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Abstract: Benefiting from both Brillouin amplitude and phase spectral responses during 
Brillouin scattering, a support vector machine (SVM) assisted Brillouin optical time domain 
analyzer (BOTDA) enabling the improvement of sensing accuracy with only a slight sacrifice 
of processing speed has been proposed and demonstrated. Only one SVM model, i.e. SVM- 
(g + p), is required to effectively combine the Brillouin gain and phase information in the 
training and testing phases, which avoids separate Brillouin gain spectrum (BGS) and 
Brillouin phase spectrum (BPS) fitting, and hence saves the processing time. Both simulation 
and experiments using different parameters were conducted to evaluate the improved 
performance of SVM-(g + p). Compared with the case of using BGS only or BPS only, SVM 
assisted BOTDA using combined BGS and BPS enhances the accuracy of temperature 
extraction by about 30% over a wide range of simulation and experiment parameters, only at 
a slight expense of the processing speed. Although the processing of both gain and phase 
information takes extra time, SVM-(g + p) assisted BOTDA still has a processing speed 80 
times faster than that of using a conventional curve fitting method like Lorentzian curve 
fitting (LCF). The improved accuracy, together with fast processing speed, is crucial for 
future high-speed and accurate BOTDA sensors based on both Brillouin gain and phase 
detection. 
© 2017 Optical Society of America 
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1. Introduction 

Brillouin optical time domain analyzer (BOTDA) has attracted intensive research interest 
over the past three decades due to its excellent performance in distributed temperature and 
strain monitoring [1–5]. Since the probe is evidently amplified by the counter-propagating 
pump, the Brillouin frequency shift (BFS) is usually obtained by measuring the local 
amplitude spectral response in BOTDA, e.g. Brillouin gain spectrum (BGS) [6–11]. On the 
other hand, Brillouin scattering not only amplifies the probe amplitude, but also introduces a 
phase shift on it [12]. Thus the measurement of local phase spectral response, i.e. Brillouin 
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phase spectrum (BPS), is also an effective way of obtaining the BFS and hence the 
temperature or strain information [13–20]. To estimate the BFS from the measured BGS or 
BPS, curve fitting methods are commonly used. For BGS based BOTDA systems, as the 
measured BGS is the convolution between the pump pulse spectrum and the intrinsic 
Lorentzian gain spectrum, its lineshape can be fitted by using Lorentzian curve fitting (LCF) 
[21–23] or pseudo-Voigt curve fitting (pVCF) [23–25] where the BFS of the measured BGS 
is taken as the frequency of the peak gain on fitted curves. Quadratic curve fitting (QCF) can 
also be used to estimate the BFS where the measured BGS is assumed to have a quadratic 
lineshape near its peak [26]. While for BPS based BOTDA systems, the BFS is commonly 
determined by linear fitting of the BPS around the zero de-phase frequency region, as the 
central frequency region of the BPS in the vicinity of BFS is assumed to be quasi-linear [19, 
27]. However, most of the curve fitting techniques require the initialization of model 
parameters and poor initialization will significantly deteriorate the accuracy in BFS 
determination [22, 28]. The accuracy of curve fitting techniques also depends on the number 
of data points collected on the measured BGS or BPS, which means fewer data points by 
adopting large frequency scanning step will result in quick degradation of the accuracy [27]. 
Moreover, due to the iterative feature, the curve fitting techniques usually require long 
processing time to extract BFS, especially when there are a large number of resolved sensing 
points along a long sensing fiber. For QCF of BGS and linear fitting of BPS, the optimal 
fitting spectral region in BFS estimation should be carefully determined as it affects the fitting 
accuracy. 

To solve the drawback mentioned above in curve fitting techniques, recently we have 
reported a Support Vector Machine (SVM) assisted BOTDA system for ultrafast temperature 
extraction from the measured BGSs [29]. To extract the temperature, the measured BGSs by 
BOTDA are classified into different temperature classes using the SVM model after training. 
The corresponding temperature value of the class is taken as the measured temperature. In 
comparison to LCF and pVCF, SVM is more robust to a wide range of signal-to-noise ratios 
(SNR), averaging times, pump pulse widths, frequency scanning steps and temperatures. In 
addition to better accuracy of temperature extraction, SVM exhibits 100-fold faster data 
processing speed compared with conventional LCF and pVCF. In this paper, we propose to 
take full advantage of both Brillouin amplitude and phase spectral responses to further 
improve the accuracy of temperature extraction in SVM assisted BOTDA without much 
sacrifice of the processing speed. Previously, although many techniques have been proposed 
to measure BGS and BPS simultaneously [13–19], only BGS or BPS only is used for the 
sensing purpose, resulting in the waste of half of the information. Even if the two are 
combined for sensing in a conventional way, independent BGS fitting and BPS fitting are 
needed by implementing two curve fitting algorithms separately, which requires more extra 
time for temperature/strain extraction. Here, by effectively utilizing both Brillouin gain and 
phase information in a SVM assisted BOTDA, we improve the sensing accuracy by about 
30% at a slight expense of the processing speed. Even with the speed reduction, the SVM 
assisted BOTDA using both BGS and BPS still has a processing speed 80 times faster than 
that of conventional LCF for temperature extraction. 

2. Principle and simulation 

2.1 Principle and SVM training 

Figure. 1(a) illustrates the principle of using a linear multi-class SVM classifier for 
temperature extraction from the measured data samples by BOTDA. Each data sample (i.e. 
red dot, yellow star, blue triangle, and pink rhombus) can represent either a BGS, or a BPS, or 
a pair of BGS + BPS, belonging to one of the three classes. Fig. 1(b) shows the BGS only, 
BPS only or a pair of BGS + BPS as data samples in Class 1, Class 2, and Class 3, 
respectively. Here BGS and BPS are combined together to form pairs of BGS + BPS for the 
training of SVM and subsequent temperature extraction using SVM. Thus each data sample 
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for our proposed work is a pair of BGS + BPS, unlike the case in [29] where only BGS is 
used in the training and testing phase of SVM. The data points on a pair of BGS + BPS 
consist of the feature vector space for that data sample. The number of the data points 
determines the dimension of the vector space. The temperature extraction using SVM 
includes two phases: training and testing. In the training phase each temperature forms one 
class, e.g. 30°C for Class 1, 50°C for Class 2, and 70°C for Class 3, and the known pairs of 
BGS + BPS together with the corresponding temperature labels serve as the training data 
samples, as shown in Fig. 1(a). To determine the hyperplanes and support vectors of the SVM 
model in this multi-class classification case, ‘one-against-one’ strategy is adopted [29, 30], 
where three binary classifiers for such three temperature classes are constructed and trained to 
distinguish the samples of one class from another class. In the “one-against-one” process of 
Fig. 1(a), Hyperplane-  is determined by the binary classifier distinguishing the samples of 
Class 1 from Class 2, and Hyperplane-  and Hyperplane-  are determined similarly. By 
combining the three hyperplanes and corresponding support vectors, the SVM model for 
multi-class temperature classification is obtained. Finally in the testing phase the SVM model 
is used to classify the testing data sample (i.e. each pair of BGS + BPS measured by BOTDA) 
into one of the temperature classes and the corresponding temperature value of this class is 
regarded as the measured temperature value. 

Class 1
(e.g. 30℃)

Class 2
(e.g. 50℃)

Class 3
(e.g. 70℃)

BGS BPS BGS+BPS

SVM training phase

Training data samples
30�  — Class1  

70�  — Class3  

Class1

Class2

Class3

50�  — Class2  

SVM testing phase

Testing data samplesClass1

Class2

1

Class1 Class3
2

Class2

Class3

3

SVM model

Hyperplane

Support vectors

1

2

3

One-against-one

2

1 3

(a)

(b)  

Fig. 1. (a) Principle of temperature extraction using linear multi-class SVM classifier, (b) 
BGSs only, BPSs only and pairs of BGS + BPS as data patterns for three different temperature 
classes, respectively, where the dash line indicates the BFS at a temperature of Class 2. 

We use the ideal Lorentzian gain ( )g υ and phase ( )p υ  profiles [14] as the BGS and BPS 
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where Bg  is the peak gain, Bυ  is the BFS and BυΔ is the Brillouin gain bandwidth. Each 

( )g υ  and corresponding ( )p υ form one pair of ideal BGS + BPS. 101 temperature classes are 

formed using the temperature range from 20°C to 70°C at a step of 0.5°C, which is enough 
for good accuracy. Note that the performances using temperature steps like 0.1°C and 1°C are 
very similar, and 0.1°C step performs only slightly better when the SNR is beyond 11dB [29]. 
The BFSs for ideal pairs of BGS + BPS are determined using a temperature coefficient of 
1.15924 MHz/°C calibrated for our fiber under test (FUT). And for each temperature class 
multiple pairs of BGS + BPS with the same BFS but with bandwidth varying from 30 MHz to 
100 MHz (2MHz step) are obtained to adapt Brillouin gain bandwidth variation. Finally, we 
have 101 × 36 training data samples to train the SVM model. The frequency range of υ is 
from 10.761GHz to 10.96GHz, the same as our frequency scanning range in the collection of 
BGS and BPS. 

Since both Brillouin gain and phase information are used in the SVM training and testing, 
we use SVM-(g + p) to denote such a SVM model for convenience. In order to show the 
enhanced sensing accuracy by SVM-(g + p), SVM models trained only by BGS (SVM-g) or 
BPS (SVM-p) are also constructed for comparison. For SVM-g and SVM-p, the data samples 
in Fig. 1 are BGS only and BPS only, respectively. If υ takes 1 MHz step, there are 200 data 
points on each BGS and BPS as the feature vector space, and thus the dimensions of the 
vector space are 200 for SVM-g and 200 for SVM-p, but 400 for SVM-(g + p). In the next 
section, we will see that although the dimension of the vector space for SVM-(g + p) is 
doubled to improve the accuracy, the processing speed using SVM-(g + p) for temperature 
extraction only has a slight degradation. However, it is still much faster than that of the 
conventional curve fitting method. 

2.2 Simulation results 

In this section, we conduct simulation to analyze the performance of SVM-(g + p), and 
compare it with SVM-g and SVM-p. In the simulation, simulated noisy BGS and BPS are 
obtained by adding Gaussian white noise to the profiles from Eqs. (1) and (2), and the signal-
to-noise ratio (SNR) of the simulated BGS and BPS is controlled by the amount of noise 
added. Then three SVM models after training, i.e. SVM-g, SVM-p, and SVM-(p + g), are 
employed to extract temperature from the simulated BGSs, BPSs and pairs of BGS + BPS. 
The simulation is run 500 times to make the results reliable for statistical analysis. The 
temperature to be measured is set at 60°C and the accuracy of temperature extraction is 
analyzed by calculating the temperature uncertainty and Root Mean Square Error (RMSE). 
The temperature uncertainty is defined as the standard deviation of the extracted temperature 
and the RMSE is calculated by comparing the temperatures given by the thermometer and 
extracted by SVM. 

At first the Brillouin bandwidth ΔυB is fixed at 50 MHz, corresponding to a pump pulse 
width around 20 ns. The step of frequency υ is set to be 1 MHz, corresponding to a frequency 
scanning step of 1 MHz. Figure 2 shows the temperature uncertainty and RMSE simulated 
under different SNRs by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, 
respectively. Here the SNR of BGS is defined as the ratio between the mean amplitude of 
Brillouin peak and its standard deviation, while the SNR of BPS is defined as the ratio 
between the mean amplitude of peak-to-peak and the standard deviation of the spectral points 
[26]. For all the three SVM models, the uncertainty and RMSE become worse when the SNR 
decreases. The uncertainty and RMSE using SVM-g and SVM-p are similar to each other, but 
are larger than those using SVM-(g + p), as shown by the blue triangles in Fig. 2. It implies 
that the accuracy of temperature extraction using SVM-(g + p) is better than that using SVM-
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g and SVM-p. The result is due to the effective use of BGS and BPS together in the training 
and testing of SVM. As shown in Fig. 2, when SNR is at a relatively low level of 2.2 dB, the 
uncertainty and RMSE using SVM-(g + p) decrease by 31.1% and 31.2% compared with 
SVM-g, and by 33.8% and 33.8% compared with SVM-p. When the SNR is 14.2 dB, the 
uncertainty and RMSE are reduced by 30.6% and 30.3% compared with SVM-g, and by 
33.1% and 32.5% compared with SVM-p. We define the improvement of accuracy as the 
ratio between the reduction of uncertainty/RMSE by SVM-(g + p) and uncertainty/RMSE by 
SVM-g or SVM-p. Compared with SVM-g and SVM-p, the average improvement of 
uncertainty are 29.5% and 32.7%, while that of RMSE are 29.4% and 32.6%, respectively. 
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Fig. 2. (a) Temperature uncertainty, (b) root mean square error (RMSE) together with 
corresponding improvement simulated under different SNRs by using SVM-g, SVM-p and 
SVM-(g + p) for temperature extraction, respectively. 

Next, we vary the Brillouin gain bandwidth from 30 MHz to 100 MHz but fix the SNR at 
10.2 dB. The results are plotted in Fig. 3 from which we can see that both uncertainty and 
RMSE increase when the Brillouin gain bandwidth becomes large. Nevertheless, as shown by 
the blue triangles in Fig. 3, the uncertainty and RMSE using SVM-(g + p) are always lower 
than those using SVM-g and SVM-p, indicating better temperature accuracy. Compared with 
SVM-g, the average improvement of uncertainty and RMSE are 29.9% and 29.6%; while 
compared with SVM-p, the average improvement are 32.8% and 32.5%, respectively. 
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Fig. 3. (a) Temperature uncertainty, (b) root mean square error (RMSE) together with 
corresponding improvement simulated under different bandwidths by using SVM-g, SVM-p 
and SVM-(g + p) for temperature extraction, respectively. 

As mentioned above, the dimension of the feature vector space for SVM-(g + p), i.e. 
number of data points on each pair of BGS + BPS, depends on the step of frequency υ . Here 
we also change the frequency step to examine the accuracy improvement by SVM-(g + p) 
under different frequency steps. The Brillouin gain bandwidth is fixed at 50 MHz and the 
SNR is set at 8.4 dB. 
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Fig. 4. (a) Temperature uncertainty, (b) root mean square error (RMSE) together with 
corresponding improvement simulated under different frequency scanning steps by using 
SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively. 

The results are given in Fig. 4. As the frequency step increases, both the uncertainty and 
RMSE degrade due to the reduced data points collected on each BGS, BPS and pair of BGS + 
BPS. At each frequency step, SVM-g and SVM-p have comparable performance, but SVM-(g 
+ p) exhibits better accuracy, as depicted by the blue triangles in Fig. 4. In comparison to 
SVM-g, the improvement of uncertainty and RMSE by SVM-(g + p) are in the range of 
31.0% to 36.4% and 30.6% to 36.4%; while compared with SVM-p, the corresponding 
improvement are in the range of 29.1% to 33.3% and 29.0% to 33.3%. 

Since the gain and phase information are utilized together to improve the accuracy of 
temperature extraction, the dimension of the feature vector space for SVM-(g + p) is double 
that of SVM-g and SVM-p, which leads to a slight increase of processing time. Here we 
analyze the data processing time of SVM-(g + p) and compare it with that using SVM-g and 
SVM-p, respectively. The algorithms are implemented by using MATLAB on a conventional 
computer with i7-5960X CPU and 32G RAMs, and the number of training samples for SVM-
g, SVM-p and SVM-(g + p) are 3636 according to Section 2.1. Table 1 shows the time needed 
for the training of SVM-g, SVM-p and SVM-(g + p) at different frequency scanning steps. 
For all the cases, the training time is less than 1s which implies the SVM training process is 
quite fast. To intuitively study the processing time for temperature extraction in the testing 
phase, SVM-(g + p) after training is employed to process 100,000 pairs of simulated BGS + 
BPS (Brillouin gain bandwidth ~50 MHz, SNR ~10.5 dB), equivalent to a sensing distance of 
40 km fiber at a sampling rate of 250 MSample/s. Table 2 shows the processing time using 
SVM-(g + p) at different frequency scanning steps. For comparison, the processing times 
using SVM-g and SVM-p to process the same 100,000 simulated BGS and BPS are also 
given. We can see that compared with SVM-g and SVM-p, the processing time using SVM-(g 
+ p) is a little larger due to the doubled dimension of the vector space by the combined BGS 
and BPS. However, the processing time of SVM-(g + p) is less than twice the time of SVM-g 
only or SVM-p only, or the sum of the time by SVM-g and SVM-p. For example, at 1MHz or 
2MHz frequency step, the processing time of SVM-(g + p) is around 70% of the sum of the 
time by SVM-g and SVM-p; while at higher frequency steps, the processing time of SVM-(g 
+ p) is comparable to that of SVM-g only and SVM-p only. This is because at high frequency 
steps, the vector space dimension difference between SVM-(g + p) and SVM-g /SVM-p 
becomes smaller, e.g. 20 for SVM-g, 20 for SVM-p and 40 for SVM-(g + p) at 10MHz step. 
On the other hand, we also calculate the processing time using conventional LCF for 
comparison. At 1MHz frequency step, Eq. (1) based BGS fitting and Eq. (2) based BPS 
fitting require 32.221 min and 41.333 min to process 100,000 simulated BGS or BPS, 
respectively. For the same purpose, from Table 2 we can see SVM-(g + p) only needs 22.293s 
to extract temperature information from 100,000 pairs of simulated BGS + BPS. Therefore, 
even though SVM-(g + p) slightly sacrifices the processing speed compared with SVM-g and 
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SVM-p, it is still 80-fold faster than the conventional curve fitting method and improves the 
accuracy of temperature extraction by around 30%. 

Table 1. Time needed for the training of SVM-g, SVM-p and SVM-(g + p) 

Frequency 
step 

SVM-g SVM-p 
SVM-(g + p) 

1MHz 0.379s 0.380s 0.609s 
2MHz 0.213s 0.210s 0.355s 
5MHz 0.120s 0.111s 0.143s 

10MHz 0.087s 0.083s 0.106s 
15MHz 0.064s 0.057s 0.066s 

Table 2. Comparison of processing time using SVM-g, SVM-p and SVM-(g + p) for 
100,000 sensing points 

Frequency 
step 

SVM-g SVM-p 
SVM-(g + p) 

1MHz 15.337s 14.713s 22.293s 
2MHz 10.295s 10.140s 14.693s 
5MHz 8.267s 8.030s 9.167s 

10MHz 8.372s 8.029s 8.524s 
15MHz 9.185s 9.123s 9.340s 

3. Experiment and results 

In this section, we collect BGS and BPS from experiment and process them by SVM to verify 
the above simulation results. Here, we adopt the method in [15] to measure the BGS and BPS 
simultaneously along the sensing fiber. The method is relatively simple and can ensure both 
BGS and BPS are measured under the same conditions. In the experiment, the FUT is a 10 
km long single mode fiber. The last 200 m section is free from strain and put into the oven. 
The sampling rate for data acquisition is 250 MSample/s. Thus, 200m fiber corresponds to 
500 sampling points and provides sufficient data points for statistical analysis. Note that 
longer sensing range can be realized by using a 3 × 3 optical coupler structure which enables 
more stable measurement [16]. Coherent BOTDAs [13, 14, 17–19] can also be adopted to 
simultaneously measure BGSs and BPSs in a more stable manner for industrial applications. 
Figures 5 (a) and (b) show the BGS and BPS distribution measured with a 20ns pump pulse, 
1024 times averaging and 1 MHz frequency scanning step. The measured BGSs and 
corresponding BPSs form pairs of BGS + BPS which are processed by the same SVM-(g + p) 
model in Section 2, which is trained by simulated BGSs and BPSs with different bandwidth to 
minimize the effect of Brillouin gain bandwidth variation along FUT on the SVM 
performance and also accommodate different pump pulse width [31, 32]. For comparison, the 
measured BGS and BPS are also processed by the same SVM-g and SVM-p as in Section 2. 
Figures 5(c1)-(c3) give the temperature distribution around the heated fiber section with 
SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively. The temperature 
uncertainty/RMSE at the last 200m FUT are calculated to be 0.262°C / 0.291°C for SVM-g, 
and 0.285°C / 0.305°C for SVM-p; while the two parameters are improved to 0.190°C and 
0.210°C by SVM-(g + p) due to the use of combined BGS and BPS. Note that the small steps 
in Figs. 5(c1)-(c3) are due to the fact that temperature classes are formed with a step of 0.5°C 
and thus the extracted temperatures by SVM have discontinuous values, e.g. 59.5°C, 60°C 
and 60.5°C. 
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Fig. 5. (a) Measured BGS, (b) BPS distribution along 10 km FUT with last 200 m section 
heated at 60 °C; (c1)-(c3) temperature distribution around the heated fiber section extracted by 
SVM-g, SVM-p and SVM-(g + p), respectively. 

Using 20 ns pump pulse and 1 MHz frequency scanning step, we then collect the BGS and 
BPS under different trace averaging times, i.e. 128, 256, 512, 1024. The measured SNR are 
calculated to be 8.4 dB, 10 dB, 11.5 dB, 13.8 dB, respectively. Figures 6(a) and (b) give the 
temperature uncertainty and RMSE measured under the above SNRs with SVM-g, SVM-p 
and SVM-(g + p) for temperature extraction, respectively. The uncertainty and RMSE are 
calculated using the data near the fiber end. The results are in agreement with the simulation 
depicted in Fig. 2 where the temperature uncertainty and RMSE by SVM-(g + p) are around 
70% of those using SVM-g and SVM-p. Compared with SVM-g and SVM-p, the average 
improvement of uncertainty are 29.3% and 32.1%, while that of RMSE are 29.7% and 31.2%, 
respectively. 
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Fig. 6. (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. 
SNR measured by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, 
respectively. 

Next, we use different pump pulse widths (i.e. 15ns, 20ns, 30ns, and 50ns) to collect the 
BGS and BPS under different Brillouin gain bandwidths. During the measurement, the 
frequency scanning step and SNR are fixed at 1 MHz and 10 dB. The corresponding gain 
bandwidth for the four pulse widths are measured to be 63.6MHz, 54.5MHz, 45.5MHz and 
35.4MHz, respectively. Figure 7 depicts the temperature uncertainty and RMSE measured 
under different gain bandwidths when SVM-g, SVM-p and SVM-(g + p) are employed for 
temperature extraction, respectively. For all the three SVM models, a large Brillouin gain 
bandwidth gives rise to poor accuracy. But at each Brillouin gain bandwidth, SVM-(g + p) 
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has lower uncertainty and RMSE compared with SVM-g and SVM-p, which matches well 
with the simulation in Fig. 3. As an example, when the bandwidth is 63.6 MHz, the 
uncertainty and RMSE are 0.550°C and 0.586°C for SVM-(g + p), while they are 0.760°C 
and 0.783°C for SVM-g, and 0.790°C and 0.791°C for SVM-p, respectively. The average 
improvement of uncertainty are 29.0% and 31.4% compared with SVM-g and SVM-p; while 
the average improvement of RMSE are 29.2% and 30.8%, respectively. 
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Fig. 7. (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. 
bandwidth measured by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, 
respectively. 

Lastly, several frequency scanning steps (i.e. 1MHz, 2MHz, 5MHz, 10MHz, 15MHz) are 
adopted for the collection of BGS and BPS when the pump pulse width is set to be 20ns and 
the SNR is fixed at 8.6 dB. Figure 8 plots the measured uncertainty and RMSE versus the 
frequency step by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, 
respectively. As the frequency step increases, there are fewer data points collected on each 
BGS and BPS, resulting in degradation of both uncertainty and RMSE for all three SVM 
models. However, for each frequency scanning step, SVM-(g + p) shows better accuracy 
compared with the other two SVMs, which is again in agreement with the simulation in Fig. 
4. The average uncertainty improvements are observed to be 31.3% and 29.1% when 
compared with SVM-g and SVM-p; while the average RMSE improvement ranges are 28.4% 
and 33.0% when compared with SVM-g and SVM-p, respectively. 
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Fig. 8. (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. 
frequency step measured by using SVM-g, SVM-p and SVM-(g + p) for temperature 
extraction, respectively. 

For the processing time of temperature extraction along the 10km FUT, Table 3 
summarizes the results by using SVM-g, SVM-p and SVM-(g + p), respectively. The 
sampling rate for BGS and BPS acquisition is 250 MSample/s, thus 10km distance 
corresponds to 25,000 sensing points. Taking 1MHz frequency step as an example, SVM-g 
and SVM-p require 3.814s and 3.688s to process 25,000 measured BGS and BPS. In 
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comparison, SVM-(g + p) consumes 5.571s, which is only slightly longer than the previous 
two SVMs. If Eq. (1) based BGS fitting and Eq. (2) based BPS fitting are used for the 
processing of the same data, 7.916 min and 8.767min are required, respectively. Therefore, 
compared with SVM-g and SVM-p, SVM-(g + p) consumes only a little extra time for the 
accuracy improvement but it is still 80 times faster than the conventional curve fitting 
method. 

Table 3. Comparison of processing time for temperature extraction along 10km FUT 

Frequency 
step 

SVM-g SVM-p 
SVM-(g + p) 

1MHz 3.814s 3.688s 5.571s 
2MHz 2.562s 2.533s 3.672s 
5MHz 2.067s 2.028s 2.293s 

10MHz 2.091s 2.018s 2.133s 
15MHz 2.273s 2.281s 2.332s 

4. Conclusion 

We have successfully demonstrated a SVM assisted BOTDA utilizing combined Brillouin 
gain and phase information for enhanced sensing accuracy. Unlike conventional curve fitting 
methods, where independent BGS fitting and BPS fitting are needed separately for the 
combination of the two information, only one SVM-(g + p) model is used. The model 
effectively combines the Brillouin amplitude and phase spectral responses in the training and 
testing phases for accuracy improvement. The performance of SVM-(g + p) is compared with 
SVM-g and SVM-p over a wide range of simulation and experiment parameters, achieving an 
accuracy improvement of about 30% due to the use of both Brillouin gain and phase 
information. More importantly, although the dimension of the vector space for SVM-(g + p) 
is doubled, the processing speed using SVM-(g + p) for temperature extraction degrades only 
slightly and is still 80 times faster than that using conventional LCF. The fast processing with 
enhanced sensing accuracy will make SVM-(g + p) a highly desirable candidate for future 
high-speed and high-accuracy BOTDA sensors retrieving both Brillouin gain and phase 
information. 
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