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Robust scream sound detection via sound event 
partitioning  

Baiying Lei and Man-Wai Mak 

Abstract 

This paper proposes a robust scream-sound detection scheme for acoustic surveillance applications. To enhance the discrimina-

bility between scream and non-scream sounds, a sound-event partitioning (SEP) method that facilitates the extraction of multiple 

acoustic vectors from a single sound event is developed. Regularized principal component analysis (PCA) and normalization are 

applied to the acoustic vectors, which are then classified by support vector machines (SVMs). Experimental results based on 

1000 sound events show that the proposed scheme is effective even if there are severe mismatches between the training and test-

ing conditions. The experimental results also show that a gain of 60% is achieved for equal error rate (EER) compared to a clas-

sical approach (based on mel-frequency cepstral coefficients (MFCC)). Extensive analyses on different processing stages of the 

proposed sound detection scheme also suggest that sound partitioning and feature normalization play important roles in boosting 

the detection performance. 

Keywords—Scream sound detection; Regularized PCA-whitening; Feature normalization; Sound event partitioning 

1 Introduction 

Scream sounds are produced by a long loud piercing cry that expresses extreme fear or pain. The detection of scream sounds 

under real-world environments is of great significance because it is an enabling technology for acoustic surveillance and moni-

toring. In the literature, sound event classification and detection is a hot topic due to its wide applications [1-18]. For example, in 

[1], Guo et al. proposed an audio classification and retrieval system based on SVM using both perceptual feature (e.g., total pow-

er and pitch) and mel-frequency cepstral coefficients (MFCCs). In [7], probabilistic distance SVMs for sound event detection 

was investigated. In [16], a Radon transformed audio feature was utilized for automatic pornographic detection. In [15], speech 

and non-speech signals were classified by a joint regression and classification method using MFCC as features. In [12], a live 

scream detector for home surveillance and eldercare was developed based on MFCC and SVM classifiers. 

To deal with the non-stationary nature of environmental sounds and music, matching pursuit had also been applied to obtain 

time-frequency representation of audio signals in the literature [4,6]. Specifically, in [4], for each analysis frame, acoustic fea-
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tures were obtained by computing the mean and standard deviation of the frequency and scale parameters of a pre-defined num-

ber of Gabor time-frequency atoms in the matching pursuit. In [6], matching pursuit was applied to construct a time-frequency 

matrix of a sound event, which was followed by a dimension reduction step where non-negative matrix decomposition was ap-

plied to extract the frequency and temporal structures of the time-frequency matrix. Both studies found that these matching-

pursuit-based features were complementary to MFCCs, although the former was more computationally demanding because of 

the iterative nature of the matching pursuit algorithm.   

Another way of representing sound features is to convert an audio signal into a spectrogram and divide the spectrogram into a 

number of blocks. Image processing techniques are then applied to enhance the spectrogram, and sound features are extracted 

from the statistics (moments about the means) of individual blocks in the enhanced spectrogram [5]. Recently, this approach has 

been extended to sound signal representation using sub-band power distribution, where the distribution of log-spectral power 

over time in each sub-band is captured [9]. With this representation, reliable and high-power spectral components can be mapped 

to localized regions of the sub-band power distribution, which makes the images spectrogram more robust to noise because the 

localization of spectral power in the image facilitates the estimation of missing feature mask. Another extension of this approach 

is to extract the so-called "keypoints" from the spectrogram, where the keypoints aim to capture important geometrical infor-

mation about the sound [11]. It was found that spectrogram-based acoustic features are robust to environmental noise. 

In spite of the encouraging results obtained by the earlier studies, the high detector error and false alarm rate remain a chal-

lenging issue, especially when the detectors are operated under severely noisy conditions. Ideally, detectors should be able to (1) 

detect scream sounds in very noisy environments (with SNR as low as -5dB), (2) detect very short sound events (around one 

second), (3) function properly even if the operating conditions are different from the training conditions, and (4) conserve battery 

power. The last requirement is of particular significance for mobile surveillance because the detectors may need to operate con-

tinuously.    

To address the above challenges, it is necessary to determine the acoustic features that can identify the unique scream signa-

tures efficiently [12-14]. Research has demonstrated that time-frequency representation is very useful for the classification of 

sound and speech signals [6,7,4,19]. While MFCCs [20] are one of the most popular time-frequency representation, it is well-

known that MFCCs are not very robust under noisy conditions. Recently, an enhanced cepstral feature, namely, gammatone fre-

quency cepstral coefficient (GFCC), is proposed for speaker recognition and speech segregation [21,10,22]. It was found that 

GFCCs are more robust than MFCCs in noisy environments. In this work, we explored the application of GFCCs to sound-event 

detection and compared their performance with the conventional MFCCs.  

      Recently, the fusions of acoustic features [10] and classifiers [23] have attracted a lot of attention, primarily because of the 

good performance of the fusion systems as compared to systems that use individual features alone. In this work, we combined 
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MFCCs and GFCCs for sound-event detection in three different modes: feature fusion (concatenation), score fusion, and combi-

nation of feature fusion and score fusion.   

Another issue is the preparation of training data for training the classifier of a sound-event detector. Because the amount of 

scream sound data is much smaller than that of non-scream sounds, there is a severe imbalance between the two classes of data. 

Recently, a technique called utterance partitioning [24,25] has been developed for speaker verification to address this issue. 

Here, we extend the technique to sound-event detection and refer to it as sound event partitioning (SEP). Specifically, given a 

sound event, a number of training vectors can be obtained by randomizing the frame indexes of the sound event, followed by 

partitioning the acoustic vectors into a number of equal-length segments. For each segment (partition), an acoustic vector is ob-

tained by concatenating the mean and standard deviation of the vectors within the partition. The mean portion of the acoustic 

vector is to represent the overall spectral characteristics of the partition, and the standard deviation portion is to capture the 

speech variation within the partition. This process allows us to obtain more training vectors for each sound event, thereby boost-

ing the performance of the resulting classifier.  

In addition to classifier training, feature pre-processing is also very important for sound-event detection because without dis-

criminative features, the best classifier will still fail. For computation efficiency, support vector machines (SVMs) have been 

selected as the classifier in this work. We have performed extensive analyses as to which feature pre-processing methods is the 

best for the SVM classifier used in our detector. Our results suggest that principal component analysis (PCA) whitening [26,27] 

(which have been extensively used in image classification) followed by normalization achieves the best performance. To further 

improve performance, the eigenvalues of the PCA are also regularized. 

The main contribution of this work includes the following: (1) a sound event partitioning technique is proposed to increase 

the number of acoustic vectors of training the SVM classifier, and (2) extensive analyses on the feature pre-processing tech-

niques (such as PCA, whitening and L2 norm) for the SVM classifier are provided. The organization of the rest of this paper is as 

follows. The proposed method for scream sound is detailed in Section 2. Extensive experimental results are provided in Section 

3. Finally, Section 4 provides concluding remarks.  

 

2 Methodology   

 

2.1 System overview 

 
The block diagram of the proposed scream detection system is shown in Fig. 1. A spectral-subtraction based voice activity 

detection (VAD) proposed in [28] is applied to detect the sound regions. MFCCs [20] and GFCCs [21,10,22] are extracted from 

the sound regions only. For each 32ms analysis frame, twelve cepstral coefficients (excluding energy) and their first and second 
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time derivatives (∆ and ∆∆) are concatenated to form a 36 dimensional feature vector (feature dimension D=36). The MFCC and 

GFCC vectors are then concatenated to form 72-dimensional vectors, which are subject to regularized PCA whitening and -

normalization. For each sound event, the acoustic vectors are divided into several partitions, and then the mean and standard de-

viation vectors of each partition are stacked to form the final vectors for SVM classification. Note that 32ms analysis frames with 

50% frame overlapping are typical in speech recognition systems. Because scream sounds are somewhat similar to speech 

sounds (as they are both produced by human), we followed the convention used in speech recognition systems. However, unlike 

speech recognition systems, we did not use energy in the feature vectors because scream and non-scream sound could have very 

similar energy. 

 Unlike most existing work in sound detection [6,7,4,19], the main goal of the proposed system is to detect short sound events 

(some of them could be less than 1 second) in very noisy environments (with SNR less than -5dB) and severe mismatches be-

tween training and testing conditions. As shown in Fig. 2 (upper panel), the time-domain signal of scream sounds will become 

indistinguishable from the background noise at low SNR. Nevertheless, a texture-like pattern can still be observed in the spectro-

gram representation as shown in the lower panel of Fig. 2. Previous work [13,8] in sound detection has also reported such phe-

nomenon. Therefore, our proposed system uses spectral-domain features. MFCCs [20] are the most common spectral features for 

speech and speaker recognition. Nevertheless, they are known to be not very robust under noisy conditions [21]. Recently, a new 

spectral features called GFCC [21,10,22] has been proposed for robust speaker recognition. Our proposed system combines these 

two features for sound detection by performing within sound-event partitioning, regularized PCA, and -normalization on the 

acoustic vectors. The methods proposed are suitable for the implementation of acoustic surveillance systems and hazard detec-

tion systems running on mobile devices. The system was evaluated using sound events recorded from a mobile phone with real 

environmental noise acoustically added to the original sound signals.  

Table 1 compares the proposed detector with other state-of-the-art detectors/recognizers in terms of evaluation data, classifi-

ers and acoustic features. Table 2 shows the details of our evaluation data. The pros of our evaluation data is that it comprises 

sound events with a wide range of durations and that the sound events were recorded under real-acoustic environments by a mo-

bile phone. Nevertheless, the numbers of scream and non-scream sounds are imbalance because of the difficulty in obtaining 

scream sounds.   

2.2 Feature extraction and fusion 

     An appropriate feature is of vital importance to sound-event detection. Time-frequency representation is appropriate because 

sound events are non-stationary signals. It has been found that distinctive texture-like patterns represented in the form of MFCC 

spectrograms are effective for sound-event detection [3,2,8,13]. Fig. 3 shows the texture-like MFCC patterns for both scream and 
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non-scream sounds. Apparently, the two patterns are very distinctive. Note that the differences between scream and non-scream 

Fsounds are more visible on the first coefficient. This is because the intensity of the image plots in Fig. 3 represents the values of 

MFCC (a kind of cepstral coefficients) in which the first coefficient has the largest variance across different types of sounds. In 

fact, cepstral coefficients have the property that the variance decreases with increasing coefficient numbers, e.g., for 12-th order 

MFCC, the first coefficient has the largest variance whereas the 12-th coefficient has the lowest variance. 

     Recently, a new feature called GFCC [21,10] was found to be robust to noise in speaker recognition [21,10]. As illustrated in 

Fig. 4, the first coefficients of MFCC and GFCC are not totally correlated (with correlation value less than 1.0), which means 

that fusion techniques such as feature concatenation and score fusion can be explored to combine the two features. It has been 

found that feature fusion is a useful and effective way to boost the classification performance in speech segregation [10]. In spite 

of a great number of previous efforts [6,7,4,19] to explore discriminative features, there is no investigation on GFCC feature and 

fusion of MFCC and GFCC for sound-event detection. To the best of our knowledge, this work is the first to fuse MFCC and 

GFCC for scream sound detection.  

     There are two popular approaches to combining acoustic features: feature fusion and score fusion. Denote  and 

as DÍN matrices containing N frames of D-dimensional MFCC and GFCC vectors, respectively. Then, feature fusion can 

be written as: 

                                                                                                                        (1) 

where and are weights for MFCC and GFCC features, respectively, and  is a concatenation operator.  

     Score fusion, on the other hand, can be implemented by linearly combining the scores obtained from MFCC- and GFCC-

based classifiers. Specifically, denote  and as the scores from MFCC- and GFCC-based classifiers, then the fusion 

score is given by: 

                                                                                                                                           (2) 

where is a fusion weight.  

     To further exploit the complementarity between MFCCs and GFCCs, the scores obtained from the classifier that uses the fea-

ture-fusion vectors as input can be further combined with the scores obtained from score fusion. Mathematically, this hierar-

chical fusion can be written as: 

                                                                                                                                                    (3) 

where  is a fusion weight and represents the score obtained by using the concatenated feature in Eq.(1). 
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2.3 Regularized PCA whitening and  normalization 

 
Regularized PCA whitening and normalization are performed on the feature vectors. Given a sound event, a sequence of 

D-dimensional acoustic vectors  is obtained, where  is the i-th acoustic vector. Then, these acoustic vectors 

are transformed as follows:  

     (4) 

where  is a  projection matrix containing  eigenvectors in its columns and are the largest eigenvalues. 

The transformed vectors are then concatenated to form a matrix  for further processing. The PCA will perform 

whitening as well as dimension reduction when feature fusion is applied. Specifically, PCA reduces the dimension of the 

MFCC+GFCC vectors from 72 to 36. However, because the dimension of MFCC and GFCC vectors is not high  only), 

PCA will only perform whitening on either the MFCC or GFCC vectors when no feature fusion is applied. As a result, , 

for both feature fusion or without feature fusion. Note that PCA is not only for dimension reduction, but also for whitening and 

regularization. We found that the latter plays more important role than the former. Without feature fusion, we found that using all 

of the features performs the best. That is why we set D'=36. With feature fusion, because feature dimension is doubled, we re-

duced it to the same value as without feature fusion to avoid the curse of dimensionality problem. The regularization of PCA is 

achieved by adding a small positive value to the eigenvalues as below: 

                                                                                                                                                        (5) 

where is the largest eigenvalues and  is a regularization parameter. 

As suggested in [27,29], the above whitening and normalization process can minimize the effect of missing words and the co-

occurrence of visual words in visual features. In particular, the normalization process is to suppress the double-count effect 

caused by co-occurred words. -norm is also a common approach to compensate for the effect of document-length variability 

on the term-frequency vectors in document retrieval [30]. Here, we argue that the same process is also beneficial for our sound-

event detector. The main reason is that our detector is based on SVMs in which input space normalization has shown to be bene-

ficial [31]. Also, it has been shown theoretically that SVM is justified only for input vectors of constant length [32]. 

 
2.4 Sound event partitioning  
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Scream sounds are in general shorter than non-scream sounds such as music [7,4]. However, there are many non-scream 

sounds (such as door slam, cough, and sneezing) that are much shorter than scream sounds. Fig. 5 shows the length distribution 

(in terms of number of frames) in 300 scream sounds and 700 non-scream sounds used in this study (see Section 3 for the details 

of the dataset). Evidently, the distribution suggests that most scream sounds are less than 500 frames, which is equal to 4 seconds 

at a framerate of 125Hz, but there are a few non-scream sounds (e.g., cheering) that last much longer than any of the scream 

sounds in the dataset. Fig. 5 also shows that the length of both scream and non-scream events varies significantly. 

Because our proposed sound detection algorithm is designed to run on mobile devices, computation complexity and power 

consumption are important concerns. To minimize power consumption, we opt for an SVM classifier and use the mean and 

standard deviation of the acoustic feature vectors (MFCC and GFCC) across the whole sound event as the input to the classifier.1 

However, the wide range of sound-event length as shown in Fig. 5 suggests that one mean vector and one standard deviation 

vector will not be sufficient for representing the acoustic characteristics of medium and long sound events. This is because for 

medium and long sound events, there must be some spectral variations within the events but the mean and standard deviation fail 

to capture these sub-event variations. To address this deficiency, we extend our recently proposed utterance partitioning tech-

nique [24,25] to sound-event detection. The partitioning procedure is as follows: 

Step 1: For each sound event, a sequence of MFCC and GFCC vectors are computed. After feature concatenation, whitening 

and normalization, a feature matrix is obtained. 

Step 2: Randomize the frame indexes in to produce . This step follows the argument in [24,25] that the mean and stand-

ard deviation will not be affected by rearranging the indexes. 

Step 3: Partition the feature matrix into M equal-length sections and compute the mean and standard deviation for each sec-

tion to produce M vectors. 

Step 4: Repeat Steps 2 and 3 R times to produce RM input vectors. Together with the mean and standard deviation of the full-

length matrix , this procedure will give RM+1 vectors for each sound event. 

Fig. 6 illustrates this sound-event partitioning process and the procedure for computing the mean and standard deviation vec-

tors for each partition. As shown in Fig. 6, the number of frames in each partition is about one-quarter of that of the total number 

of frames. For very short events, the mean vectors of the partitions could be very noisy, causing classification error. On the other 

hand, for very long events, the mean vectors corresponding to the partitions are more reliable and therefore it makes sense to use 

multiple mean vectors rather than a single mean vector (corresponding to the whole event) for classification. As a result, our 

method will work better for long events.  

Ẑ

Ẑ *Ẑ

*Ẑ

Ẑ
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3 Experimental results 

 

3.1 Experiment setup 

 
The proposed scream detector was evaluated by using a variety of sound events collected from [33]. Specifically, a total of 

240 scream and 760 non-scream sound files sampled at 16 kHz with 16-bit resolution were used. Table 2 summarizes the sound 

events used in the experiments. The scream sound includes the male and female screaming and children screaming under differ-

ent situations. The non-scream sound includes baby cry, speech, laughter, applause, sneeze and non-speech noises. Metro station 

noise was acoustically added to these sound files. This was achieved by playing back the original sound files through a B&K 

Mouth Simulator Type 4227 and at the same time metro station noise was played back through another loudspeaker. The mixed 

signals were recorded by an Android phone (Zopo Z980) using mono mode with sampling frequency 16 kHz, 16 bits per sample. 

Fig. 7 shows the setup for recording the station-noise contaminated sound events.  

In our experiment, in Eq. (5) was set to 0.00001. In SVM classifier, the RBF kernel is used and the RBF kernel width was 

set to 0.3,  and the penalty factor C for SVM training was set to 1.0. The performance of the sound detector under various con-

figurations, environmental noise levels, and parameter settings was compared based on the minimum detection cost functions 

(minDCF) [19,34], receiver operating characteristic (ROC), detection error tradeoff curves [34] and equal error rates (EER). For 

each experimental condition, ten-fold cross validation was conducted to obtain the EER and minDCF. 

 
3.2 Effect of noise level 

 
To investigate the effect of background noise on sound detection, babble noise from NOISEX'92 [35] was added to the 

scream sound events at SNR levels of 10dB, 5dB, 0dB and -5dB, using the Matlab code available from [36]. Babble noise is 

selected due to its non-stationary characteristics and resemblance to human sounds. Note that ideally we should have played back 

the babble noise in the mouse simulator and acoustically added the babble noise to the sound events. However, for each sound 

file, we also needed to measure the SNR of the resulting noisy file. Given that we have 1000 sound files and 4 different SNR 

conditions, performing such procedure will be too time consumption and tedious.  

Fig. 8 shows the EER (%) and minDCF achieved by the detector using different features and fusion methods under different 

SNRs. The fusion weights  and in Eq. (2) and Eq. (3) have not been optimized in this experiment, and both were set to 0.5 

 
1 It is important to note that individual frames do not contain sufficient information for differentiating scream and non-scream 
sounds. In fact, individual frames of scream and non-scream sound are highly overlapped in the feature space, which will cause 
problems if they are directly used for training SVM classifiers. 

b
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across all SNRs. Results demonstrate that both the score and feature fusions achieve very good performance, suggesting that us-

ing both MFCC and GFCC is better than using the individual feature alone. 

Fig. 8 suggests that even under adverse acoustic conditions, the proposed detection algorithm still achieves very promising 

results. For instance, even at SNR = -5dB, the EER (7.24%) and minDCF (0.0378) achieved by the detector are still acceptable 

for real-life application.  

The EER (%) and minDCF quantify the performance of a detection system based on one decision threshold. While these per-

formance measures are good for comparing system performance, they do not show the trade-off between false alarm (rate of 

miss-classifying non-scream sounds as scream sounds) and miss probability (rate of miss-classifying scream as non-scream). The 

detection error trade-off [34], which is a kind of receiver operating characteristics but with non-linear axes, is designed to com-

pare the performance of detection systems operating at a wide range of decision thresholds. As demonstrated in Fig. 9, the per-

formance of both feature fusion and score fusion is better than that without fusion across a wide range of decision thresholds. 

This suggests that the fusion methods are very robust. Fig.10 illustrates the ROC curves of the MFCC, GFCC, FusionFeature and 

FusionScore using true positive rate and false positive rate as x- and y-axes.  

3.3 Mismatched noise tests 

 
It is of great interest to perform the mismatched tests by training on clean data but testing on data at different noise levels 

[11], which could further evaluate the robustness of the detection system. Moreover, robustness of the detection system to 

reverberation effect was also investigated by convolving the clean sound files with various room impulse responses at 

reverberation time of 0.3, 0.5 and 0.7 using the RIR tool [37]. We followed the procedure specified in the PRISM-SET [38] to 

generate the reverberated sound [39]. Tables 3 and 4 show the EER (%) and minDCF (in the parentheses) in the mismatched 

noise tests. The first row of Table 3 suggests that the performance of the detector degrades rapidly when it is trained on clean 

sounds but tested on noisy sounds. The performances of mismatched train-test conditions (off-diagonal entries) are also signifi-

cantly poorer than that of the matched conditions. However, the discrepancy between the performance of matched and mis-

matched conditions reduces when the SNR reduces. This suggests that for robustness consideration, the sound detector should 

better be trained on noisy sound files instead of clean sound files. The mismatched noise test demonstrates the robustness against 

various noises under different mismatched test conditions.  

 
3.4 Effect of sound-event partitioning 

 
The effect of varying the number of partitions in a sound event under the clean condition is shown in Fig. 11. Evidently, sys-

tems with partitioning generally achieve better performance than those without partitioning (number of partitions=0), especially 
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when an optimal number of partitions were selected. As shown in Fig. 11, as the number of partitions increases, the performance 

does not necessarily improve and could become worse than the systems without partitioning. The plots, however, exhibit convex 

shapes, suggesting a balance between the number of partitions and detection performance needs to be made. Moreover, increas-

ing the number of partitions will also increase the computational cost. In our dataset, the experimental results demonstrate that 

when the number of partitions is 2 or 4, the performance reaches optimum. Generally, the results suggest that SEP is beneficial to 

the overall performance. It is also observed that the proposed partitioning method is applicable to both MFCC and GFCC fea-

tures.  

3.5 Effect of feature and score fusions  

In this work, feature fusion, score fusion, and feature fusion plus score fusion have been investigated. Fig. 12 shows the re-

sults of the three fusion techniques. For each configuration in the horizontal axis in Fig. 12, the fusion weights  and in Eq. 

(2) and Eq. (3) have been optimized through cross validation and the weights  and  in Eq. (1) were set to 1.0. Fig. 12, SEP 

means sound event partitioning technique was applied, and SEP+L2 means the proposed method, namely, both 

and SEP were applied. As expected, combining score fusion and feature fusion, namely, FusionBoth in Fig. 12, 

achieves the best performance in all cases. Score fusion achieves very similar results to the FusionBoth, whereas feature fusion is 

slightly inferior. Also, it can be seen from Fig. 12 that SEP+L2 achieves the best performance among all the cases. The primary 

explanation is that both feature normalization and partitioning techniques are effective for the scream sound detection.  

3.6 Algorithm comparison  

Experiments have been carried out to evaluate the effectiveness of PCA, regularization, whitening,  and SEP. Fig. 13 

shows the results, where PCAR, PCAW and PCARW denote PCA regularization only, PCA whitening only, and joint PCA regu-

larization and whitening. SEP denotes the proposed partitioning technique, and L2 means  Note that all PCA 

will also have because the latter is an important step to improve performance after PCA projection. It can be 

seen from Fig. 13 that SEP is very effective for the systems with and without PCA and normalization. The SEP technique is able 

to create more informative input vectors to the SVM classifier for each sound event, which not only helps the SVM training algo-

rithm to find better decision boundary to discriminate scream sounds from non-scream sounds but also provides lots more in-

formative input vectors to the SVM during classification. Besides, partitioning will generate more samples in the training. There-

fore, the performance of the systems with SEP consistently outperforms those without SEP. For systems that involve PCA, it is 

observed that PCA whitening is of vital importance to improve detection performance, whereas regularization could slightly im-

prove detection performance. Moreover, it is clear from the comparisons that  could improve the baseline per-
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formance but not significantly without PCA projection. Among the system involving PCA, is the most im-

portant step to improve performance; without  the performance degrades significantly. 

To further validate the SEP technique and different feature pre-processing methods, the detection system was tested under 

different SNR.  Fig. 14 shows that  are effective for boosting the performance of SEP. A comparison between 

L2 and PCAW+L2 reveals that PCA whitening is beneficial to the performance. Joint regularization and whitening (PCAW+L2) 

further improves the performance. In general, the results demonstrate that PCA can help to find a direction that improves per-

formance. 

 
4 Conclusions and future work 

 
In this paper, feature normalization and sound event partitioning techniques have been proposed and analyzed in a scream-

sound detection system. It was found that joint PCA regularization and whitening improves the detection performance greatly. It 

is also found that SEP and feature normalization is very important for performance boosting. Extensive experimental results 

demonstrate the robustness of the proposed detection scheme to both additive and reverberation noises. The SEP and feature 

normalization methods could be generalized and applied to other sound detection applications (i.e., environment sound detec-

tion). Generally, more than 50% performance improvement is achieved for the proposed approach than the baseline approach. 

We have developed an Android app based on the methods described in this paper. The app can differentiate scream and non-

scream sound events in real-time. A demonstration of the app can be found in 

http://www.eie.polyu.edu.hk/~mwmak/SoundDetector.html.  
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 Table 1 
 

Comparisons between existing sound detectors/recognizers and the proposed scream-sound detector in terms of evaluation data, classifiers and acoustic features. 
Ref.  Sample classifier Feature 
Atey [3] talk, shout, knock and footsteps (walking and running), 2 hours training 

 and 2 hours testing 
GMM ZCR, LPC, LPCC, LFCC 

Natlamprias [13] Explosion, gunshot, scream subway  HMM MFCC 
Huang [12] 26 training scream clips, 56 testing scram clips, 49 non-scream training clips 

(speech, cry, break, applause, knock, laugh), 271 non-scream testing clips 
SVM MFCC 

Valenzise [14] Gunshot, scream, and noise from microphone arrays GMM ZCR, MFCC, spectral distribution  
Tran [7] 2.5hours audio clips, 2794 training, 2782 testing SVM Short time energy 
The proposed  240 scream sound, 760 non-scream sound SVM MFCC, GFCC, MFCC+ GFCC 

 
 
Table 2  

Summary of the sound events. 

Sound event  Number  of Events Duration min-max (s)   

applause 86 2.3-146  

baby 83 2.4-22  
babycry 16 4-5.4  
cheer 8 18.6-41.37  

cheering 60 19-3541  
cough 63 9-116  
crowd 16 74-2557  

door 4 8-45  
groan 18 13-51  

grunt 77 0.1-1.2  
gunshot 8 0.2-0.9  
kiss 9 0.2-0.80  

laugh 64 0.21-4.4  
laughter 30 0.6-1.24  
nose 9 0.2-1.96  

phonering 9 0.8-6.44  
sniff 19 0.2-2.22  

sniffle 11 0.2-0.8  
snore 3 2.9-3.74  
snort 25 0.2-1.76  

speech 10 13-1.08  
spit 18 1.6-2.6  

throat 24 0.2-0.84  
vocal 31 0.2-0.95  

whistle 50 0.2-1.65  

scream 240 0.2-6  
Total 1000 66442  

 

Table 3 

Mismatched test (babble noise). 

 Test clean Test 10dB Test 5dB Test 0dB Test -5dB 
Train clean 2.5 (0.023) 12.11 (0.07) 16.22 (0.085) 18.39 (0.096) 20.75 (0.096) 
Train 10dB 10.34 (0.057) 4.87 (0.029) 7.91 (0.043) 13.65 (0.072) 16.77 (0.083) 
Train 5dB 11.96 (0.07) 7.5 (0.044) 6.96 (0.038) 9.87 (0.052) 15.34 (0.0751) 
Train 0dB 14.06 (0.088) 12.24 (0.066) 9.12 (0.053) 8.31(0.046) 13.65 (0.0646) 

Train -5dB 13.18 (0.089) 13.72 (0.055) 12.91 (0.07) 10 (0.062) 11.22 (0.0543) 
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Table 4 

Mismatched test (reverberation noise). 

 Test RT 0.3 Test RT 0.5 Test RT 0.7 

Train RT0.3 2.03 (0.0167) 2.37 (0.0227) 3.18 (0.0249) 
Train RT0.5 2.5 (0.0209) 2.37 (0.0163) 2.84 (0.0183) 
Train RT0.7 3.72 (0.0183) 3.18 (0.021) 2.77 (0.019) 

 
Table 5 

Algorithm comparison results. 

Version Algorithm EER minDCF 

V0 Baseline 5.00 0.0247 

V1 V0+PCA 4.74 0.0226 

V2 V1+Whitening 4.06 0.0202 

V3 V2+SEP 3.99 0.0150 

V4 V3+Fusion 1.62 0.0137 

 
 
Figure captions  
 

Fig. 1. Schematic diagram of the scream detection system under the feature fusion configuration (SEP stands for sound event partitioning). 

Fig. 2. Waveforms and spectrograms of (a) clean scream sound and (b) scream sound mixed with babble noise (SNR -5dB). 

Fig. 3. MFCC patterns for scream and non-scream sounds. 

Fig. 4. Relationship between GFCC and MFCC after feature normalization. 

Fig. 5. Distributions of the number of frames in scream and non-scream sounds. 

Fig. 6. Sound-event partitioning (SEP in Fig. 1) and the procedure for creating input vectors for the SVM classifier. The diagram illustrates the case with 4 parti-

tions for each sound event. The vertical columns at the top are acoustic vectors of one sound event after PCA whitening and -normalization (Eq. (4)). For 

clarity of illustration, the randomization of frame indexes is not shown. 

Fig. 7. Illustration of the setup for recording the sound event detection system. 

Fig. 8. Effect of babble noise on scream detection performance using different features and different fusion methods. For the x-axis labels, Clean means that 

sound files contaminated with metro station noise were used, whereas for the rest, babble noise was added to these sound files at the specified SNR. In the legend, 

FusionFeature, FusionScore, and FusionBoth means Eq. (1), Eq. (2), and Eq. (3) were used for the fusion, respectively. (a) EER and (b) minDCF. 

Fig. 9. DET performance of the sound detector based on different features and fusion methods under (a) clean condition and (b) -5dB SNR.  

Fig.10. ROC curves of the sound detector based on different features and fusion methods under (a) clean condition and (b) -5dB SNR.  

Fig. 11. Effect of sound-event partitioning on (a) EER and (b) minDCF (Note that number of partitions=0 means no partitioning was applied ).     

Fig. 12. Effect of fusion techniques, where L2 represent L2-norm (L2). 

Fig. 13. The  EER and  minDCF achieved by detection systems with and without sound-event partitioning (SEP) . The baseline denotes the system without any 

feature pre-processing such as PCA, L2-norm (L2), whitening (W), and regularization (R). (a) Feature fusion. (b) Score fusion. 

Fig. 14. The  EER and  minDCF achieved by detection systems with and without SEP . The baseline denotes the system without any feature pre-processing such 

as PCA, L2-norm (L2), whitening (W), and regularization (R). (a) Feature fusion. (b) Score fusion.
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Fig. 1. Schematic diagram of the scream detection system under the feature fusion configuration (SEP stands for sound event partitioning). 

 

 
 
Fig. 2. Waveforms and spectrograms of scream sound mixed with babble noise (SNR -5dB). 
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Fig. 3. Image plots showing the MFCC patterns for scream and non-scream sounds. The intensity (see colormap on the right) represents the MFCC values.  

 

 

Fig. 4. Relationship between the first coefficients of GFCC and MFCC after feature normalization (Note that the correlation between GFCC and MFCC coeffi-

cients is 0.9792) 
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Fig. 5. Distributions of the number of frames in scream and non-scream sounds. 

 

 
Fig. 6. Sound-event partitioning (SEP in Fig. 1) and the procedure for creating input vectors for the SVM classifier. The diagram illustrates the case with 4 parti-

tions for each sound event. The vertical columns at the top are acoustic vectors of one sound event after PCA whitening and -normalization (Eq. (4)). For 

clarity of illustration, the randomization of frame indexes is not shown. 
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Fig. 7. The setup for recording the station-noise contaminated sound events. The mount simulator on the left are used for playing the sound events and the two 

speakers in the middle are for playing the station noise. The sound events and station noise are added acoustically and recorded by the mobile phone in the mid-

dle. 

 
 

(a) EER. 

 
(b) minDCF. 

 
 

Fig. 8. Effect of babble noise on scream detection performance using different features and different fusion methods. For the x-axis labels, Clean means that 

sound files contaminated with metro station noise were used, whereas for the rest, babble noise was added to these sound files at the specified SNR. In the legend, 

FusionFeature, FusionScore, and FusionBoth means Eq.(1), Eq.(2), and Eq.(3) were used for the fusion, respectively. (a) EER and (b) minDCF. 

 
(a) Clean condition.      

 

                     (b) -5dB SNR. 

Fig. 9. DET performance of the sound detector based on different features and fusion methods under (a) clean condition and (b) -5dB SNR.  
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                                    (a) Clean condition                                                                                                    (b) -5dB SNR. 
 
Fig.10. ROC curves of the sound detector based on different features and fusion methods under (a) clean condition and (b) -5dB SNR.  

  
(a)  EER                                                                                                              (b)   minDCF 

  
Fig. 11. Effect of sound-event partitioning on (a) EER and (b) minDCF (Note that number of partitions=0 means no partitioning was applied ).     
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Fig. 12. Comparison of feature fusion, score fusion, and feature plus score fusion under the baseline system, systems with sound-event partitioning (SEP), and 

systems with SEP and feature normalization (L2). 

 
(a) Feature fusion.                                                                                                        (b) Score fusion. 

 
Fig. 13. The  EER and  minDCF achieved by detection systems with and without sound-event partitioning (SEP) . The baseline denotes the system without any 

feature pre-processing such as PCA, L2-norm (L2), whitening (W), and regularization (R). (a) Feature fusion. (b) Score fusion. 
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                                                            (a) Feature fusion.                                                                     (b) Score fusion.                                   
Fig. 14. The performance achieved by detection systems with and without SEP and with different feature preprocessing schemes (PCA, whitening  (W), L2-norm 

(L2), and regularization (R)) under different SNRs. (a) Feature fusion. (b) Score fusion.  
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