and the constraint is linear. Then it follows from the first-order optimality
conditions given in Theorem 4.3 of [21], there is a Lagrange multiplier λ ∈ R such that

ṽ − q̃I
|q̃st| + λq̃st = 0 and sc(ṽ∗q̃st) = 0.

Bymultiplying q̃∗
st at the both sides of the first equation, there is λ = sc(q̃∗

st q̃I )

|q̃st |3 . Consequently,
we have

ṽ = q̃I
|q̃st| − λq̃st = q̃I

|q̃st| − sc(q̃∗
stq̃I)

|q̃st|3 q̃st.

This completes the proof.
��

Similarly, we can show the projection onto the set of dual quaternion vectors with unit
norms also have closed-form solutions.

Theorem 3 Given a dual quaternion vector q̂ ∈ Q̂
n×1, we have

(i) If q̃st �= Õn×1, the normalization of q̂ is the projection of q̂ onto the set of dual quaternion
vectors with unit norms. Namely,

û = q̂
‖q̂‖2 with ũst = q̃st

‖q̃st‖2 , ũI = q̃I
‖q̃st‖2 − q̃st

‖q̃st‖2 sc
(

q̃∗
st

‖q̃st‖2
q̃I

‖q̃st‖2
)

(11)

is a dual quaternion vector with unit norm and

û ∈ argmin
v̂∈Q̂n×1

2

‖v̂ − q̂‖22.

(ii) If q̃st = Õn×1, the projection of q̂ onto the set of dual quaternion vectors with unit norms
is û = ũst + ũIε satisfying

ũst = q̃I
‖q̃I‖2 , ũI is any quaternion satisfying sc(q̃∗

I ũI) = 0.

Proof The proof of this theorem is similar to the proof of Theorem 1. We do not repeat it
here. ��

Similar to Proposition 2, we have the following result.

Proposition 4 If q̃st �= Õn×1, ũI in (11) is a solution to the following optimization problem,

min
ṽ∈Qn×1

2

∥∥∥∥ṽ − q̃I
‖q̃st‖2

∥∥∥∥
2

2
s.t. sc(ṽ∗q̃st) = 0.

Furthermore, û = q̂
‖q̂‖2 is the optimal solution to the following problem

û = argmin
v̂∈Q̂n×1

2

‖ṽst − q̃st‖22 +
∥∥∥∥ṽI − q̃I

‖q̃st‖2
∥∥∥∥
2

2
ε.

Proof The proof is similar to that of Proposition 2 and we omit it here. ��
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4 The PowerMethod for Computing the Dominant Eigenvalue of a Dual
Quaternion HermitianMatrix

For a quaternion matrix Q̃, the power method can return the eigenvalue with the maximum
absolute value and its associated eigenvector [15]. We now study the power method for dual
quaternion Hermitian matrices.

4.1 The Dominant Eigenvalues of Dual Quaternion HermitianMatrices

Based on Theorem 4.2 in [19], a dual quaternion Hermitian matrix Q̂ ∈ Q̂
n×n has exactly

n eigenvalues, which are dual numbers. It also has n eigenvectors û1, . . . , ûn , which are
orthonormal vectors, i.e.,

Q̂ûi = ûiλi and û∗
i û j =

{
1̂, if i = j;
0̂ otherwise,

∀ i, j,= 1, . . . , n.

Furthermore, {ûi : i = 1, . . . , n} forms an orthonormal basis of Q̂n×1.
For any unit dual quaternion numbers q̂i ∈ Û, i = 1, . . . , n, if we multiply q̂i on the right

of ûi , there is

Q̂ûi q̂i = ûiλi q̂i = (ûi q̂i )λi and q̂∗
i û

∗
i û j q̂ j =

{
1̂, if i = j;
0̂ otherwise

∀ i, j,= 1, . . . , n, (12)

where the second equality follows from that a dual number is commutative with a dual
quaternion matrix. Hence, for a dual quaternion Hermitian matrix,

the unit norm eigenvectors {ûi }ni=1, which form an orthonormal basis of Q̂n×1, are not
unique.

Suppose that we have a dual quaternion Hermitian matrix Q̂ ∈ Q̂
n×n . We say that an

eigenvalue λ1 of Q̂ is a dominant eigenvalue of Q̂, and an eigenvector corresponding to λ1
a dominant eigenvector, if for any eigenvalue λ j of Q̂, we have

|λ1,st | ≥ |λ j,st |, ∀ j = 2, . . . , n.

We say that an eigenvalue λ1 of Q̂ is a strict dominant eigenvalue of Q̂, with multiplicity l,
if Q̂ has eigenvalues λ j for j = 1, . . . , n, and they satisfy

λ1 = · · · = λl and |λ1,st| > |λl+1,st| ≥ · · · ≥ |λn,st| ≥ 0. (13)

Assumption A The standard parts of the dominant eigenvalues have the same sign.
If Q̂ has a strict dominant eigenvalue, then Q̂ satisfies Assumption A. On the other hand,

if Q̂ does not satisfy Assumption A. Let P̂ = Q̂+ αÎn×n , where α is a nonzero real number.
Then P̂ must satisfy Assumption A, and λ is an eigenvalue of Q̂ if and only if λ + α is an
eigenvalue of P̂. Thus, it is adequate that we may assume that Q̂ satisfies Assumption A.

Given any initial dual quaternion vector v̂(0) with unit norm, the power method computes

ŷ(k) = Q̂v̂(k−1), λ(k−1) = (v̂(k−1))∗ŷ(k), v̂(k) = ŷ(k)

‖ŷ(k)‖2 (14)

iteratively. This process is repeated until convergent or the maximal iteration number is
reached.
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Algorithm1The powermethod for computing the dominant eigenvalues of a dual quaternion
Hermitian matrix
Require: The Hermitian matrix Q̂, the initial point v̂(0), the maximal iteration number kmax, and the tolerance

δ.
for k = 1, . . . , kmax do

Update ŷ(k) by ŷ(k) = Q̂v̂(k−1).
Update λ(k−1) = (v̂(k−1))∗ŷ(k).
if ‖ŷ(k) − v̂(k−1)λ(k−1)‖2R ≤ δ × ‖Q̂‖FR then

Stop.
end if

Update v̂(k) by v̂(k) = ŷ(k)

‖ŷ(k)‖2 .
end for
Output: v̂(k−1) and λ(k).

4.2 Computing the Strict Dominant Eigenvalues by the Power Method

Similar to the power method for the real matrices and quaternion matrices, we show v̂(k)

converges to the eigenvector corresponding to a strict dominant eigenvalue linearly.

Theorem 5 Given a dual quaternion Hermitian matrix Q̂ ∈ Q̂
n×n and a dual quaternion

vector v̂(0) = ∑n
j=1 û j α̂ j with unit norm, where û1, . . . , ûn are orthonormal eigenvectors

of Q̂. Suppose
∑l

j=1 |α̃ j,st| �= 0, Q̃st �= Õn×n, and Q̂ has a strict dominant eigenvalue
with multiplicity l that satisfies (13). Then the sequence generated by the power method (14)
satisfies

v̂(k) = sk
l∑

j=1

û j γ̂ j

(
1D + ÕD

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
))

, (15)

where s = sgn(λ1,st), γ̂ j = α̂ j√∑l
i=1 |α̂i |2

, and

λ(k) =
(
v̂(k)

)∗
ŷ(k+1) = λ1

(
1D + ÕD

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
2k
))

.

In other words, the sequence v̂(k)sk converges to a strict dominant eigenvector
∑l

j=1 û j γ̂ j at

a rate of ÕD

(∣∣∣ λl+1,st
λ1,st

∣∣∣k
)
and the sequence λ(k) converges to the strict dominant eigenvalue

λ1 at a rate of ÕD

(∣∣∣ λl+1,st
λ1,st

∣∣∣2k
)
.

Proof Let v̂(0) be a dual quaternion vector with unit norm and v̂(0) = ∑n
j=1 û j α̂ j , where

α̂ j , j = 1, . . . , n are dual quaternion numbers,
∑n

j=1 α̂∗
j α̂ j = 1̂, and

∑l
j=1 |α̃ j,st| �= 0̃.

Combing this with (14), we have

v̂(k) =
∑n

j=1 û jλ
k
j α̂ j√∑n

j=1 |λkj α̂ j |2
and ŷ(k+1) =

∑n
j=1 û jλ

k+1
j α̂ j√∑n

j=1 |λkj α̂ j |2
. (16)

By direct derivations, we have |λkj α̂ j | = |λkj ||α̂ j |.
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Furthermore, there is

λkj = λkj,st + kλk−1
j,st λ j,Iε = λkj,st(1 + kβ jε) and |λkj | = |λ j,st|k(1 + kβ jε),

where β j = λ−1
j,stλ j,I .

When k goes to infinity, we have
√√√√

n∑
j=1

|λkj α̂ j |2 − |λ1|k
√√√√

l∑
j=1

|α̂ j |2

=
∑n

j=l+1 |λkj α̂ j |2√∑n
j=1 |λkj α̂ j |2 + |λ1|k

√∑l
j=1 |α̂ j |2

=
∑n

j=l+1 |λ j,st|2k(1 + 2kβ jε)|α̂ j |2(∑n
j=1 |λ j,st|2k(1 + 2kβ jε)|α̂ j |2

)1/2 + |λ1,st|k(1 + kβ1ε)

√∑l
j=1 |α̂ j |2

= OD(|λl+1,st|k),
where OD(·) is defined by (2). Hence,

λkj α̂ j√∑n
j=1 |λkj α̂ j |2

= λkj α̂ j

|λ1|k
√∑l

j=1 |α̂ j |2 + OD(|λl+1,st|k)
.

If j ∈ {1, . . . , l}, it holds that
λk1α̂ j√∑n
j=1 |λkj α̂ j |2

= λk1α̂ j

|λ1|k
√∑l

i=1 |α̂i |2
+ ÕD

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
)

= sk γ̂ j + ÕD

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
)

.

Here, γ̂ j = α̂ j√∑l
i=1 |α̂i |2

,

and the second equality follows from
λk1

|λ1|k = sk . Furthermore, if j ≥ l + 1, we have

|λkj α̂ j |√∑n
j=1 |λkj α̂ j |2

= |λ j |k |α̂ j |
|λ1|k

√∑l
j=1 |α̂ j |2 + OD(|λl+1,st|k)

= ÕD

(∣∣∣∣
λ j,st

λ1,st

∣∣∣∣
k
)

.

Consequently, (15) holds true and v̂(k)sk converges to
∑l

j=1 û j γ̂ j . Since

Q̂
l∑

j=1

û j γ̂ j =
l∑

j=1

λ j û j γ̂ j = λ1

l∑
j=1

û j γ̂ j ,

and
∥∥∥∥∥∥

l∑
j=1

û j γ̂ j

∥∥∥∥∥∥

2

F

=
⎛
⎝

l∑
j=1

û j γ̂ j

⎞
⎠

∗ ⎛
⎝

l∑
j=1

û j γ̂ j

⎞
⎠ =

l∑
j=1

γ̂ ∗
j γ̂ j = 1D,
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we have that
∑l

j=1 û j γ̂ j is also an eigenvector corresponding to λ1. Furthermore,

λ(k) = (v̂(k))∗ŷ(k+1) =
∑n

j=1 λ2k+1
j |α̂ j |2∑n

j=1 |λkj α̂ j |2
= λ1

(
1D + ÕD

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
2k
))

.

This completes the proof. ��

4.3 General Dominant Eigenvalues

In general, we may assume that Q̂ satisfies Assumption A.
Then we show the convergence of the standard part of the dominant eigenvalue.

Lemma 6 Given a dual quaternion Hermitian matrix Q̂ ∈ Q̂
n×n and a dual quaternion

vector v̂(0) = ∑n
j=1 û j α̂ j with unit norm, where û1, . . . , ûn are orthonormal eigenvectors

of Q̂. Suppose Q̃st �= Õn×n,
∑l

j=1 |α̃ j,st|2 �= 0, and (12) holds.
Then for the sequence generated by the power method (14), we have

ṽ(k)
st = sk

l∑
j=1

ũ j,stγ̃ j,st

(
1 + O

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
))

, (17)

where s = sgn(λ1,st), γ̃ j,st = α̃ j,st√∑l
i=1 |α̃i,st |2

, and

λ
(k)
st =

(
ṽ(k)
st

)∗
ỹ(k+1)
st = λ1,st

(
1 + O

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
2k
))

.

In other words, the sequence ṽ(k)
st sk converges to

∑l
j=1 ũ j,stγ̃ j,st at a rate of O

(∣∣∣ λl+1,st
λ1,st

∣∣∣k
)
,

and the sequence λ
(k)
st converges to λ1,st at a rate of O

(∣∣∣ λl+1,st
λ1,st

∣∣∣2k
)
.

Proof For the standard part of the coefficient of û j in the sequence v̂(k) presented in (16), we
have

λkj,stα̃ j,st√∑n
j=1 |λkj,stα̃ j,st|2

= λkj,stα̃ j,st

|λ1,st|k
√∑l

j=1 |α̃ j,st|2 + O(|λl+1,st|k)
.

If j ∈ {1, . . . , l}, it holds that
λkj,stα̃ j,st√∑n
j=1 |λkj,stα̃ j,st|2

= λk1,stα̃ j,st

|λ1,st|k
√∑l

j=1 |α̃ j,st|2
+ O

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
)

= sk γ̃ j,st + O

(∣∣∣∣
λl+1,st

λ1,st

∣∣∣∣
k
)

.

Here, γ̃ j,st = α̃ j,st√∑l
i=1 |α̃i,st |2

. If j ≥ l + 1, we have

λkj,stα̃ j,st√∑n
j=1 |λkj,stα̃ j,st|2

= λkj,stα̃ j,st

|λ1,st|k
√∑l

j=1 |α̃ j,st|2 + O(|λl+1,st|k)
= O

(∣∣∣∣
λ j,st

λ1,st

∣∣∣∣
k
)

.
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Consequently, (17) holds true and ṽ(k)
st sk converges to

∑l
j=1 ũ j,stγ̃ j,st. Since

Q̃st

l∑
j=1

ũ j,stγ̃ j,st =
l∑

j=1

λ j,stũ j,stγ̃ j,st = λ1,st

l∑
j=1

ũ j,stγ̃ j,st,

and
∥∥∥∥∥∥

l∑
j=1

ũ j γ̃ j,st

∥∥∥∥∥∥

2

F

=
⎛
⎝

l∑
j=1

ũ j,stγ̃ j,st

⎞
⎠

∗ ⎛
⎝

l∑
j=1

ũ j,stγ̃ j,st

⎞
⎠ =

l∑
j=1

γ̃ ∗
j,stγ̃ j,st = 1,

we have
∑l

j=1 ũ j,stγ̃ j,st is also an eigenvector of Q̃st corresponding to λ1,st. Furthermore,

λ
(k)
st = (ṽ(k)

st )∗Q̃st ṽ
(k)
st converges to λ1,st. This completes the proof. ��

In the general case, the dual parts of v̂(k) may not converge. We now give an example to
illustrate this phenomenon.

Example 4.1 Let Â = Ast + AIε, where

Ast =
[
1 0
0 1

]
and AI =

[
0 1
1 0

]
. (18)

Then Â is a dual number Hermitian matrix.
By the power method, if v̂(0) = [1, 0]�, then there is v̂(k) = [1, kε]�, λ(k) = 1; if

v̂(0) = [0, 1]�, then there is v̂(k) = [kε, 1]�, λ(k) = 1. In the both cases, ṽ(k)
I does not

converge.
If the dual part of the sequence generated by the power method does not converge, Algo-

rithm 1 can still return the standard part of the dominant eigenvalue λst successfully. Then
we may compute λI , ũst, and ũI via the definition [19], i.e.,

(Q̃st − λst Ĩ )ũst = 0,

(Q̃st − λst Ĩ )ũI + Q̃I ũst = λI ũst, (19)

ũ∗
stũst = 1.

Here, the last equation is applied to guarantee that û is appreciable. This is a quaternion
nonlinear system, and may not be easy to solve. Fortunately, λI is a real number. By (1), we
can reformulate (19) into

M(Q̃st − λst Ĩ )R(ũst) = 0,

M(Q̃st − λst Ĩ )R(ũI) + M(Q̃I)R(ũst) = λIR(ũst), (20)

R(ũst)�R(ũst) = 1.

Equation (20) is a real nonlinear system, and may be solved by many numerical algorithms
such as the Levenberg–Marquardt (LM) method [8]. It should be noted that λst is already
known as the standard part of the dominant eigenvalue by our power method, hence the LM
method may return a dominant eigenpair of Q̂. Otherwise, the LM method may return any
eigenpair of Q̂.

For Example 4.1, by the LM method, we may obtain the eigenpairs λ1 = 1 + ε, û1 =[√
2
2 ,

√
2
2

]� + ũ1,Iε, and λ2 = 1− ε, û2 =
[√

2
2 ,−

√
2
2

]� + ũ2,Iε, where ũ1,I and ũ2,I are

arbitrary quaternion vectors.
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Algorithm 2 Computing all appreciable eigenvalues of a dual quaternion Hermitian matrix

Require: Q̂, the dimension n, and the tolerance γ .
Q̂1 = Q̂.
for k = 1, . . . , n do

Compute λk , ûk as the dominant eigenpair of Q̂k by Algorithm 1.
Update Q̂k+1 = Q̂k − λk ûk û∗

k .

if ‖Q̃k+1,st‖F ≤ γ then
Stop.

end if
end for
Output: Eigenvalues {λi }ki=1 and eigenvectors {ûi }ki=1.

4.4 All Appreciable Eigenvalues of a Dual Quaternion HermitianMatrix

By Theorem 7.1 in [16], the Eckart–Young-like theorem holds for dual quaternion matrices.
If Q̂ ∈ Q̂

n×n is a dual quaternion Hermitian matrix, then by Theorem 4.1 in [19], Q̂ can be
rewritten as

Q̂ = Û�Û∗ =
n∑

i=1

λi ûi û∗
i , (21)

where Û = [û1, . . . , ûn] ∈ Q̂
n×n is a unitary matrix, � = diag(λ1, . . . , λn) ∈ D

n×n is a
diagonal dual matrix, and λi , i = 1, . . . , n are in the descending order.

Denote Q̂k = Q̂−∑k−1
i=1 λi ûi û∗

i . Then λk, ûk is a dominant eigenpair of Q̂k . If λk,st �= 0,

λk, ûk can be computed by implementing the power method on Q̂k . By repeating this process
from k = 1 to n, we get all appreciable eigenvalues and their corresponding eigenvectors.

The process is summarized in Algorithm 2.

Lemma 7 Givenadual quaternionHermitianmatrix Q̂ ∈ Q̂
n×n. Suppose that all appreciable

eigenvalues λi either equal each other or have distinct standard parts. Then Algorithm 2 can
return all appreciable eigenvalues and their corresponding eigenvectors.

Proof This lemma follows directly from (21) and Theorem 5. ��

4.5 Relationship with the Best Rank-One Approximation

Lemma 8 Given an appreciable dual quaternionHermitianmatrix Q̂ ∈ Q̂
n×n. The dominant

eigenvalue and eigenvector formulate the best rank-one approximation of Q̂ under the square
of the F-norm, i.e.,

λ1, û1 ∈ argmin
λ∈D,û∈Q̂n

2

‖Q̂ − λûû∗‖2F . (22)

Proof By the ordering of the eigenvalues, there is

λ1,st, ũ1,st ∈ argmin
λ∈R,ũ∈Qn×1

2

‖Q̃st − λũũ∗‖2F .

Furthermore, by

‖Q̂ − λûû∗‖2F = ‖Q̃st − λstũstũ∗
st‖2F
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+2sc
(
tr
(
(Q̃st − λstũstũ∗

st)
∗(Q̃I − λI ũstũ∗

st − λstũI ũ∗
st − λstũstũ∗

I)
))

ε,

Q̃stũ1,st = λ1,stũ1,st, ũ∗
1,stũ1,st = 1̃, and sc(ũ∗

1,stũI) = 0, we have

sc
(
tr
(
(Q̃st − λ1,stũ1,stũ∗

1,st)
∗(Q̃I − λI ũ1,stũ∗

1,st − λ1,stũI ũ∗
1,st − λ1,stũ1,stũ∗

I)
))

= sc(tr(Q̃stQ̃I)) − λ1,stλI − λ21,stsc(ũ
∗
1,stũI + ũ∗

I ũ1,st)

−λ1,stũ∗
1,stQ̃I ũ1,st + λ1,stλI + λ21,stsc(ũ

∗
1,stũI + ũ∗

I ũ1,st)

= sc(tr(Q̃stQ̃I)) − λ1,stũ∗
1,stQ̃I ũ1,st,

which is invariant of ũI .
Hence, λ1 and û1 is an optimal solution of (22). This completes the proof. ��

5 Numerical Experiments for Computing Eigenvalues

In this section, we first show the numerical experiments for computing all appreciable
eigenvalues of the Laplacian matrices of circles and random graphs.

5.1 Eigenvalues of LaplacianMatrices of Circles

In themulti-agent formation control, the Laplacianmatrix of themutual visibility graph plays
a key role [20]. Given a vector q̂ ∈ Û

n×1 and a graph G = (V , E) with n vertices and m
edges, the Laplacian matrix of G is defined as follows,

L̂ = D − Â, (23)

where D is a diagonal real matrix where the i-th diagonal element is equal to the degree of
the i-th vertex, and Â = (âi j ),

âi j =
{
q̂∗
i q̂ j , if (i, j) ∈ E,

0, otherwise.

In the multi-agent formation control, q̂i ∈ Û is the configurations of the i-th rigid body,
âi j ∈ Û is the relative configuration of the rigid bodies i and j , and Â is the relative
configuration adjacency matrix.

Consider a five-point circle as shown in Fig. 1. Suppose q̂ is a random unit dual quaternion
vector as follows,

q̂ =

⎡
⎢⎢⎢⎣

−0.4568 −0.0602 −0.0555 −0.8858
0.6545 −0.5512 0.0023 −0.5175
0.3086 0.7100 −0.5253 −0.3533

−0.5730 0.1223 −0.6611 −0.4688
−0.5851 0.0650 −0.1431 −0.7956

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0.4701 −0.6467 0.7286 −0.2441
0.1108 −0.4486 0.6871 0.6210

−0.6448 −0.1852 −0.2048 −0.6311
−0.8584 −0.2427 1.2512 −0.7785
−0.2806 0.4410 0.1730 0.2113

⎤
⎥⎥⎥⎦ ε.

We now compute all appreciable eigenvalues of L̂ by Algorithm 2. After 23, 25, 1, and 1
iterations respectively, we get four eigenvalues 3.618, 3.618, 1.382, and 1.382. Then Algo-
rithm 2 is stopped since the stopping criterion ‖L̃5,st‖F ≤ 10−6 × ‖L̃st‖F is satisfied and
L̃5,I is also close to a zero matrix. Here, L̂5 = L̂−∑4

k=1 λk ûk û∗
k . Hence, all five eigenvalues

of L̂ are:

[3.6180 + 0ε, 3.6180 + 0ε, 1.3820 + 0ε, 1.3820 + 0ε, 0 + 0ε].
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Fig. 1 The illustration of a
five-point circle

Fig. 2 Convergence rate of power method for the Laplacian matrix of a five-point circle

Table 1 The eigenvalues (top row) for the Laplacian matrices of the circle and and the number of iterations
(bottom row) of the power method

n [λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10]
3 [3.0000 3.0000 0]

[1 1 0]

6 [4.0000 3.0000 3.0000 1.0000 1.0000 0]

[76 20 20 1 1 0]

10 [4.0000 3.6180 3.6180 2.6180, 2.6180 1.3820 1.3820 0.3820 0.3820 0]

[203 67 70 35 36 18 18 1 1 0]

The iterates of λ(k) and v̂(k) for computing the first and second eigenpair are shown in Fig. 2.
From this figure, we see that both the eigenvalue and the eigenvector converge linearly and the
eigenvalue converges much faster than the eigenvector. Comparing the first and the second
eigenpair, we see the convergence rate is the same. These conclusions are corresponding
to our theory in Theorem 5 that v̂(k) converges to a strict dominant eigenvector at a rate of
ÕD(( 1.3823.618 )

k) and λ(k) converges to a strict dominant eigenvalue at a rate of ÕD(( 1.3823.618 )
2k).

We further consider the Laplacian matrix of circles with 3, 6, and 10 points and list their
eigenvalues and the number of iterations of the power method in Table 1. From this table,
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we see that all appreciable eigenvalues are real numbers and the smallest eigenvalues are all
zeros. In our numerical experiments, we also find that the eigenvalues are the same for any q̂
and are all nonnegative real numbers. The following theorem indicates that the observations
are true.

Theorem 9 Suppose q̂ ∈ Û
n is a unit dual quaternion vector and

L̂ = D − Â, D = 2I , Âi j =
{
q̂∗
i q̂ j , if |i − j | = 1 or n − 1,
0̂, otherwise.

(24)

Then the eigenvalues of L̂ have closed-from as follows,

λ j = 2 − 2 cos
2π j

n
, j = 1, . . . , n, (25)

and they are independent of the choice of q̂.

Proof Let Ŝ = diag(q̂). Then Ŝ is a unitary matrix, and

Ŝ L̂ Ŝ∗ =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 · · · −1
−1 2 −1 · · ·

. . .
. . .

. . .

· · · 2 −1
−1 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎦

.

Hence, L̂ is similar with a circulant matrix that admits eigenvalues as (25) up to reordering.
Since the eigenvalues are invariant under unitary transformation, (25) are also the eigenvalues
of L̂ . This completes the proof. ��

5.2 Eigenvalues of LaplacianMatrices of RandomGraphs

We continue to consider the Laplacian matrix of a random graph G = (V , E). Assume that
G is a sparse undirected graph and E is symmetric. The sparsity of G is s = m/n2, where
m = |E | is the number of edges in E . In practice, we randomly generate �m

2 � edges and let
E = {(i, j), ( j, i) : if (i, j) is sampled}. All results are repeated ten times with different
choices of q̂, different E , and different initial values in the power method. The average results
are reported. We show the results in Table 2. In this table,

eλ = 1

n0

n0∑
i=1

‖L̂ûi − λi ûi‖2R and eL = 1

‖L̂‖FR

‖L̂ −
n0∑
i=1

λi ûi û∗
i ‖FR ,

where λi and ûi are the limit points obtained by Algorithm 1 and n0 is the total number of
eigenvalues obtained by Algorithm 2.

We also denote ‘niter’ as the average number of iterations and ‘Time (s)’ as the average
CPU time in seconds for computing one eigenvalue.

From Table 2, we see that when n = 10, eλ is less than 10−7 and eL is less than 10−14.
Similarly, when n = 100, the error in eigenvalues and the residue of the result matrices is
less than 1.1 × 10−3 and 10−7, respectively. All results are obtained in less than 1.1 s. This
shows the efficiency of the power method in computing all appreciable eigenvalues.
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Table 2 Numerical results of power method for computing all appreciable eigenvalues of Laplacian matrices
of random graphs with different sparsity values

s (%) eλ eL niter Time (s) s (%) eλ eL niter Time (s)

n = 10

10 2.27e−10 1.93e−16 13.72 0.0088 20 4.25e−10 4.03e−16 45.25 0.0288

30 1.31e−9 4.24e−16 88.98 0.0560 40 9.31e−10 2.40e−16 100.2 0.0631

50 1.72e−9 2.91e−16 120.63 0.0763 60 4.43e−8 4.98e−15 159.12 0.1005

n = 100

5 1.42e−4 6.27e−8 707.85 0.7880 8 2.26e−4 2.38e−8 797.20 0.8857

10 2.99e−4 2.80e−8 840.98 0.9520 15 7.92e−4 2.18e−8 892.15 1.078

18 8.86e−4 1.45e−8 913.18 1.075 20 1.10e−3 3.91e−8 921.19 1.071

6 The Dominant EigenvalueMethod for SLAM

In this section, we first reformulate the SLAM problem as a rank-one dual quaternion matrix
recovery problem. Then we present a two-block coordinate approach for solving this model.

At last, we present several numerical experiments to show the efficiency of our proposed
method.

Given a directed graph G = (V , E)with n vertices andm edges, where each vertex i ∈ V
corresponds to a robot pose q̂i ∈ Û for i = 1, . . . , n, and each directed edge (arc) (i, j) ∈ E
corresponds to a relative measurement q̂i j ∈ Û. The aim of the SLAM problem is to find the
best q̂i for i = 1, . . . , n, to satisfy q̂i j = (q̂i )∗q̂ j

for (i, j) ∈ E [5].

6.1 Reformulation

Denote x̂ = [q̂1, . . . , q̂n]∗ ∈ Û
n as a unit dual quaternion vector, and Q̂ = (q̂i j ) ∈ Û

n×n as
a dual quaternion matrix.

The aim of the SLAM problem is to find x̂ such that

(Q̂)E = (x̂x̂∗)E . (26)

Here, (Q̂)E denotes the set {q̂i j : (i, j) ∈ E}. The variable x̂ can be computed by the least
square model

min
x̂∈Ûn×1

‖PE (x̂x̂∗ − Q̂)‖2F . (27)

The solution of (27) is not unique because x̂x̂∗ = (x̂q̂)(x̂q̂)∗ for any q̂ ∈ Û.
Instead of solving (27) directly, we introduce the auxiliary variables X̂ to solve the

following problem

min
X̂∈Q̂n×n

1

2
‖PE (X̂ − Q̂)‖2F (28)

s.t. X̂ ∈ C1 ∩ C2.

Here,

C1 = {X̂ ∈ Q̂
n×n : X̂ = X̂∗, x̂i j ∈ Û, and x̂i i = 1̂}, (29)
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C2 = {X̂ ∈ Q̂
n×n : rank(X̂) = 1}. (30)

In the following, we show the equivalence between problems (27) and (28).

Theorem 10 The optimization problems (27) and (28) are equivalent in the following senses:

(i) If x̂ is an optimal solution of (27), then X̂ = x̂x̂∗ is an optimal solution of (28).
Furthermore, the optimal value of problems (27) and (28) are the same.

(ii) Let X̂ be the optimal solution for (28). Then its rank-one decomposition X̂ = λûû∗
satisfies λ > 0D. Furthermore, x̂ = √

λû is an optimal solution of (27), and the optimal
value of problems (27) and (28) are the same.

Proof We first show that there is a one-to-one correspondence between x̂ ∈ Û
n×1 and X̂ ∈

C1 ∩ C2. On one hand, suppose that x̂ ∈ Û
n×1. Then it follows from direct derivations that

X̂ = x̂x̂∗ ∈ C1 ∩ C2. (31)

On the other hand, suppose that X̂ ∈ C1 ∩ C2. Then it follows from (21) that there exists
λ ∈ D and û∗û = 1̂ such that X̂ = λûû∗. By xii = λûi û∗

i = 1̂, we have λst ũi,stũ∗
i,st = 1̃.

Hence, λst > 0 and λ > 0D . By [18], we have
√

λ = √
λst + λI

2
√

λst
ε. Let x̂ = √

λû. Then

x̂∗
i x̂i = 1̂. Hence, x̂ ∈ Û

n×1.

(i) From (31) we have X̂ = x̂x̂∗ is a feasible solution of (28). Suppose that X̂ is not an
optimal solution. Denote the optimal solution as X̂′. Then ‖PE (X̂′−Q̂)‖2F < ‖PE (X̂−Q̂)‖2F .
It follows from the above discussion, there also exists x̂′ ∈ Û

n×1 such that ‖PE (x̂′(x̂′)∗ −
Q̂)‖2F < ‖PE (x̂x̂∗ − Q̂)‖2F . This contradicts the optimality of x̂.

(i i) Denote x̂ = √
λû. Then it is a feasible solution of (27). The optimality of x̂ can be

obtained by the contradiction method similarly.
This completes the proof. ��

6.2 A Block Coordinate Descent Method

We introduce the auxiliary variables X̂1 and X̂2 to solve the following problem

min
{X̂i }2i=1∈Q̂n×n

1

2
‖PE (X̂1 − Q̂)‖2F (32)

s.t. X̂1 ∈ C1, X̂2 ∈ C2, X̂1 = X̂2.

The quadratic penalty approach is applied to reformulate (32) as

min
{X̂i }2i=1∈Q̂n×n

1

2
‖PE (X̂1 − Q̂)‖2F + ρ

2
‖X̂1 − X̂2‖2F , (33)

s.t. X̂1 ∈ C1, X̂2 ∈ C2.

Then we compute X̂1 and X̂2 alternatively by the block coordinate descent method [26].
Specifically, at the k-th iteration, given ρ(k−1), X̂(k−1)

1 and X̂(k−1)
2 , we compute X̂(k)

1 as
follows,

X̂(k)
1 = argmin

X̂1∈C1

1

2
‖PE (X̂1 − Q̂)‖2F + ρ(k−1)

2
‖X̂1 − X̂(k−1)

2 ‖2F ,
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Algorithm 3 A two-block coordinate descent algorithm for SLAM

Require: (Q̂)E , the initial values ρ(0), X̂(0)
1 , X̂(0)

2 , the maximal iteration kmax, the parameter ρ1, and the
tolerance β.
for k = 1, . . . , kmax do

Update X̂(k)
1 by (34).

Update X̂(k)
2 by (36).

Update ρ(k) by (37).

if ‖X̂(k)
1 − X̂(k)

2 ‖FR ≤ β then
Stop.

end if
end for
Output: X̂(k)

1 and X̂(k)
2 .

which has an explicit solution as x̂ (k)
1,i i = 1 and

x̂ (k)
1,i j = P

Û

(
ci j

(
δE,i j q̂i j + δE, j i q̂

∗
j i + ρ(k−1)(x̂ (k−1)

2,i j + (x̂ (k−1)
2, j i )∗)

))
(34)

for all i �= j . Here, ci j = 1
δE,i j+δE, j i+2ρ(k−1) , δE,i j is equal to one if (i, j) ∈ E and zero

otherwise, and P
Û
(·) is the projection onto the set of unit dual quaternion numbers defined

by (6).
Then we compute X̂(k)

2 as follows,

X̂(k)
2 = argmin

X̂2∈C2

ρ(k−1)

2
‖X̂2 − X̂(k)

1 ‖2F . (35)

By (22), this problem admits an explicit solution as

X̂(k)
2 = λûû∗, (36)

where λ and û are the dominant eigenvalue and eigenvector of X̂(k)
1 , respectively, which can

be obtained by the power method (14).
We update the penalty parameter by

ρ(k) = ρ1ρ
(k−1), (37)

where ρ1 > 1 is a constant.
We summarize the block coordinate descent method for computing the SLAM problem

in Algorithm 3.

6.3 Numerical Results for SLAM

We now consider solving the SLAM problem by our proposed model (28).
Denote Q̂0 = x̂x̂∗ ∈ Û

n×n , the noise matrix as N̂, and

Q̂ = Q̂0 + N̂, (38)

The parameters of Algorithm 3 are given as follows. The penalty parameters ρ(0) = 0.01
and ρ1 = 1.1. The maximal iteration is set to be 1000, and the parameter in the stopping
criterion is β = 10−5. All experiments are repeated ten times with different choices of
q̂, different noises, and different initial values in Algorithm 3. We only report the average
performance.
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Table 3 Numerical results for a five-point circle SLAM problem with different noise levels

lnoise (%) ex eQ niter Time (s) lnoise % ex eQ niter time (s)

0 3.85e−6 4.72e−6 44.7 0.1872 5 1.68e−2 2.20e−2 144.3 0.5525

10 3.34e−2 4.40e−2 151.6 0.5958 15 4.49e−2 6.58e−2 156.1 0.6489

20 6.63e−2 8.76e−2 159.0 0.6531 25 8.25e−2 1.09e−1 161.7 0.6949

Table 4 Numerical results for random graph SLAM problems with different observation ratios

s (%) ex eQ niter Time (s) s (%) ex eQ niter Time (s)

n = 10

10 6.62e−1 4.63e−1 168.3 0.8036 20 1.50e−1 1.37e−1 149.0 0.6856

30 4.29e−3 4.24e−3 122.3 0.5492 40 5.74e−5 5.48e−5 86.3 0.3928

50 2.35e−6 1.55e−6 44.0 0.2137 60 1.28e−6 1.05e−6 33.7 0.1784

n = 100

5 3.56e−1 1.81e−1 1000 14.14 8 3.95e−2 3.31e−2 1000 14.58

10 1.13e−2 1.15e−2 987.3 14.28 20 8.07e−5 7.83e−5 497.0 7.171

30 7.78e−7 8.45e−7 104.7 1.613 40 1.24e−7 1.40e−7 39.0 0.646

Firstly, consider the five-point circle SLAM problem with noisy observation (38). The
results for different noise levels are given in Table 3. Here, ‘lnoise’ is the relative noise

level defined by lnoise = ‖Q̂−Q̂0‖FR

‖Q̂0‖FR
, ‘ex ’ and ‘eQ’ are the error measurements defined by

ex = ‖ŷr−x̂r‖2R
‖x̂r‖2R and eQ = ‖Q̂0−λûû∗‖FR

‖Q̂0‖FR
, where x̂r = x̂ x̂i

|x̂i | , i = argmax
i=1,...,n

|xi |, ŷ = û
√

λ, and

ŷr = ŷ ŷi
|ŷi | . ‘niter’ and ‘time (s)’ are the number of iterations and the total CPU time in seconds

for implementing Algorithm 3 respectively. From Table 3, we can see that Algorithm 3 can
return a solution with a reasonable error in one minute.

We continue to consider the SLAM problem of random graphs. Suppose the number of
vertices is n and the observation rate is s = m

n2
. The numerical results are shown in Table 4.

When n = 10, all results can be obtained in less than one second. As the observation ratio
increases, the error in x̂ and Q̂ and the number of iterations are all decreasing.

When n = 100, we have similar observations.

7 Final Remarks

In this paper, we proposed a power method for computing the dominant eigenvalue of a
dual quaternion Hermitian matrix and showed the convergence and convergence rate. We
used the Laplacian matrices from circles and random graphs to demonstrate the efficiency of
the power method. Then we further studied the SLAM problem by a two blocks coordinate
descent approach, where one block has a closed form solution and the other block can be
obtainedby the powermethod.Our results fill the blankof dual quaternionmatrix computation
and build relationship between the dual quaternion matrix theory and the SLAM problem.
Adding the relation between the dual quaternion matrix theory and the formation control
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problem, established in [20], we see that the dual quaternion matrix has a solid application
background and is worth being further studied.
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