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Joint modulation format/bit-rate 
classification and signal-to-noise ratio 
estimation in multipath fading channels 
using deep machine learning 

Faisal Nadeem Khan, Chao Lu and Alan Pak Tao Lau 

We propose a novel algorithm for simultaneous modulation format/bit-
rate classification and non-data-aided (NDA) signal-to-noise ratio 
(SNR) estimation in multipath fading channels by applying deep 
machine learning-based pattern recognition on signals’ asynchronous 
delay-tap plots (ADTPs). The results for three widely-used modulation 
formats at two different bit-rates demonstrate classification accuracy of 
99.8%. In addition, NDA SNR estimation over a wide range of 0−30 dB 
is shown with mean error of 1 dB. The proposed method requires low-
speed, asynchronous sampling of signal and is thus ideal for low-cost 
multiparameter estimation under real-world channel conditions. 

Introduction: Cognitive radio has received phenomenal attention over 
the past few years in both commercial and military domains. The 
transmitting nodes in cognitive radio networks are envisaged to be fully 
capable of dynamically adjusting different transmission parameters for 
e.g., modulation format, data rate, spectrum assignment, signal power
etc., depending upon the time-varying traffic demands and channel
conditions. Consequently, the receiving nodes in these networks are
anticipated to have the capability of autonomous estimation of various
crucial signal parameters. Over the past few years, a plethora of
techniques for automatic modulation classification (AMC) and SNR
estimation has been proposed [1,2]. A vast majority of these techniques
assume the signals to be affected by only additive white Gaussian noise
(AWGN). However, in reality, the signal transmissions through wireless
channels are severely impaired by multipath fading. This leads to
significant degradation in the performance of existing AMC and SNR
estimation techniques. The problem of AMC and SNR estimation in
frequency-selective fading channels remains largely unexplored and
only a few works have so far been reported in the literature [1,3]. To the
best of our knowledge, all the proposed solutions focus on either AMC
or SNR evaluation rather than joint estimation of multiple signal
parameters. Furthermore, these solutions often require high-speed,
synchronous sampling of signal and involve complex pre-processing
steps, which result in high implementation/computational complexity.

Deep machine learning is a new branch of machine learning which 
has achieved state-of-the-art results in numerous applications of 
artificial intelligence [4]. Deep learning architectures such as deep 
neural networks (DNNs) exploit the fact that higher-level data features 
can be extracted from lower-level ones, resulting in a hierarchical 
representation of data. This property is inspired from functional 
behaviour of a human brain which seems to process information 
through multiple levels of transformation and representation. A DNN 
consists of several nonlinear processing layers which automatically 
extract and learn data features at different levels of abstraction. This 
enables a DNN to learn complex relations between its inputs and 
outputs directly from the data. Recently, we demonstrated the use of 
ADTPs for modulation format/bit-rate classification and SNR 
estimation in AWGN channels [5]. In this letter, we extend our previous 
work and propose a novel technique which utilizes DNN architectures 
to hierarchically extract characteristic features of ADTPs obtained for 
multipath fading channels. These modulation format, bit-rate and SNR 
sensitive features are subsequently exploited by DNNs for estimation of 
multiple parameters. Numerical simulations conducted for six signal 
types namely 250/500 Mbps NRZ-2ASK, 250/500 Mbps RZ-QPSK and 
1/2 Gbps NRZ-16QAM, having SNRs in the range of 0−30 dB, verify 
joint estimation of modulation formats, bit-rates and SNRs with good 
accuracies. Unlike existing methods which necessitate symbol-rate, 
synchronous sampling, the proposed algorithm requires only low-speed, 
asynchronous delay-tap sampling (which inherently avoids the need for 
timing information), thus enabling implementation simplicity. 

Operating principle: Figure 1 shows ADTPs for six signal types 
considered in this work, where the signals are assumed to be impaired  

Fig. 1 ADTPs for various modulation formats, bit-rates, SNRs, path 
delays and channel coefficients. A 0.75 ns tap-delay is used for all 
cases. 

Fig. 2 DNNs with bin-count vectors x as inputs and classified 
modulation formats/bit-rates and estimated SNRs as outputs. 

Fig. 3 Schematic diagram of DNN-1. The decoder parts in both 
autoencoders are shown in grey colour with dotted weight lines. 

by both noise and three-path fading. It is evident from the figure that 
patterns reflected by ADTPs are sensitive to modulation formats, bit-
rates, SNRs, path delays and channel coefficients. Therefore, they can 
be effectively exploited for joint estimation of these parameters by 
employing statistical pattern recognition techniques such as DNNs-
based algorithms. In this work, we have used two DNNs i.e. first for 
modulation format/bit-rate classification (called DNN-1) and second for 
SNR estimation (called DNN-2) as shown in Fig. 2. Figure 3 depicts 
structure of DNN-1 consisting of two autoencoders and an output 
perceptron layer. The structure of DNN-2 is similar except that it 
contains only one autoencoder. The function of autoencoders is to 
hierarchically extract the features of input data. The output layers of 
DNN-1 and DNN-2 are selected to be softmax and linear layers, 
respectively. For the training of two DNNs, a large data set comprising 
of numerous ADTPs corresponding to various modulation formats, bit-
rates, SNRs, path delays and channel coefficients, is generated. Each 
ADTP in this training data set is expressed as a one-dimensional vector 
x of bin-counts by concatenating all of its columns. Similarly, for each 
ADTP, a 6 × 1 binary vector y1 (with single non-zero element whose 
location indicates the modulation format/bit-rate type pertaining to that 
ADTP) and a scalar y2 which signifies the SNR value corresponding to 
that ADTP, are obtained. Vector y1 and scalar y2 are referred to as labels. 
For training DNN-1, vectors x and y1 are employed as shown in Fig. 3. 
Firstly, autoencoder-1 is trained in isolation using vectors x in an 
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unsupervised fashion. The first part of autoencoder-1 i.e. encoder maps 
an input vector x to a hidden representation whilst the second part i.e. 
decoder reverses this mapping in order to synthesize the initial input x. 

 
 

Fig. 4 System model employed for numerical simulations. 
 
If the size of hidden layer-1 is chosen to be less than the size of vectors 
x, the encoder in autoencoder-1 gives compressed representations, 
known as feature vectors f1, of input vectors x. The feature vectors f1 are 
then utilized for unsupervised training of autoencoder-2 so as to obtain 
even more compressed representations f2 of original input vectors x. The 
reduced-size feature vectors f2 are used for the supervised training of 
output layer by setting labels y1 as target outputs. After isolated training 
of individual components, the encoder parts of two autoencoders and 
the output layer are concatenated to form complete network. Finally, the 
whole multilayer network is trained using back-propagation algorithm 
in a supervised manner by employing vectors x and y1. The training 
process of DNN-2 is similar except that vectors x and labels y2 are 
utilized for training in this case as shown in Fig. 2. To analyze the 
performances of trained DNNs, a separate data set namely testing data 
set is used. Vectors x pertaining to this data set are applied at the inputs 
of both DNNs and corresponding outputs v1 and v2 are obtained. For 
DNN-1, argmax{v1} then provides classified modulation format/bit-rate 
while the scalar output v2 of DNN-2 gives SNR estimate. The estimated 
signal types and SNRs are compared with true ones provided by labels 
y1 and y2 of testing data set and estimation accuracies are calculated. 
 
System model and results: The system model utilized for numerical 
simulations is shown in Fig. 4. The set of signals chosen for evaluation 
purposes include 250/500 Mbps NRZ-2ASK, 250/500 Mbps RZ-QPSK 
and 1/2 Gbps NRZ-16QAM signals. The signal pulses are shaped using 
Gaussian filters and transmitted over a three-path channel. The channel 
coefficients Ci are assumed to be uniformly distributed random 
variables in the range of 0−1. Similarly, path delays τi = T + αi Tsymbol 
are altered randomly, where T is the delay for line-of-sight path, Tsymbol 
is the symbol period, and αi are uniformly distributed random variables 
in the range of 0−0.5. We assumed the multipath channel to be slowly 
time-varying so that the channel coefficients and path delays remain 
constant during the observation interval. AWGN is added into the signal 
and SNR is varied in the range of 0−30 dB in steps of 1 dB. The 
envelope of received signal is sampled using asynchronous delay-tap 
sampling and 100,000 delay-tap sample pairs (pi,qi) are collected, which 
are subsequently utilized to generate ADTPs with 20 × 20 bins. A set of 
3720 ADTPs, corresponding to 6 signal types, 31 SNRs, and 20 random 
combinations of path delays and channel coefficients, is obtained. The 
ADTPs in this data set are randomly divided into training and testing 
subsets containing 70% (i.e. 2604) and 30% (i.e. 1116) of overall 
ADTPs, respectively. For each ADTP in the two data sets, bin-count 
vector x as well as labels y1 and y2 are determined, which are then 
employed for the training and testing of two DNNs as discussed earlier. 

The modulation format/bit-rate classification results for 1116 test 
cases in the testing data set are summarized in Table 1. It is clear from 
the table that the proposed technique achieves 100% classification 
accuracy for five out of six signal types. In case of 500 Mbps RZ-QPSK 
signal, the accuracy of 98.95% is though comparatively low, it is still 
reasonably good. The mean classification accuracy for six signal types 
considered in this work is 99.8%. Similarly, the SNR estimates obtained 
for the testing data set are also quite accurate as shown in Fig. 5 and the 
mean estimation error for SNR in the range of 0−30 dB is 1 dB. These 
results confirm that the proposed DNNs-based algorithm successfully 
enables joint modulation format/bit-rate classification and SNR 
estimation in frequency-selective fading channels with good accuracies. 

From the above results, following main advantages of proposed 
technique over existing AMC and SNR estimation methods are evident. 

(i) The proposed algorithm demonstrates good accuracies under real-
world propagation conditions where the signals are impaired by both 
frequency-selective fading and AWGN. On the other hand, the  

Table 1: Classification accuracies for various signal types. 
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250 Mbps 
NRZ-2ASK 100% - - - - - 

500 Mbps 
NRZ-2ASK - 100% - - - - 

250 Mbps 
RZ-QPSK - - 100% - - - 

500 Mbps 
RZ-QPSK - 0.52% 0.52% 98.95% - - 

1 Gbps 
NRZ-16QAM - - - - 100% - 

2 Gbps 
NRZ-16QAM - - - - - 100% 

 

 
 

Fig. 5 True vs. estimated SNRs employing the proposed algorithm. 
 
performances of most existing AMC and SNR estimation methods 
significantly deteriorate in multipath fading channels [1,3]. (ii) The 
proposed algorithm offers joint estimation of modulation format, bit-
rate and SNR while the current methods focus on either AMC or SNR 
estimation and not joint determination of multiple parameters [1-3]. (iii) 
Unlike existing techniques which necessitate symbol-rate, synchronous 
sampling [1-3], the proposed algorithm uses low-speed, asynchronous 
sampling, thereby reducing implementation complexity substantially. 
 
Conclusion: We demonstrated the use of DNNs in conjunction with 
ADTPs for joint modulation format/bit-rate classification and NDA 
SNR estimation in frequency-selective fading channels. The results 
show good classification accuracies for several commonly-used signal 
types under real-world channel conditions. Moreover, accurate SNR 
estimation over a wide range of 0−30 dB is validated. The proposed 
algorithm offers implementation simplicity and is thus attractive for 
cost-effective multiparameter estimation in cognitive radio networks. 
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