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Abstract

Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioin-
formatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether
a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types
but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address
these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane pro-
teins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO)
information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO
information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not.
If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to
determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-
of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests
that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader’s convenience, the
Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/.

Keywords: membrane protein type prediction; multi-label classification; adaptive-decision scheme; gene ontology; two-layer
classification.

1. Introduction

According to the characteristic sequence and structural fea-
tures, proteins are divided into four common types [1]: mem-
brane, soluble (or globular), fibrous and intrinsically disor-
dered. Among them, membrane proteins are found to play es-
sential roles in a variety of vital biological processes [2] by in-
teracting with the membranes of a cell or an organelle. Mem-
brane proteins are targets of almost half of all medicinal drugs
[3, 4], because they mediate many interactions between cells
and extracellular surroundings as well as between the cytosol
and membrane-bound organelles. Despite owning the same ba-
sic phospholipid bilayer structure [5], membrane proteins per-
form various and diversified functions. Therefore, given a query
protein, identifying whether it is a membrane protein or not is
an indispensable yet challenging topic in proteomics and bioin-
formatics.

Membrane proteins can be further divided into different func-
tional types. Conventionally, some studies [5] broadly clas-
sified membrane proteins into two categories, namely integral
(or intrinsic) and peripheral (or extrinsic), depending upon the
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interactions between membrane proteins and the membrane.
Other studies [6] grouped membrane proteins into three distinct
classes: integral, peripheral and lipid-anchored. With the expo-
nentially growing number of protein sequences discovered in
the post-genomic era, these three classes of membrane proteins
are further divided into eight types [7]: (1) single-pass type I;
(2) single-pass type II; (3) single-pass type III; (4) single-pass
type IV; (5) multi-pass; (6) lipid-anchor; (7) GPI-anchor and
(8) peripheral. More information about the hierarchical rela-
tionships between these eight types and the former three classes
can be found in [8]. Particularly, GPI-anchored proteins (Type
7) is a kind of special lipid-anchored proteins (Type 6).1 Type
7 is singled out from Type 6 because GPI-anchored proteins
ubiquitously exist in many species and have been intensively
studied for their unique functions [9]. Details about these eight
functional types are also elaborated in [8].

Knowing the functional types of membrane proteins can be
helpful to elucidate the biological functions of membrane pro-
teins. For example, phospholipases [10], belonging to Type-
8, are a group of water-soluble enzymes that are temporar-
ily bound to the polar head groups of membrane phospho-
lipids. Their major functions are lipid signaling, which can
be achieved by hydrolizing various bonds linking phospholi-
pases with the lipid layer to which they are temporarily at-

1http://www.uniprot.org/locations/SL-9902
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tached. Moreover, about 20%∼35% of genes contain the in-
structions for producing membrane proteins, whereas the struc-
turally annotated membrane proteins only account for less than
1% of the proteins with known structures [11]. Knowing the
functional types of membrane proteins can accelerate the pro-
cess of annotating their structures. Besides, because of their
fluidity property, membrane proteins can freely move within
the lipid bilayer to the location where their functions are per-
formed. The knowledge of the functional type of a membrane
protein can help reveal the mechanisms of this kind of biologi-
cal activities. Therefore, it is highly necessary to develop com-
putational approaches for timely and accurate prediction of the
functional types of membrane protein. Ideally, the computa-
tional approaches should perform two-layer predictions.

1. Layer I: Given a query protein, the predictor determines
whether the query protein is a membrane protein or not.

2. Layer II: If the answer in Layer I prediction is ‘yes’, the
predictor determines the functional type(s) of the protein.

In recent years, impressive progress has been made in pre-
dicting the functional types of membrane proteins [7, 11, 16,
17, 18, 19, 20, 21] and in the prediction of membrane proteins
in specific subcellular locations [22, 23]. While many advanced
predictors have been developed, they still have several limita-
tions, which are elaborated below.

1. These predictors assume that all query proteins are mem-
brane proteins. If a query protein is not a membrane pro-
tein, these predictors will attempt to determine the most
likely functional type of the protein. This is obviously un-
desirable because a non-membrane protein does not have
a membrane functional type. Given that membrane pro-
teins are just one of the four common types of proteins
[1], it is important to ensure that the query protein is re-
ally a membrane protein prior to determining its func-
tional type(s). As far as we know, only three predictors,
namely LeastEudist [12], ProtLoc [13] and MemType-2L
[7],2 are capable of predicting whether a query protein is
a membrane protein or not. These predictors are summa-
rized in Layer I of Table 1. As can be seen, these pre-
dictors use sequence-based features (i.e., amino-acid com-
positions and pseudo position-specific score matrices) to
discriminate membrane proteins from non-membrane pro-
teins.

2. They are limited to the prediction of membrane proteins
with single-label functional types. However, many mem-
brane proteins were found to simultaneously belong to
multiple functional types. For example, the envelope gly-
coprotein p57 [24, 25] was reported to belong to single-
pass type I (Type 1) when locating in the host endo-
plasmic reticulum membrane, and simultaneously it be-
longs to peripheral (Type 8) when locating in the host cell
membrane. Table 1 lists the existing multi-label predic-
tors for membrane protein type prediction (Layer II). To

2Note that LeastEudist and ProtLoc were implemented in [7]. For ease of
reference, we use the name LeastEudist to denote the method proposed in [12].

the best of our knowledge, only three predictors, namely
Mem-PseAA [14], iMem-Seq [15] and Mem-mEN [8],3

are able to predict multi-label membrane proteins. In
terms of feature extraction, iMem-Seq uses the informa-
tion from position-specific score matrices and physical-
chemical property matrices; Mem-PseAA uses feature in-
formation from pseudo-amino acid compositions; Mem-
mEN uses the information from homologous gene on-
tology term frequencies. In terms of classification, both
Mem-PseAA and iMem-Seq use multi-label kNN classi-
fiers, whereas Mem-mEN uses a multi-label elastic net
(EN) classifier. Particularly, Mem-mEN possesses the
property of ‘interpretability’ [8], which can provide bio-
logical reasons on why a query protein belongs to the pre-
dicted type(s).

3. The performance of existing predictors are far from sat-
isfactory. In particular, it has been shown [8] that Mem-
mEN performs better than Mem-PseAA and iMem-Seq.
However, the performance of all of these predictors still
remains to be improved. Besides, the one-layer architec-
ture of these predictors cannot model or capture the in-
trinsic inter-class correlations, such as the exclusiveness
between the non-membrane type and the other eight mem-
brane types, causing poor prediction performance.

To address the aforementioned problems, this paper pro-
poses an efficient two-layer multi-label predictor, namely Mem-
ADSVM, which can identify membrane proteins (Layer I) and
predict membrane proteins with single- and multi-label func-
tional types (Layer II). Similar to Mem-mEN, Mem-ADSVM
extracts features by exploiting the gene ontology (GO) infor-
mation retrieved from a compact GO-term database. Unlike
Mem-mEN that uses a multi-label elastic net classifier for Layer
II prediction, Mem-ADSVM harnesses a binary SVM classi-
fier for Layer I prediction and a multi-label SVM classifier
equipped with an adaptive-decision scheme for Layer II pre-
diction.

Experimental results on three recent benchmark datasets
demonstrate the superiority of Mem-ADSVM over existing
state-of-the-art predictors in terms of both identifying mem-
brane proteins and predicting multi-functional types. Besides,
the results suggest that GO information is more discrimina-
tive for predicting functional types of membrane proteins than
amino acid sequences. This work also found that the proposed
adaptive-decision scheme is beneficial to improving the perfor-
mance of Mem-ADSVM. Besides, the superiority of using two-
layer prediction architecture over one-layer is also presented.

2. Feature Extraction

Fig. 1 shows the flowchart of Mem-ADSVM, including (a)
the whole architecture, (b) feature extraction, (c) Layer I clas-
sification and (d) Layer II classification. Cylinders in blue rep-
resent databases, and rectangles in orange represent process-
ing/procedures. As shown in Fig. 1(a), a query protein will

3For ease of reference, we refer to the predictor proposed in [14] as Mem-
PseAA.
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Table 1: Summary of existing predictors for identifying membrane proteins (Layer I) and predicting membrane protein functional types. Pse-PSSM: pseudo
position-specific score matrix (PSSM); AA: amino-acid composition; PseAA: pseudo amino acid composition; improved PSSM: PSSM with AA physical-chemical
properties; KNN: K-nearest neighbor; OET-KNN: optimized evidence-theoretic KNN; EN: elastic net.

Stratification Predictor Features Classifier Multi-label No. of classes

Layer I
MemType-2L [7] Pse-PSSM ensemble OET-KNN No 2
LeastEudist [12] AA least Euclidean distance No 2
ProtLoc [13] AA least Mahalanobis distance No 2

Layer II
Mem-PseAA [14] PseAA multi-label KNN Yes 8
iMem-Seq [15] improved PSSM multi-label KNN Yes 8
Mem-mEN [8] GO terms multi-label EN Yes 8

go through three steps: (1) feature extraction, (2) Layer I clas-
sification and (3) Layer II classification. Particularly, if the
query protein is predicted to be a non-membrane protein in Step
2, then the predictor will return ‘non-membrane’ as the result
without proceeding to Step 3.

In this work, we used the gene ontology (GO) information
as the features for discriminating membrane proteins and their
functional types. The flowchart of feature extraction is shown in
Fig. 1(b). To avoid null-GO vectors and to address the storage
complexity problem, we used two compact databases, namely
ProSeq and ProSeq-GO [26] to replace the traditional Swiss-
Prot and GOA databases. After retrieving GO terms, term-
frequency based approach was used to construct the GO vec-
tors. Thus, this section includes the following three subsec-
tion: (1) GO information as features; (2) creation of compact
databases; and (3) GO-Vector Construction.

2.1. GO Information as Features

Gene Ontology (GO) is an influential and major bioinfor-
matics initiative to standardize the attribute representations of
genes and gene products across all species [27]. The past
decades have witnessed successful applications of GO-based
approaches in various bioinformatics domains, such as protein-
protein interaction inference [28, 29, 30], microarray clustering
[31], protein function prediction [32, 33], subnuclear localiza-
tion prediction [34] and protein subcellular localization predic-
tion [35, 36, 37, 38, 39, 40, 41]. Particularly, extensive anal-
yses and comparisons among different GO-based subcellular-
location predictors have been reported in a recent book [40].
However, GO-based approaches are hardly without disadvan-
tages. One of the challenges is how to deal with query proteins
whose GO information is not available in the gene ontology
annotation (GOA) database.4 This situation is especially preva-
lent in those newly discovered proteins which have not been
functionally annotated yet.

Traditionally, given a query protein, if its accession num-
ber (AC) does not associate with any GO terms in the GOA
database, BLAST search [42] is used to find the AC of the top
homolog of the query protein. Subsequently, the homologous
AC is used as a key to search against the GOA database to find

4http://www.ebi.ac.uk/GOA

a set of GO terms and a GO vector (see Section 2.3 below) can
be constructed. In this way, the homologous GO information
is effectively transferred to the query protein. This strategy,
nonetheless, will still lead to null GO vectors when the top ho-
mologous protein has not been annotated in the GOA database,
i.e., its AC does not associate with any GO terms. To address
this problem, some predictors [43, 44] use the AC of lower-rank
homologs as a replacement until a non-null GO vector can be
found. Some others give up using GO information and apply
back-up methods that rely on other features such as pseudo-
amino-acid composition [45, 46] and sorting signals [47]. Nev-
ertheless, the backup methods usually lead to poor prediction
accuracy for the proteins to which GO-based approaches are
not applicable.

2.2. Compact Databases Creation

In this work, similar to our previous studies [26], we used two
compact yet efficient databases so that GO-based approaches
are applicable to all proteins. These two databases, namely
ProSeq and ProSeq-GO, were obtained by filtering the tradi-
tional Swiss-Prot database and the GOA database. ProSeq is
a subset of Swiss-Prot, whereas ProSeq-GO is a subset of the
GOA database. These two databases possess the following
properties:

1. Efficiency. Using ProSeq and ProSeq-GO for retrieving
GO terms can avoid null-GO vectors because the filter-
ing process guarantees that ProSeq will only keep the se-
quences in the Swiss-Prot database whose ACs have at
least one GO term in ProSeq-GO. With the rapid progress
of the Swiss-Prot database, in most circumstances we can
always use BLAST to find a homolog for a query protein.
In case no close homolog is found, we can increase the E-
value until we can find some lower-rank homologs. The
same argument also applies to ProSeq. As a result, all of
the homologous ACs will be associated with at least one
GO terms and the GO vectors will have at least one non-
null entry.

2. Compactness. ProSeq and ProSeq-GO are very com-
pact in that they do not require large storage space and
their software implementation does not consume signifi-
cant memory space. In fact, reducing the storage complex-
ity is one of the important issues that GO-based methods
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are facing. This is because GO-based approaches need to
store the mapping between the ACs and their GO terms
as a hash map or hash table in memory. Given the large
number of ACs in the GOA database, the hash map will
easily occupy tens of gigabytes of memory. With the rapid
growth in the number of entries in the GOA database,
the memory consumption will further increase in the fu-
ture. The ProSeq-GO can reduce the memory consump-
tion from tens of gigabytes to several hundred megabytes
because the number of ACs in ProSeq-GO is substantially
smaller than that in the GOA database.

2.3. GO Vectors Construction
The construction of term-frequency based GO vectors in-

volves two steps: (1) GO terms retrieval; and (2) GO vectors
construction.

For GO-terms retrieval, given a query protein, its amino acid
sequence is presented to BLAST [42] to find its homologs in
the ProSeq database created in Section 2.2. The homologous
ACs are then used as keys to search against the ProSeq-GO
database. We used the default parameter setting for BLAST in
our experiments. Given a dataset, the GO terms of all of its
proteins are retrieved. Then, the number of distinct GO terms
is found. Specifically, let W denotes a set of distinct GO terms
corresponding to a dataset of interest. W is constructed as fol-
lows: (1) identify all of the GO terms in the dataset and (2)
remove the repetitive GO terms. Suppose W distinct GO terms
are found, i.e., |W|= W; these GO terms form a GO Euclidean
space with W dimensions.

For GO-vectors construction, because term-frequency (TF)
based GO vectors [44, 43] were found to outperform the con-
ventional 1-0 vectors, we adopted the TF method to construct
GO vectors. Specifically, for each protein sequence in the
dataset, a GO vector is constructed by matching its GO terms
against W determined in Step 1, using the number of occur-
rences of individual GO terms in W as the coordinates. Math-
ematically, the frequency GO vector qi of the i-th protein Qi is
defined as:

qi = [ fi,1, . . . , fi, j, . . . , fi,W ]T, (1)

where fi, j is the number of occurrences of the j-th GO term
(term-frequency) in the i-th protein sequence. Detailed infor-
mation about GO vectors can be found in [43, 44].

3. Two-Layer Classification

Essentially speaking, membrane-protein type prediction is a
two-layer classification problem. Specifically, given a query
protein, we have to identify whether it is a membrane protein
or not. If it is a non-membrane protein, we stop the prediction.
This is ‘Layer I classification’. If it is a membrane protein, we
need to predict to which membrane type(s) it belongs. This
is ‘Layer II classification’. Thus, Layer I is a binary classifi-
cation problem, whereas Layer II is a multi-label multi-class
classification problem. To address this two-layer classification
problem, we used a binary SVM classifier for Layer I and an
adaptive-decision multi-label SVM classifier [48] for Layer II,
which are elaborated below.

3.1. Layer I: Identifying Membrane Proteins
The Layer I is a typical binary classification problem, i.e.,

differentiating membrane proteins from non-membrane pro-
teins. The flowchart of Layer I classification is shown in
Fig. 1(c). Here, we utilize support vector machines (SVMs)
to tackle the classification task.

SVMs, initially proposed by Vapnik [49], have become one
of the most popular classification tools in recent years due to
their attractive features and promising performance. SVMs
are usually defined to map a set of input patterns to a high-
dimensional space and then find a hyperplane to obtain the
largest possible margin of separation. This is achieved by opti-
mizing the weights via removing the influence of those patterns
at a distance from the decision boundary. The obtained hyper-
plane can classify the patterns into two categories and maxi-
mize their distance from the hyperplane. To construct a robust
SVM classifier, slack variables are usually incorporated, which,
to some extent, can tolerate some data to violate the constraints
that define the minimum safety margin. A user-defined penalty
parameter (C) is used to control the penalties imposed on those
patterns violating the constraints. SVMs can also be general-
ized to deal with nonlinear classification problems by kernel-
ization. Three commonly used kernels are linear, polynomial
and RBF kernels.

Because GO vectors defined in Eq. 1 are of very high dimen-
sion (> 13,000), we use a linear SVM with the penalty parame-
ter C set to 0.1.

3.2. Layer II: Predicting Functional Types
Because membrane proteins may belong to multiple func-

tional types, Layer II classification is essentially a multi-label
multi-class classification problem. The flowchart of Layer II
classification is shown in Fig. 1(d). To tackle the multi-label
problem, we use a multi-label SVM classifier equipped with an
adaptive-decision scheme, which is elaborated below.

3.2.1. Scoring for Multi-Label SVM
Without loss of generality, suppose we have a dataset of

N membrane proteins belonging to M functional types.5 De-
note {Yi}

N
i=1, where Yi ⊂ {1, 2, . . . ,M} as the label set of this

dataset. By using the definitions of transformed labels [44],
we convert the label set of the i-th protein to a label vector
yi = [yi,1, . . . , yi,m, . . . , yi,M]T, where yi,m ∈ {−1,+1}. Here, we
used the GO term-frequency vectors computed in Eq. 1 to train
the multi-label one-vs-rest SVMs. Specifically, for an M-class
problem (here M is the number of membrane functional types),
M independent binary SVMs are trained, one for each type.
Then, given the t-th test protein Qt, the score of the m-th SVM
is:

sm(Qt) =
∑
r∈Sm

αr,myr,mK(pr,qt) + bm, (2)

where Sm is the set of support vector indexes corresponding
to the m-th SVM, pr is the r-th training vector in the set Sm,

5Note that for Layer II, the dataset of interest contains membrane proteins
only because Layer I has already identified them as membrane proteins.
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αm,r is the r-th Lagrange multiplier for the m-th SVM, K(·, ·)
is a kernel function, bm is the bias for the m-th SVM, ym,r ∈

{−1,+1} is the m-th element of the label vector yr for the r-th
training protein Qr in the set Sm. When ym,r = 1, Qr belongs
to the m-th class; and vice versa for ym,r = −1. Similar to the
reasons stated in Section 3.1, the linear kernel is used here, i.e.,
K(pr,qt) = 〈pr,qt〉.

3.2.2. Adaptive-Decision Scheme for Multi-Label SVM
Unlike the single-label problem where each protein has one

predicted label only, a multi-label protein should have more
than one predicted labels. This paper uses an adaptive decision
scheme similar to the one in mPLR-Loc [50]. In this scheme,
the predicted functional type(s) of the t-th query protein are
given by:

M∗(Qt) =


⋃M

m=1
{
m : sm(Qt) ≥ min (1.0, f (smax(Qt)))

}
,

where ∃ sm(Qt) > 0;
arg maxM

m=1sm(Qt), otherwise,
(3)

where sm(Qt) is defined in Eq. 2, f (smax(Qt)) is a function of
smax(Qt), where smax(Qt) = maxM

m=1 sm(Qt). Here, a linear func-
tion was used, i.e. ,

f (smax(Qt)) = θsmax(Qt), (4)

where θ ∈ [0.0, 1.0] is a parameter that can be determined by
using cross-validation experiments. Because f (smax(Qt)) is lin-
ear, Eq. 3 turns the linear SVMs into piecewise linear SVMs
(See reasons in [40, 51]). Eq. 3 also suggests that the predicted
labels depend on smax(Qt), a function of the test instance (or
protein). This means that the decision and the corresponding
threshold are adaptive to the test protein.

When θ = 0, Eq. 3 becomes the conventional binary-
relevance based decision which uses a fixed threshold to de-
termine the predicted class [44]; on the contrary, when θ = 1,
Eq. 3 becomes a single-label multi-class classification decision
scheme. In particular, smax(Qt) in Eq. 3 adaptively normalizes
the scores of all one-vs-rest SVMs so that for SVMs to be con-
sidered as runner-ups, they need to have a sufficiently large
score relative to the winner. This strategy effectively reduces
the chance of over-prediction. The condition sm(Qi) > 1 in
Eq. 3 aims to avoid under-prediction when the SVM with the
maximum score has very high confidence (i.e., smax(Qt) � 1)
but the runners-up still have enough confidence (sm(Qt) > 1)
in making a right decision.6 On the other hand, when the max-
imum score is small (say 0 < smax(Qt) ≤ 1), f (smax(Qt)) in
Eq. 3 can strike a balance between over-prediction and under-
prediction. When all of the SVMs have very low confidence
(say smax(Qt) < 0), the classifier switches to single-label mode.

For ease of presentation, we refer to the proposed predictor
as Mem-ADSVM.

6SVM scores larger than one means that the test proteins fall beyond the
margin of separation; therefore, the confidence is fairly high.

4. Datasets and Performance Metrics

Four datasets were used to evaluate the performance of
Mem-ADSVM. For identifying membrane proteins, a bench-
mark dataset [7] containing both membrane proteins and non-
membrane proteins was used; for predicting membrane func-
tional types, two benchmark datasets [14, 15] containing both
single- and multi-functional-type proteins were used; to eval-
uate the two-layer architecture, a dataset containing non-
membrane, single- and multi-functional-type proteins was cre-
ated (see below). For ease of representation, we refer to the
dataset for Layer I as Dataset I, the two datasets for Layer II
as Dataset II(A) and Dataset II(B), and the dataset for evaluat-
ing two-layer architecture as Dataset II(C). Details of these four
datasets are shown in Table 2 and Fig 2.

Datasets I [7], II(A) [15] and II(B) [14] were extracted from
Swiss-Prot released in October 2006, March 2013 and June
2012, respectively. In Dataset I, there are 15,547 single-label
proteins, of which 7,582 and 7,965 are membrane and non-
membrane proteins, respectively. In Dataset II(A), there are
5,502 virtual proteins [15] corresponding to 5,307 actual pro-
teins, of which 5,117 belong to one type, 185 to two types and
5 to three types. In Dataset II, there are 14,016 virtual pro-
teins corresponding to 13,659 actual proteins, of which 13,313
belong to one type, 335 to two types and 11 to three types. Vir-
tual proteins are defined as follows: If a protein belongs to two
different functional types, then it will be counted as two vir-
tual proteins; if a protein belongs to three types, then it will be
counted as three virtual proteins; and so forth. As can be seen
from Fig. 2, the majority (70%/74%) of membrane proteins in
both datasets II(A) and II(B) belong to multi-pass type and pe-
ripheral type, while proteins in other 6 types totally account
for no more than 30% in these two datasets. This means that
both datasets are very imbalanced. The sequence identities of
Datasets I, II(A) and II(B) were cut off at 80%, 25% and 80%,
respectively.

Dataset II(C) was created based on Dataset I and Dataset
II(A). First, we collected all of the non-membrane 7,965 pro-
teins in Dataset I. Because the sequence identity of Dataset
I was much higher than that of Dataset II(A), we used the
BLASTCLUST7 to further reduce the sequence similarity to
25%, leading to 2,009 non-membrane proteins selected. Then,
we combined these 2,009 non-membrane proteins with Dataset
II(A) (5,307 membrane proteins) to constitute Dataset II(C)
with a total of 7,316 proteins, of which 7,126 belong to one
type, 185 to two types and 5 to three types. The breakdown
of Dataset II(C) is shown in Fig. 2(d). More information about
these datasets can be found in [52] as well as the Mem-ADSVM
server.

Because Layer I is a binary classification problem, we used
some common performance measures, such as Accuracy, F1
and MCC. Because Layer II is a multi-label multi-class classi-
fication problem, compared to single-label classification, more
sophisticated performance metrics were used. Specifically, we

7http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
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Table 2: Summary of Datasets for evaluating the performance of Mem-ADSVM. All-membrane: all of the proteins in the dataset of interest are membrane proteins;
multi-label: some (or all) of the proteins in the dataset of interest are multi-label membrane proteins; Similarity cutoff: sequence similarity cutoff threshold; No. of
actual proteins: number of total proteins; No. of virtual proteins: number of total labels to which total proteins belong.

Stratification Layer I Layer II Both Layers
Datasets Dataset I Dataset II(A) Dataset II(B) Dataset II(C)

All-membrane No Yes Yes No
Multi-label No Yes Yes Yes

Similarity Cutoff 80% 25% 80% 25%
No. of classes 2 8 8 9

No. of actual proteins 15,547 5,307 13,659 7,316
No. of virtual proteins 15,547 5,502 14,016 7,511

Distribution Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)
Source [7] [15] [14] This paper

7582(49%) 
7965(51%) 

Membrane Non-Membrane 

Dataset I 

3 

Membrane/Non-Membrane 

(a) Dataset I

626(12%) 

299(6%) 

42(1%) 

73(1%) 

2437(44%) 
403(7%) 

172(3%) 

1450(26%) 

(1) SP1 (2)  SP2 (3)  SP3 (4)  SP4 
(5) MP (6) LA (7) GPI (8) PE 

Dataset II(A) 

1 

One-type: 5117; two types: 185; three types: 5. 

(b) Dataset II(A)
1412(10%) 712(5%) 

62(1%) 

105(1%) 

5904(42%) 

980(7%) 

328(2%) 

4513(32%) 

(1) SP1 (2)  SP2 (3)  SP3 (4)  SP4 
(5) MP (6) LA (7) GPI (8) PE 

Dataset II(B) 

3 

One-type: 13,659; two types: 335; three types: 11. 

(c) Dataset II(B)

626(8%) 299(4%) 

42(1%) 
73(1%) 

2437(33%) 

403(5%) 172(2%) 

1450(19%) 

2009(27%) 

(1) SP1 (2)  SP2 (3)  SP3 

(4)  SP4 (5) MP (6) LA 

(7) GPI (8) PE (9) NON 

5 

Membrane and Non-membrane. 
Dataset II(C) 

(d) Dataset II(C)

Figure 2: Breakdown of datasets, including (a) Dataset I, (b) Dataset II(A), (c) Dataset II(B) and (d) Dataset II(C). SP1: single-pass type I; SP2: single-pass type II;
SP3: single-pass type III; SP4: single-pass type IV; MP: multi-pass; LA: lipid-anchor; GPI: GPI-anchor; PE: peripheral; NON: non-membrane.
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used the popular multi-label evaluation metrics [14, 15, 53, 54],
including Hamming loss, Ranking loss, One-error, Coverage,
Average precisions, Accuracy, Precision, Recall and Absolute
true. For the first four metrics, the smaller the better, and for
the remaining metrics, the larger the better. Among these per-
formance metrics, Absolute true (equivalent to overall actual
accuracy in [50]) is the most objective and stringent [50]. The
definitions of these metrics can be found in supplementary ma-
terials on the Mem-ADSVM server.

5. Results and Analysis

5.1. Two-Layer vs One-Layer

Table 3: Comparing the Two-Layer architecture (Fig. 1(a)) against the One-
Layer architecture (Fig. 1(d)) based on leave-one-out cross-validation tests
on Dataset II(C). One-Layer denotes treating the non-membrane proteins as
the 9-th functional type, whereas Two-Layer first identifies membrane/non-
membrane proteins and then predicts membrane types. ↓ means the lower the
better; ↑ denotes the higher the better.

Evaluation Criteria Predictors
One-Layer Two-Layer

Hamming loss ↓ 0.0451 0.0342
Ranking loss ↓ 0.0466 0.0357
One-error ↓ 0.1450 0.1420
Coverage ↓ 0.3229 0.3010
Average precision ↑ 0.8956 0.9095
Accuracy ↑ 0.8265 0.8487
Precision ↑ 0.8309 0.8554
Recall ↑ 0.8483 0.8598
Absolute-true ↑ 0.8009 0.8311

To investigate the advantages of using the two-layer predic-
tion architecture, we have compared the performance of us-
ing the two-layer architecture (Two-Layer) with that of using
the one-layer architecture (One-Layer) based on leave-one-out
cross-validation (LOOCV) on Dataset II(C), which is shown
in Table 3. One-Layer treats the non-membrane proteins as
another ‘functional type’, thus making the original eight-type
multi-label membrane type classification problem into a nine-
type multi-label classification task. On the contrary, Two-Layer
first identifies membrane/non-membrane proteins by a binary
classifier and then predicts membrane types by an eight-type
multi-label classifier. We used the same GO features and the
same adaptive decision scheme for both cases.

As can be seen from Table 3, Two-Layer significantly out-
performs One-Layer in terms of all of the performance met-
rics. In particular, for the most objective and stringent criterion
Absolute-true, the performance of Two-Layer is more than 3%
(absolute) better than that of One-Layer. These results suggest
that using the two-layer is more conducive to identifying mem-
brane proteins and their multi-functional types. This is under-
standable because using the two-layer prediction architecture
is equivalent to making full use of the inter-class relationships

between membrane and non-membrane proteins. In the one-
layer prediction architecture, the non-membrane type is treated
equally important as other membrane types; in other words, a
protein may be predicted as belonging to the non-membrane
type and one (or more) of the eight membrane types simulta-
neously, which is logically problematic. On the contrary, the
two-layer architecture explicitly removes this possibility. Be-
sides, the high performance in Layer I dismisses the concerns
that the prediction performance will be dramatically affected by
Layer I. In our experiments, in the 7,316 proteins (5,307 mem-
brane and 2,009 non-membrane) of Dataset II(C), the accuracy
of Layer I is 97.2% (=7112/7316), and only 125 and 79 are
false positives (‘non-membrane’ predicted as ‘membrane’) and
false negatives (‘membrane’ predicted as ‘non-membrane’).

5.2. Adaptive-Decision vs Fixed-Decision

Fig. 3 compares the performance of using the adaptive-
decision scheme (Mem-ADSVM) with that of using the fixed-
decision scheme, i.e., multi-label SVM (ML-SVM) [44] on (a)
Dataset II(A) and (b) Dataset II(B), respectively. In Fig. 3(a),
the performance is based on leave-one-out cross-validation
(LOOCV) tests, whereas in Fig. 3(b), the performance is based
on five 5-fold cross-validation tests.8 For a fair comparison, we
used the same features obtained in Section 2 for both Mem-
ADSVM and ML-SVM. The blue arrows denote that for the
performance metrics above the black dotted line, the larger the
better, whereas for those below the black dotted line, the smaller
the better.

As can be seen from Fig. 3(a), Mem-ADSVM performs im-
pressively better than ML-SVM in terms of Absolute true, Ac-
curacy and Precision, whereas the performance of the former
is a bit inferior to that of the latter in terms of Recall. Par-
ticularly, for the most objective and stringent criteria Abso-
lute true, Mem-ADSVM outperforms ML-SVM by more than
10%, whereas for Recall, the latter performs around 3% better
than the former. This is understandable because in traditional
fixed-threshold decision scheme, e.g, ML-SVM, the number
of over-predictions is significantly more than that of under-
predictions. This problem can be overcome by the adaptive-
decision scheme because it focuses on reducing false-positives
(or over-predictions), leading to a significant improvement on
Absolute true. However, the adaptive decision scheme may
cause few cases of under-prediction which may slightly re-
duce the Recall. For Hamming loss, Mem-ADSVM also sig-
nificantly outperforms ML-SVM, which is consistent with the
aforementioned analysis that the proposed adaptive-decision
scheme can reduce the prediction errors. Interestingly, ML-
SVM achieves the same results as Mem-ADSVM for other per-
formance measures, such as Average precision, Ranking loss,
One-error, Coverage. This is because these performance mea-
sures are for multi-label ranking tasks [53], which are more
sensitive to the scores than to the decision-making schemes.
As Mem-ADSVM and ML-SVM produce the same one-vs-rest

8Because the standard deviation is inconsiderable compared to the mean,
we only show the mean performance on Fig. 3(b)
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Figure 3: Comparing the performance of using the adaptive-decision scheme (Mem-ADSVM) with that of using the fixed-decision scheme (ML-SVM) on (a)
Dataset II(A) and (b) Dataset II(B). In (a), the performance is based on leave-one-out cross-validation (LOOCV) tests, whereas in (b), the performance is based on
the average of five 5-fold cross-validation tests. ATrue: Absolute true; Acc: Accuracy; Pre: Precision; Rec: Recall; APre: Average Precision; Hloss: Hamming loss;
Rloss: Ranking loss; Oerr: One-error; Cove: Coverage. The blue arrows denote that for the performance metrics above the black dotted line, the larger the better,
whereas for those below the black dotted line, the smaller the better.

SVM scores, both predictors produce the same results in terms
of these measures.

Similar conclusions can also be drawn from Fig. 3(b) ex-
cept that the superiority of Mem-ADSVM over ML-SVM is
less apparent. This is possibly because the sequence identity in
Dataset II(B) is much higher than that in Dataset II(A) (80% vs.
25%), which increases the bias on the prediction performance.

5.3. Layer I: Comparing with State-of-the-Art Predictors

Table 4 compares Mem-ADSVM with existing state-of-the-
art predictors for identifying membrane proteins (Layer I) based
on leave-one-out cross-validation (LOOCV) tests on Dataset I.
To the best of our knowledge, there are three predictors, namely
LeastEudist [12], ProtLoc [13] and MemType-2L [7], which
are able to determine whether a query protein is a membrane
protein or not. LeastEudist uses the conventional amino acid
compositions as features and adopts least Euclidean distance
for classification. ProtLoc also uses the amino acid composi-
tions as features but uses least Mahalanobis distance as classi-
fication. MemType-2L uses pseudo position-specific score ma-
trices (PSSM) as features and an ensemble optimized evidence-
theoretic K-nearest neighbor (OET-KNN) algorithm for classi-
fication. Our proposed Mem-ADSVM uses the term-frequency
based GO information as features and a binary SVM as the clas-
sifier for Layer I classification.

As shown in Table 4, Mem-ADSVM performs impressively
better than the three state-of-the-art predictors in terms of all the
performance metrics. Specifically, the Accuracy, F1 and MCC
of Mem-ADSVM are around 20% (absolute), 20% (absolute)
and 37% (absolute), respectively, higher than those of Least-
Eudist and ProtLoc, and 5% (absolute), 5% (absolute) and 10%
(absolute), respectively, higher than those of MemType-2L. The
superiority of Mem-ADSVM over these three predictors is also
observed in terms of individual accuracies (i.e., membrane/non-
membrane). The results suggest that Mem-ADSVM is more

advanced than existing predictors in terms of identifying mem-
brane proteins.

5.4. Layer II: Comparing with State-of-the-Art Predictors

Table 5 and Table 6 compare Mem-ADSVM with several
state-of-the-art multi-label predictors on Datasets II(A) and
II(B), respectively. As far as we know, there are three predic-
tors, namely Mem-PseAA [14], iMem-Seq [15] and Mem-mEN
[8], capable of predicting membrane proteins with both single-
and multi-label functional types. In terms of constructing fea-
ture vectors, iMem-Seq uses position-specific score matrices,
Mem-PseAA uses pseudo-amino acid compositions and Mem-
mEN uses term-frequency based GO information. In terms of
multi-label classification, the former two predictors use a multi-
label kNN classifier to deal with the multi-label classification
problem, whereas the latter uses a multi-label elastic net classi-
fier. Particularly, Mem-mEN possesses the ‘interpretable’ prop-
erty so that its prediction results are interpretable based on the
selected GO terms. Our proposed Mem-ADSVM is a two-
layer classifier that can identify membrane proteins and their
multi-functional types. Similar to Mem-mEN, Mem-ADSVM
extracts homologous GO frequency information from ProSeq
and ProSeq-GO databases; however, in Layer II, unlike Mem-
mEN, Mem-ADSVM uses an adaptive-decision based multi-
label SVM classifier to deal with the multi-label classification
problem.

The results in Table 5 were based on LOOCV tests on Dataset
II(A), where the sequence identity was cut off at 25%. For the
measures of Hamming loss, Ranking loss, One-error and Cov-
erage, the smaller the better; while for the measures of Aver-
age precision, Accuracy, Precision, Recall and Absolute-true,
the larger the better. As shown in Table 5, Mem-ADSVM sig-
nificantly outperforms iMem-Seq and Mem-mEN in terms of
all performance metrics. Specifically, the Average precision of
Mem-ADSVM is more than 7% (absolute) and 2% (absolute)
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Table 4: Comparing Mem-ADSVM with state-of-the-art predictors based on leave-one-out cross-validation (LOOCV) tests on Dataset I.

Class Predictors
LeastEudist [12] ProtLoc [13] MemType-2L [7] Mem-ADSVM

Membrane 5320
7582 = 0.7017 5512

7582 = 0.7270 6897
7582 = 0.9097 7471

7582 = 0.9854
Non-membrane 6688

7965 = 0.8397 6754
7965 = 0.8480 7520

7965 = 0.9441 7761
7965 = 0.9744

Accuracy 0.7724 0.7890 0.9273 0.9797
F1 0.7504 0.7706 0.9243 0.9794
MCC 0.5475 0.5801 0.8548 0.9595

Table 5: Comparing Mem-ADSVM with a state-of-the-art predictor based on leave-one-out cross-validation tests on Dataset II(A). ↓ means the lower the better; ↑
denotes the higher the better.

Evaluation Criteria Predictors
iMem-Seq [15] Mem-mEN [8] Mem-ADSVM

Hamming loss ↓ 0.0635 0.0493 0.0423
Ranking loss ↓ 0.0902 0.0521 0.0424
One-error ↓ 0.2572 0.1892 0.1594
Coverage ↓ 0.6735 0.4046 0.3362
Average precision ↑ 0.8335 0.8881 0.9086
Accuracy ↑ 0.6804 0.8056 0.8347
Precision ↑ 0.6825 0.8085 0.8403
Recall ↑ 0.6813 0.8135 0.8504
Absolute-true ↑ 0.6774 0.7948 0.8138

Table 6: Comparing Mem-ADSVM with state-of-the-art predictors based on the average of five 5-fold cross-validation tests on Dataset II(B). ↓ means the lower
the better; ↑ denotes the higher the better. Because [14] and [15] do not report the Precision, Recall and Absolute-True on Dataset II(B), for consistency, we do not
report these results.

Evaluation Criteria Predictors
Mem-PseAA [14] iMem-Seq [15] Mem-mEN [8] Mem-ADSVM

Hamming loss ↓ 0.0495±0.0019 0.0317±0.0013 0.0303±0.0008 0.0228±0.0003
Ranking loss ↓ 0.0600±0.0025 0.0425±0.0008 0.0339±0.0006 0.0202±0.0004
One-error ↓ 0.1964±0.0033 0.1192±0.0011 0.1154±0.0013 0.0820±0.0012
Coverage ↓ 0.4470±0.0215 0.3266±0.0031 0.2636±0.0029 0.1684±0.0026
Average precision ↑ 0.8780±0.0025 0.9211±0.0007 0.9225±0.0009 0.9557±0.0008
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higher than that of iMem-Seq and Mem-mEN, respectively. In
terms of both Accuracy and Precision, Mem-ADSVM outper-
forms iMem-Seq and Mem-mEN by more than 15% (absolute)
and 3% (absolute), respectively. Besides, the Recall of the for-
mer is 16% (absolute) and 3% (absolute) better than the latter
two predictors, respectively. In particular, for the most strin-
gent and object criteria absolute-true, Mem-ADSVM outpaces
iMem-Seq and Mem-mEN by more than 13% (absolute) and
2% (absolute), respectively.

Similar conclusions can be drawn for Dataset II(B) in Ta-
ble 6. The results in Table 6 were based on the average of
five 5-fold cross-validation tests on Dataset II(B), where the se-
quence identity was cut off at 80%. As can be seen, in terms
of the first four metrics, Mem-ADSVM performs better than
Mem-PseAA, iMem-Seq and Mem-mEN, and the average pre-
cision of the former is higher than that of the latter three. When
comparing Table 5 and Table 6, we notice that the superiority
of Mem-ADSVM over iMem-Seq and Mem-PseAA on Dataset
II(B) is less apparent than that on Dataset II(A). Similar to the
reason explained in Section 5.2, this is caused by the differ-
ence in sequence identity, i.e., high sequence identity increases
the bias on the prediction performance. Therefore, the perfor-
mance comparison in Table 5 is more trustworthy than that in
Table 6. Interestingly, the difference of the sequence similarity
cutoff does not compromise the advantages of Mem-ADSVM.
This is possibly because the superiority of the adaptive-decision
based multi-label SVM classifier (Mem-ADSVM) is robust re-
gardless of the sequence identities in the datasets.

6. Discussion

In bioinformatics, a classifier will be more useful if every
decision made by the classifier also comes with a confidence
score (or posterior probability). Confidence scores, which re-
flect the confidence of prediction decisions, can help users to
decide whether to accept the decisions or not. In multi-label
bioinformatics classification, confidence scores have an addi-
tional purpose in that they help to decide the number of classes
of a query protein.

Standard SVMs or adaptive-decision based SVMs pro-
posed in Section 3.2.2 can only produce uncalibrated, non-
probabilistic output scores. One possible way to solve this
problem is to convert the SVM output scores into calibrated
posterior probabilities using a sigmoid function [55]. This idea
can be extended to multi-label, multi-class classification as fol-
lows. Given a query protein Qt, the calibrated probabilistic
score pm(Qt) for the m-th class is defined as:

pm(Qt) =
1

1 + e(Am sm(Qt)+Bm) , (5)

where m ∈ {1, 2} for Layer I (i.e., either membrane or non-
membrane) and m ∈ {1, . . . , 8} for Layer II (i.e., any one of the
eight membrane types), Am and Bm are the parameters for the
m-th class, which can be trained via cross validation, and sm(Qt)
is the uncalibrated SVM score of the query protein Qt for the
m-th class. For ease of understanding, when Qt is predicted to

(a) Input to the Mem-ADSVM server

(b) Prediction results

Figure 4: An example output of Mem-ADSVM when confidence scores (Eq. 5)
are used in the decision-making process (Eq. 6). (a) Using three protein se-
quences as input to the Mem-ADSVM server; (b) Prediction results with confi-
dence levels for the proteins in (a). See our web-server Mem-ADSVM for more
details.

be a non-membrane protein, we use the pm(Qt) in Layer I as the
final confidence score; when Qt is predicted to be a membrane
protein (either single-type or multi-type), we use the pm(Qt) in
Layer II as the final confidence score.9

Motivated by our previous study [50], to make the confidence
scores easier to understand, we further divide the confidence
into four levels:

C =


very high if 0.8 ≤ pm(Qt) ≤ 1.0,
median high if 0.5 ≤ pm(Qt) < 0.8,
median low if 0.2 ≤ pm(Qt) < 0.5,
very low if 0 ≤ pm(Qt) < 0.2.

(6)

In other words, if pm(Qt) ≥ 0.8, the confidence of the decision
is very high; on the contrary, if pm(Qt) < 0.2, then the confi-
dence is very low, meaning that the decision may be wrong.

Fig. 4 shows an example output of Mem-ADSVM when con-
fidence scores (Eq. 5) are used in the decision-making process
(Eq. 6). In Fig. 4(a), three protein sequences were used as the
input to the Mem-ADSVM server; and Fig. 4(b) shows the pre-
diction results with confidence levels for the query proteins. As
can be seen, three cases are presented: non-membrane, single-
type membrane and multi-type membrane. The first (P30656)
and the second (P16871) proteins are predicted with confidence

9When Qt is predicted to belong to multiple membrane types, the confi-
dence scores will be multiple, one for each predicted membrane type.
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scores 0.83 and 0.94, respectively. According to Eq. 6, the con-
fidence levels for these two predictions are “very high”. On
the contrary, the third (P06015) protein is predicted to belong
to two membrane types: lipid-anchor and GPI-anchor with con-
fidence scores of 0.9 and 0.51, respectively. Thus, the former
predicted type is of “very high” confidence and the latter one is
of “median high” confidence. This is understandable because
the GPI-anchor is a special lipid-anchor type, which is more
difficult to predict.

7. Conclusion

This paper proposes an efficient two-layer predictor, namely
Mem-ADSVM, to identify membrane proteins and their func-
tional types. Given a query protein, its feature information is
extracted from the frequencies of occurrences of its associated
GO terms retrieved from the ProSeq-GO database. Based on its
GO information, Mem-ADSVM first determines whether the
query protein is a membrane protein or not by a binary SVM
classifier. If yes, by utilizing an adaptive-decision scheme in a
multi-label SVM classifier, Mem-ADSVM subsequently iden-
tifies to which functional type(s) the query protein belongs.

Experimental results show that Mem-ADSVM performs im-
pressively better than state-of-the-art membrane-protein pre-
dictors in terms of identifying both membrane proteins and
their types. Besides, this paper also found that the pro-
posed adaptive-decision scheme is conducive to improving
the prediction performance of Mem-ADSVM. This paper also
found that the two-layer prediction architecture performs bet-
ter than one-layer. For readers’ convenience, Mem-ADSVM is
freely accessible at http://bioinfo.eie.polyu.edu.hk/
MemADSVMServer/.
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