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Abstract
Single-crystal germanium, as an excellent infrared optical material, has been widely applied in X-ray monochromators, 
night vision systems, and gamma radiation detectors. However, how to obtain high-quality optical lenses on their surfaces 
still faces challenges due to their hard and brittle properties. To this end, this paper proposes the in situ laser-assisted dia-
mond turning (ILADT) process, which is the combination of a laser heating technique and a single-point diamond turning 
process. The in situ laser heating technique is employed to enhance the surface quality of the workpiece material, while 
the single-point diamond turning process is utilized to fabricate optical lenses. Experimental results showed that optical 
lenses with high surface quality were successfully machined. The profile error is 0.135 μm, indicating the high machining 
accuracy. The surface roughness Sa of the aspheric lens is 0.909 nm, indicating the high machining quality achieved by the 
proposed ILADT process. Therefore, this study provides an effective approach for producing high-quality optical lenses on 
single-crystal germanium surfaces, which holds great promise for future applications in the manufacturing of optical lenses 
with exceptional quality.
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1 Introduction

The optical lens has the capability of manipulating light and 
forming images, which has widespread application in digital 
cameras [1], microscopes [2], projectors [3], eyeglasses [4], 
and medical imaging [5]. Recently, Apple Inc. announced a 
very advanced wearable headset device, named Vision Pro, 

which helps customers enjoy a mixed-reality experience. In 
this device, a large number of optical lenses are used to cre-
ate this mixed-reality experience [6]. Therefore, the task of 
machining optical lenses with spherical or aspheric surfaces, 
while aiming for high efficiency and high quality, continues 
to encounter numerous challenges [7, 8].

Lots of research efforts have been devoted to solving this 
problem and the growing demand for optical lenses. Grind-
ing is a common machining method to shape optical lenses 
and achieve the desired surface profile [9–11]. After deter-
mining the suitable grinding parameters and grinding tools, 
the rough grinding and fine grinding are sequentially con-
ducted. To reduce the number of machining steps, Kakinuma 
et al. proposed a chemical action-assisted ultraprecision 
grinding to create optical glass lenses [10]. Experimental 
results show this approach provides production efficiency 
by five times. To improve the machining accuracy of opti-
cal aspheric surface micro-lenses on glass BK7, Lee and 
Baek developed an ultraprecision grinding system based on 
the factorial design and considering the profile error and 
surface roughness, the grinding condition was optimized by 
the design of experiments [11]. Yan et al. proposed an off-
spindle-axis spiral grinding method to machine the aspheric 
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microlens array mold inserts on tungsten carbide surfaces. 
Experimental results showed the form accuracy was below 
0.3 µm in peak-to-valley and the surface roughness was 
below 10 nm in Sa, showing the high machining accuracy 
and machining quality [12]. To further improve the profile 
accuracy, some compensation methods were also proposed 
[9, 13–15]. Ultraprecision polishing is another mechanical 
method to machine optical lenses [16–18]. Suzuki et al. 
added the two-axis ultrasonic vibration motion to the pol-
isher, which helps to achieve the high numerical aperture 
optics [19]. Using this method, the surface roughness Rz of 
the binderless tungsten carbide can reach 8 nm. Based on 
this work, Guo et al. developed a magnetostrictive vibrat-
ing polisher to further enhance the machining efficiency and 
machining quality. The surface roughness was decreased to 
3.3 nm [20, 21]. Cheung et al. utilized computer-controlled 
ultraprecision polishing to machine various structured sur-
face patterns [22]. However, ultraprecision grinding, or 
ultraprecision polishing are usually limited by low material 
removal rates.

Ultraprecision diamond turning using a natural single-
crystal diamond cutting tool become an increasingly popular 
process [23–26]. As a one-step process, it does not post-pro-
cesses, which saves the machining time. Fang et al. applied 
the ultraprecision single-point diamond turning process to 
a machine conical reflector and established the theoretical 
relationship between the machined surface quality, machin-
ing conditions, and optical defects [27], which provides 
powerful guidance for selecting appropriate machining 
conditions. Chen, Li, and Yi proposed a three-dimensional 
microstructure fabrication method, which combines the 
reactive ion etching technique and ultraprecision single-
point diamond turning. Different from the lithography-based 
method, this new method can machine continuous three-
dimensional features. A sine wave grating and a diffractive 
optical pattern were successfully machined by this method 
[28]. Considering the huge requirement of the microlens 
arrays in advanced infrared (IR) optics, Mukaida and Yan 
applied slow tool servo diamond turning to fabricate the 
IR microlens arrays. After experimental investigation, they 
found amorphization and microfracture occur on a sin-
gle side of the lens dimple when high tool feed rates were 
employed [29]. However, the microfracture or micro-crack 
on the optical lens surfaces has a significant influence on the 
properties and performance of the optical lens. For example, 
it can cause light to scatter as it interacts with the irregulari-
ties of the crack edges, and the scattered light can result in a 
loss of contrast, reduced image clarity, and decreased overall 
brightness. Micro-cracks can affect the reflection and refrac-
tion of light, which reduces optical efficiency.

Germanium (Ge) is a widely used optical material with 
excellent optical properties, such as a high transparency 
range, high refractive index in the IR range, low dispersion, 

and good thermal stability [30–34]. But Ge is a brittle mate-
rial with low fracture toughness, which makes it prone to 
cause micro-cracks or other defects. To mitigate or even 
avoid the influence of micro-cracks or microfracture, a novel 
machining method needs to be proposed to enhance the sur-
face quality of optical lenses.

In this study, an in  situ laser-assisted diamond turn-
ing process is proposed in the machining of optical lenses 
with excellent surface quality, making it valuable in indus-
tries such as aerospace, defense, and telecommunications. 
Machining experiments were performed to validate the 
effectiveness of the in situ laser-assisted diamond turning 
process. Additionally, the machined optical lenses were 
characterized, and their surface quality and Raman spec-
troscopy were analyzed in this paper.

2  Methods

2.1  Machining principle of the ILADT process

In situ laser-assisted diamond turning (ILADT) is a new 
ultraprecision machining process, which can be applied in 
machining complex optical components with high surface 
quality [35], especially optical lenses. Figure 1 illustrates the 
hardware setup and working principle of the ILADT process. 
This process combines the working principle of single-point 
diamond turning, which is a form of ultraprecision machin-
ing using a natural single-crystal diamond (SCD) cutting 
tool, with the application of laser heating to enhance the 
machinability of the hard and brittle material. The sample is 
fixed on the C-axis of the ultraprecision lathe using a home-
developed fixture. The ultraprecision lathe allows for the 
ultraprecision control of the position and orientation of the 
sample during machining. A SCD cutting tool is mounted 
on the laser module, which is installed on the Z-axis of the 
ultraprecision lathe. The SCD cutting tool has a very sharp 
cutting edge, normally less than 100 nm, which satisfies the 
surface finish and accuracy requirements of optical lenses. 
In the machining of the optical lenses, the cutting tool will 
contact with the rotating sample, and the desired shape is 
achieved by the combination of the workpiece rotation and 
cutting tool translation. In the ILADT process, a laser beam 
is directed onto the sample surface to heat and soften the 
workpiece material at the cutting zone after passing through 
the SCD cutting tool, as shown in Fig. 1. The laser assistance 
reduces the cutting forces required for material removal and 
then improves surface quality. Therefore, the laser power, 
spindle speed (which controls the workpiece rotation), and 
feed rate (which controls the cutting tool translation) should 
be carefully determined to ensure optimal surface quality.

In general, the optical lens with the aspheric surface can 
be mathematically described by an aspheric equation. The 
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aspheric equation represents the deviation of the lens surface 
from a perfect sphere, allowing for more complex surface 
profiles that can correct for various optical aberrations. The 
general form of the aspheric equation in the Z direction is:

where x and y are the Cartesian coordinates in the lens plane. 
C = 1∕R , and R represents the radius of curvature of the 
spherical surface (positive for convex surfaces and negative 
for concave surfaces). p denotes the distance from the optic 
axis Z. K refers to the conic constant, which determines the 

(1)z(p) =
Cp2

1 +
√

1 − (K + 1)C2p2
+
�n

i=1
Aip

i

(2)p =
√

x2 + y2

shape of the surface. Ai is the aspheric deformation constant 
[36, 37].

2.2  Experimental setup of the optical lens

Figure 2 shows the experimental setup when machining 
optical lenses. This hardware system can be divided into 
two main parts: the ultraprecision lathe and the laser control 
module. The ultraprecision lathe with three axes is the 450 
UPL of the Moore Tool Company, USA. This lathe provides 
ultrahigh control and feedback systems to monitor and adjust 
the feed rate and spindle speed during machining, which 
ensures the creation of complex geometries and nanoscale 
surface quality. The laser control module is the Optimus  T2 
of the Micro-LAM. Inc., USA, which is fixed on the Z-axis 

Laser
module

Ultraprecision
lathe

Fixture

Single-crystal 
Diamond

C-axis Heated zone

Rotation
direction

Cutting tool
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Fig. 1  Working principle of the ILADT process
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Fig. 2  Experimental setup of machining optical lenses on single-crystal germanium surfaces
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of the ultraprecision lathe. Its control and laser delivery 
devices ensure that the stable laser beam can be directed 
onto the cutting zone of the sample. The laser source is the 
Nd: YAG laser in this study, and the laser power is set at 1.75 
W to induce localized heating and soften the sample surface. 
The single-crystal germanium, as the sample, is fixed on the 
C-axis of the ultraprecision lathe, as depicted in Fig. 2.

Table 1 lists the geometrical parameters of the machined 
optical lenses. The selection of the cutting tool is crucial for 
achieving good machining results. Different from the tradi-
tional single-point diamond cutting, the ILADT process pos-
sesses a cutting tool with a negative rake angle according to 
the requirements of the laser beam and workpiece material. 
Table 2 describes the detailed geometrical specifications of 
the used cutting tool. The diameter of the single-crystal ger-
manium (111) is 10 mm, and the optical lens was machined 
on the center of the sample. The spindle speed is set as 83 
revolutions per minute, and other parameters of the rough-
ing machining and finishing machining are summarized in 
Table 2.

Following the machining experiments, the samples were 
subjected to cleaning using an ultrasonic cleaner. A white 
light interferometer (Nexview™, Zygo Corp., USA) was 
used to characterize their surface roughness. The profile of 
the machined optical lenses was characterized by contact 
form measurement equipment (Form TalySurf PGI 1240, 
Taylor Hobson, England).

3  Results and discussion

3.1  Superiority of the ILADT process

Considering that single-crystal germanium is a typical hard 
and brittle material, a sculpturing method was conducted 

to determine its critical depth-of-cutting. This method can 
be found in Ref. [38, 39]. In the experiments, the sample 
was fixed on the spindle. The SCD cutting tool is fed at a 
consistent cutting speed, while simultaneously, the depth of 
cut progressively increases along the Z-axis direction of the 
ultraprecision lathe. To show the superiority of the proposed 
ILADT process, the traditional single-point diamond turn-
ing (SPDT) was also applied to carry out the sculpturing 
experiment. Figure 3 shows the results of the sculpturing 
experiments on the topography and cross-sectional profile 
of microgrooves when using the proposed ILADT process 
and traditional SPDT. From the cross-sectional profile 
that goes through the center of the microgroove, it can be 
found that the critical depth-of-cuttings of the single-crys-
tal germanium are 130.19 nm and 79.32 nm, respectively. 
The information provided states that the proposed ILADT 
process improves the critical depth-of-cuttings by 64.1%, 
which shows its superiority. This improvement also leads to 
improved machining capabilities and potentially enabling 
the production of more advanced optical components.

Before generating an optical lens on the single-crys-
tal germanium surfaces, the mirror surface needs to be 
machined, and their surface roughness is characterized by 
applying the white light interferometer. Figure 4 shows the 
measurement results. The surface roughness parameter 
Ra represents the average value of absolute surface height 
deviations from the mean line over the evaluation length. 
The surface roughness parameter Rz represents the vertical 
distance between the highest peak and the lowest valley. Sa 
is 0.478 nm when using the proposed ILADT process while 
that is 1.035 nm when using the traditional SPDT process. 
The values of Sz are 5.354 nm and 15.048 nm, respectively. 
It can be found that Sa and Sz are decreased by 53.8% and 
64.4%, respectively, showing the effectiveness of the pro-
posed ILADT process in enhancing the machined surface 
quality of the single-crystal germanium.

3.2  Characterization of optical lenses

After cleaning by an ultrasonic cleaner, the machined sam-
ples can be obtained. Figure 5 shows photographs of the 
machined optical lens when using the traditional SPDT 
process and the ILADT process, which are captured by the 
high-resolution digital camera.

Figure 6 displays the three-dimensional (3D) topog-
raphy, cross-sectional profile, and profile error of the 
machined optical lenses by the proposed ILADT process 
and traditional SPDT process. The 3D topography was 
obtained by the white light interferometer. Because of the 
limited measurement range of the white light interferom-
eter, part of the machined optical lens can be only captured. 
In order to obtain the whole profile of the machined optical 
lens, a contact metrology method was applied using the 

Table 1  Geometrical parameters of the machined optical lens

R (mm) K Diameter (mm) Ai

5  − 0.1 5 0

Table 2  Geometrical parameters of the cutting tool and machining 
parameters

Cutting tool param-
eters

Machining parameters

Radius (mm) 0.497 Roughing machining Finishing machining

Flank angle 15° Feed rate (μm/
rev)

2 Feed rate (μm/
rev)

0.8

Rake angle  − 35° Spindle speed 
(RPM)

83 Spindle speed 
(RPM)

83
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form measurement equipment (Form TalySurf PGI 1240, 
Taylor Hobson, England). The measured cross-sectional 
profile (passes through the center of the optical lens) and 
profile error (the difference between the designed profile 
and the measured cross-sectional profile) were also plot-
ted. The profile error is 0.135 μm when using the ILADT 
process and that is 0.209 μm when using the SPDT pro-
cess. It can be also found that the two cross-sectional 

profiles are very close. This phenomenon is verified by the 
SEM images of the SCD cutting tool after machining, as 
shown in Fig. 7. The cutting edges of the two SCD cutting 
tools remain intact (no tool wear). Besides, the machining 
parameters and machining settings are totally the same. 
Therefore, there is no obvious difference in the cross-
sectional profiles when using the ILADT process and the 
traditional SPDT process.

Fig. 3  Microgrooves machined 
by the sculpturing method. 
a and b show its topography 
and cross-sectional profile 
using the ILADT process. c 
and d show its topography and 
cross-sectional profile using the 
traditional SPDT process
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3.3  Analysis of the surface quality

In addition to the cross-sectional profile, the surface qual-
ity is more important, which directly impacts the working 
performance of the optical lens [40, 41]. The 213.78 μm × 
213.78 μm areas of the machined optical lens were randomly 
extracted. Their surface quality is quantitatively character-
ized by the white light interferometer, as depicted in Fig. 8. 
When applying the ILADT process, the surface roughness Sa 
and Sz are 0.909 nm and 10.560 nm. If using the traditional 
SPDT process, they are 1.328 nm and 17.080 nm. It can be 
found that the proposed ILADT process decreases the surface 
roughness Sa and Sz by 31.6% and 38.2%, demonstrating the 
superiority and effectiveness of the proposed ILADT process 
in generating high-quality optical lenses.

Finite element simulation is an efficient tool for com-
prehending the proposed ILADT process. Figure 9 shows 
the simulation results on the contour plot depicting the von 
Mises equivalent stress, obtained through the utilization of 
the ABAQUS software. It can be found from the visualization 
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Fig. 5  Photographs of the optical lens when a using the traditional 
SPDT process and b using the ILADT process

Fig. 6  3D topography, cross-
sectional profile, and profile 
error of optical lens. a Using 
ILADT process and b using the 
traditional SPDT process
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analysis that, in comparison to the traditional SPDT process, 
the proposed ILADT process obviously reduces the von 
Mises equivalent stress. Specifically, in the shear zone, the 
von Mises equivalent stress is observed to decrease by 16.4% 
when employing the ILADT process. This reduction in von 
Mises equivalent stress helps to improve the machining quality.

Considering that Raman spectroscopy, as a non-destruc-
tive and non-contact technique, is a powerful tool for 

analyzing structural defects and stresses introduced by the 
machining processes [42, 43], Raman spectroscopy was also 
used to provide valuable insights into the variations of the 
material by measuring Raman peaks. Figure 10 depicts the 
Raman spectrum of machined optical lenses by using the 
ILADT process and traditional SPDT process. Raman peak 
observed at approximately 303  cm−1 is attributed to the lon-
gitudinal optical (LO) phonon mode, which is linked with 

Fig. 7  SEM images of the SCD 
cutting tools after machining. a 
ILADT process and b tradi-
tional SPDT process

ba
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Fig. 8  Surface quality of 
machined optical lenses by 
using a the ILADT process and 
b the traditional SPDT process

Fig. 9  Contour plot of the von 
Mises equivalent stress. a The 
ILADT process and b the tradi-
tional SPDT process
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the Ge–Ge bonds [44]. The significant shift of the Raman 
peaks, from 303 to 305  cm−1, indicates the introduction of 
a minor compressive stress facilitated by laser heating. The 
minor compressive stress can enhance the mechanical prop-
erties of the material because it helps to stabilize the crystal 
structure and reduce the likelihood of dislocation move-
ment [45, 46]. Additionally, compressive stress can effec-
tively reduce the occurrence of surface defects in machined 
optical lenses on the surfaces of single-crystal germanium. 
Machining processes can introduce surface defects [47], 
including scratches and cracks, which can negatively impact 
the performance of optical lenses. The minor compressive 
stress plays a crucial role in mitigating the formation and 
propagation of these defects, thereby enhancing the surface 
quality and integrity of the machined optical lenses. This is 
particularly important in optical applications where surface 
quality is crucial for achieving high optical transmission 
and minimizing scattering or absorption losses. This also 
explains the reason why the ILADT process can decrease the 
surface roughness of machined samples. The benefits help 
to optimize the performance and reliability of optical lenses 
in various applications, including MEMS, optical devices, 
semiconductor devices, and thermal management systems.

4  Conclusions

In this study, an in  situ laser-assisted diamond turning 
(ILADT) process is employed to machine optical lenses 
with high surface quality and high machining accuracy on 
surfaces of the single-crystal germanium, which is known 
for its hardness and brittleness. The ILADT process com-
bines an in situ laser heating technique and a single-point 

diamond turning process, which helps to enhance the surface 
quality and remove the workpiece material. Therefore, the 
ILADT process can merge the benefits of the in situ laser 
heating technique and the single-point diamond turning pro-
cess, which facilitates the high-quality machining of optical 
lenses.

ILADT process fabricated optical aspheric lenses on 
the single-crystal germanium surfaces, demonstrating high 
machining accuracy and machining quality. The measured 
profile error was found to be less than 0.2 μm, while the sur-
face roughness (Sa) was less than 1 nm. Raman spectroscopy 
analysis revealed that the introduction of minor compres-
sive stress through laser heating played a significant role in 
improving machining quality. Therefore, this study offers a 
valuable technology in the realm of fabricating high-quality 
optical lenses on single-crystal germanium surfaces. This 
technology holds great potential for the manufacturing of 
optical components with intricate geometries, precise toler-
ances, and exceptional surface finishes in the field of optical 
engineering.
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