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Abstract 

Among the challenges faced by current active shape or appearance models, facial-

feature localization in the wild, with occlusion in a novel face image, i.e. in a generic 

environment, is regarded as one of the most difficult computer-vision tasks. In this 

paper, we propose an Active Appearance Model (AAM) to tackle the problem of generic 

environment. Firstly, a fast face-model initialization scheme is proposed, based on the 

idea that the local appearance of feature points can be accurately approximated with 

locality constraints. Nearest neighbors, which have similar poses and textures to a test 

face, are retrieved from a training set for constructing the initial face model. To further 

improve the fitting of the initial model to the test face, an orthogonal CCA (oCCA) is 

employed to increase the correlation between shape features and appearance features 

represented by Principal Component Analysis (PCA). With these two contributions, we 

propose a novel AAM, namely the shape-appearance-correlated AAM (SAC-AAM), 

and the optimization is solved by using the recently proposed fast simultaneous inverse 

compositional (Fast-SIC) algorithm. Experiment results demonstrate a 5-10% 

improvement on controlled and semi-controlled datasets, and with around 10% 

improvement on wild face datasets in terms of fitting accuracy compared to other state-

of-the-art AAM models. 
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1. Introduction 

Facial-feature detection and localization is a crucial process for various applications 

such as facial-expression recognition, face animation, 3D face reconstruction, etc. 

Among all competitive techniques, model-based algorithms have been proven to be 

most effective in automatic facial-information learning. The earliest work of such 

algorithms includes the deformable template [1] and the active contour model [2]. 

These approaches aim to extract facial features and locate face boundaries by studying 

feature points individually, and hence have limited robustness and accuracy. Most 

recently, more efficient methods, including the Active Shape Model (ASM) [3] and the 

Active Appearance Model (AAM) [4], have been proposed. ASM considers the facial-

shape information (based on manually annotated facial-feature points) from a holistic 

perspective, while AAM also includes texture information (usually in terms of the pixel 

intensities within a face region). Due to these models’ efficiency and accuracy, many 

variant ASM and AAM methods have been proposed in the past few decades, and they 

improve the localization performance. However, both ASM and AAM have problems 

in three different aspects, namely, insufficient robustness to variations, sensitivity to 

face-model initialization, and poor performance in generic situations. In the following, 

the challenges in these three aspects and those existing methods, which address these 

challenges, are discussed. 

Insufficient robustness to variations. Since both ASM and AAM rely on global 

parametric models, they can work well for faces available in a training set with small 

variations in illumination, pose and expression. However, when these variations 

become greater, their performances usually degrade dramatically. One way to solve this 

problem is to integrate ASM and AAM [5] [6]. In [5], a texture-constrained shape model 

was used to prevent the local-minima problem, and it can achieve a robust performance 

under illumination variations. In [6], the profile-search step in ASM is changed into a 

gradient-based optimization problem to more accurately localize feature points. 

Recently, improved ASM models using 2-D profiles were proposed to achieve pose-

adaptive localization [7] [8] [9]. It has been proven that the 2-D profiles can capture 
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more information around each landmark than the original 1-D profiles. By properly 

setting the initial face model and using an optimization method, these methods can 

achieve accurate results, and thus have become popular model-based localization 

methods. 

Sensitivity to initialization. In the process of refining the feature-point locations, both 

ASM and AAM usually perform gradient-descent optimization over a whole face, so 

their performances are sensitive to the initial face model. This issue has drawn much 

attention, and can be improved in two major steps, namely, constructing a more 

representative initial face model and using a robust feature-point refining scheme. For 

the first step, several frameworks [10] [11] [12] reformulate the original AAM as a 

sparse representation problem [13] and approximate the local appearance of feature 

points with locality constraints. After the shape and appearance priors are learned, the 

K nearest neighbors with similar patterns to the test face in terms of pose, expression, 

etc. are searched from a training set, and are used to model the face in a locally linear 

sub-space. It has been shown that this pre-processing step helps to reach faster 

convergence and to obtain better fitting results. Similarly, [9] [14] pre-define the 

number of face clusters and classify the test face into one of the clusters based on a 

statistical analysis. For the second step, in order to refine the face model, a stacking 

strategy is usually employed to search, in series, for a better location for each feature 

point in the face model iteratively [7] [15] [16]. 

Poor performance in generic situations. In the survey work of [17], statistical 

evaluation has shown that person-specific active models (i.e. images of a query also 

exist in the training set) are both easier to build and more robust to fitting than generic 

ones (i.e. no images of a query in the training set). To solve the generalization problem, 

frameworks [18] [19] based on AAM were proposed to learn a discriminative fitting 

function and establish a mapping between the facial appearance and the face shape in 

order to improve the alignment accuracy. Unlike AAMs  which model a whole facial 

region  the family of Constrained Local Models (CLMs) [20] [21] [22] extracts 

templates around each landmark and matches them to new instances of an object using 



4 
 

a shape-constrained search and iterative template generation. This process always relies 

on the response surfaces generated by fitting the current feature templates using 

normalized correlation at each point. Recently, an approach which can handle unseen 

faces and variations was proposed, and is known as the Active Orientation Model 

(AOM) [23]. It establishes a generative deformable appearance model based on the 

principal components of images’ gradient orientations, and it uses the project-out 

inverse compositional algorithm to optimize the results. An improved AAM model [24] 

using more efficient optimization algorithms was also proposed for generic situations. 

As discussed in some survey papers [25] [26] [27], AAMs take advantage of all 

grey-level information across faces to build a convincing model with a relatively small 

number of landmarks, while ASM is just a special case of AAM. Therefore, in this paper, 

we focus on establishing a shape-appearance-correlated AAM (SAC-AAM) framework 

to tackle the above-mentioned three challenges at the same time, especially under a 

generic localization environment. 

The contributions of this paper are given as follows. In order to fulfill the goals, we 

first propose a fast initialization scheme, which retrieves the most similar faces to a test 

face in terms of both poses and textures. Based on the idea of locality constraint, these 

nearest neighbors form a locally linear subspace. Then, the shape and appearance of the 

selected images are analyzed, and their correlation is maximized by applying Canonical 

Correlation Analysis (CCA) [28] (actually, the orthogonal CCA (oCCA) [29] is 

employed in our framework due to its superior data reconstruction property). We will 

show that our approach can increase the correlation between the principal components 

learned for face appearances and shapes, as well as the respective projection 

coefficients. This can improve the convergence speed and the fitting accuracy, while 

almost no additional computational cost will be added. By conducting experiments on 

different face datasets and comparing our proposed framework with state-of-the-art 

model-based methods, experimental results show that our framework can achieve a 

great improvement in terms of fitting accuracy, especially for faces under large pose, 

expression, and occlusion variations, as well as for unseen faces. 
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The remainder of the paper is organized as follows. In Section 2, we briefly 

introduce the well-known AAM model and some of its latest improved models. The 

Canonical Correlation model and its orthogonal variant are also discussed there. In 

Section 3, our shape-appearance-correlated AAM (SAC-AAM) framework is presented, 

and the details of generating initial face models and obtaining more correlated principal 

components are described. Experimental results and analysis are given in Section 4. 

The conclusion is outlined in Section 5. 

 

2. Related work 

In this section, we will give a brief overview of the Active Appearance Model (AAM) 

and its latest variants. We will also introduce the concept of Canonical Correlation 

Analysis (CCA) and its extension to orthogonal CCA, together with its efficiency for 

various applications. 

2.1 Active Appearance Model 

As mentioned in the previous section, unlike ASM  which only deals with shape 

information  AAM also takes texture information into consideration. The shape vector 

is usually presented by concatenating the position coordinates of labeled landmarks, 

while texture is modeled in terms of the demeaned pixel intensities or colors within the 

convex hull of a facial shape. When given a training set of face images with 

corresponding labeled landmarks, the shape model is established from 2N fiducial 

points denoted as 1 1 2 2( , , , ,..., , )T

N Nx y x y x ys . The shapes are normalized by using the 

Procrustes analysis [30], which is a commonly used method to align shapes to a 

common coordinate system (usually, the mean shape of the training objects). Then, the 

principal component analysis (PCA) is applied to project the normalized and aligned 

shapes onto the shape subspace. Thus, the shape instance s can be presented as a linear 

combination of principal shapes as follows: 

ˆ
s  Ps s α , and (1) 
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( )T

s Pα s s , (2) 

where s   is the mean shape, sP   is the matrix whose columns form a set of 

orthonormal base vectors, and the weight vector α   (also known as projection 

parameters) is used to control the shape variations. 

The appearance model of a face image I is learned by first warping it into a “shape-

free” model, usually the mean shape s  . This is represented as a warping function 

( ; )W x α , where x  denotes a set of pixels inside the mean shape s . Then, PCA is 

again applied to project the “shape-free” appearance of the image ( ( ; ))I W x α  on to 

the appearance subspace. The appearance instance r can be represented as a linear 

combination of principal appearances as follows: 

ˆ
r  Pr r β , and (3) 

( )T

r Pβ r r , (4) 

where r   is the mean appearance, rP   is the matrix whose columns form a set of 

orthonormal base vectors, and the weight vector β  is used to control the appearance 

variations. It should be noted that, in this paper, we focus on the AAM, which models 

the shape and appearance information independently, rather than combining shape and 

appearance with a single set of linear parameters as in [31]. 

With an appropriate initialized face, the fitting process for AAM aims to find the 

optimal shape and appearance parameters, which minimize the discrepancy between 

the synthesized image and the observed facial image. Various cost functions and 

optimization algorithms have been proposed to estimate α  and β , among which the 

2l -norm error minimization and the Inverse Compositional (IC-AAM) algorithm [31] 

are widely used, represented as follows: 

 
2

0 0
{ , }

arg min ( ( ; )) rW   P
α β

, I x α r β  . (5) 



7 
 

As discussed in a current work named Locality-constrained AAM (LC-AAM) [10], 

conventional AAMs assume a linear relationship across a whole data set, which is not 

always held, especially under a large variation of pose and expression. One efficient 

way to solve this problem is to explore the local linear subspace by modeling AAM as 

a sparsity-regularized problem. In [10], the original sparsity problem is approximated 

by adding locality constraints, as follows: 

 
2

2 2

0 0 1 2
{ , }

1

arg min ( ( ; )) d d
K

i ri

i

W   
 

   
      

   
  P

α β
x s

, I x α α β  ， (6) 

where the synthesized appearance image is represented as a linear combination of all 

the training faces, 1   and 2   are the regularization coefficients, and 
2

d   

denotes the distances between the input image and the respective appearance bases. In 

practice, Eq. (6) can be computed efficiently by directly selecting the K nearest 

neighbors of the input face image to form the shape and appearance bases, as shown in 

Eq. (7). With a smaller but similar training dataset, LC-AAM transforms the original 

non-linear problem into a locally linear one, and utilizes the popular project-out inverse 

compositional algorithm [31] to solve the optimization problem. 

   0 0
{ , }

arg min ( ( ; ))
K K

K r KW   P
α β

, I x α r   . (7) 

This approach can achieve a good performance on face images with pose and 

expression variations when images of the same subject are included in a training dataset 

(i.e. in a person-specific environment). However, if no images of the query face exist 

in the training set (i.e. in a generic environment) and the query face is partially occluded 

by facial hair, the performance of fitting the initial model to the query face deteriorates 

dramatically, as shown in Fig. 1(a). In our proposed framework, the sample faces, to be 

used to form the initial face, are selected by a weighted K-nearest neighbor (K-NN) 

searching scheme, which considers both pose and texture information. Compared to 

LC-AAM, the faces selected using our approach not only have similar poses, but also 

have similar facial textures (in particular, in the lower part of a face, e.g. the mouth and 
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chin areas) to the ones in a query face. Giving a testing face, the corresponding top five 

similar faces selected by the method in LC-AAM and by using our proposed 

initialization scheme are shown in Fig. 1(b). Those faces selected by LC-AAM have 

similar poses to the query, but the appearance around the mouth area is different. Using 

our proposed scheme, the selected faces have greater similarity around the mouth areas. 

Hence, they can provide more useful information for learning the correlation between 

the face shape and the complex texture around mouth regions. Furthermore, some of 

the selected faces still have similar poses to the query. Consequently, our proposed 

scheme can improve the learning and the correlation of the principal components of the 

shape and appearance information. This can improve the fitting results by avoiding 

being trapped in local minima, as shown in Fig. 1(c). 

 

2.2 Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) is a learning method which seeks basis vectors 

for the sets of two variables, x and y, such that their projections onto the basis vectors 

have a maximized correlation [28]. X and Y denote the matrices whose columns are the 

sets of variables x and y with zero mean, respectively. Suppose that M and N are the 

respective direction matrices of X and Y, and the corresponding canonical variation 

(a) (b) (c) 

Fig. 1. Comparison of the faces selected by LC-AAM and our proposed scheme: (a) an input face is 

cropped and normalized based on the position of the two eyes; (b) the faces in the upper row are 

selected by LC-AAM, which only exhibit similar poses to the input face, while  as shown in the 

lower row  the faces selected using our scheme have similar poses and texture appearance to the 

input face; and (c) the final fitting results based on LC-AAM (upper row) and on our proposed scheme 

(bottom row). 
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matrices of the projection coefficients are denoted by U and V, i.e., 
T U M X  and 

T V N Y . Then, CCA maximizes the following correlation: 

2 2

[ ]
=

[ ]E[ ]

T

XY

T T

XX YY

E

E
 



M C NUV

U V M C M N C N
, (8) 

where T represents the transpose operation; XXC   and YYC   denote the within-set 

covariance matrices of X and Y, respectively; and XYC  denotes the covariance matrix 

of X and Y. It can be shown that the optimal direction matrices M and N are the 

eigenvectors of 
1 1

1 XX XY YY YX

 R C C C C   and 
1 1

2 YY YX XX XY

 R C C C C  , respectively. It 

should be noted that two issues should be considered for analyzing data efficiently using 

CCA. The first is that two sets of data should have an intrinsic correlation, which is 

further increased. The second is that the number of images (i.e. the number of columns 

in the data matrices) should be larger than the size of an image (i.e. the number of rows 

in the matrices) in order to obtain feasible results such that the data can be reconstructed. 

CCA and its variants have been applied to many different face-analysis applications, 

such as face and facial-expression recognition [32] [33], 3D and infrared face 

reconstruction [34], face super-resolution [35] [29], etc. One of the previous AAM 

works [36] applied CCA to efficiently model the dependency between texture residuals 

and model parameters in the searching step, which improves the convergence speed. 

In [29], the original CCA is extended to orthogonal CCA (oCCA). The 

orthogonality property is crucial for information reconstruction, and can make the PCA 

projections more consistent. Therefore, in our proposed AAM framework, we also 

apply oCCA, which imposes extra constraints on the original CCA and obtains the 

orthogonal direction matrices M and N in an iterative way as follows:  

 

 
,

argmax
k k

T

k XY kC
m n

m n  
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subject to 

1 2 1

1 2 1

0,

0,

1,

1,

T T T

k k k k

T T T

k k k k

T

k XX k

T

k YY k





     


    







C

C

m m m m m m

n n n n n n

m m

n n

 (9) 

where km   and kn   are the kth column vectors (direction vectors) of the direction 

matrices M and N, respectively. The first two constraints are to impose orthogonality 

on the direction vectors, while the last two are additional constraints on the norms of 

km  and kn . The details of deriving the direction vectors can be found in [29]. Having 

computed the orthogonal-direction matrices, we can further normalize them to become 

orthonormal. 

 

3. Shape-Appearance-Correlated Active Appearance Model 

In this section, we will present our proposed Shape-Appearance-Correlated Active 

Appearance Model (SAC-AAM) in detail. Our method follows the concept in the 

previous work shown in [10], which reformulates the conventional AAM as a sparsity-

regularized AAM problem. However, in this paper, we propose a more efficient 

initialization scheme to approximate sparsity regularization by retrieving the K nearest 

neighbors in terms of both pose and texture. Then, oCCA is employed to enhance the 

correlation between the shape features and the appearance features represented by using 

PCA. We will show that this can generate more correlated principal components for the 

shape and the appearance features, which allows optimization to be solved efficiently 

by using the fast simultaneous inverse compositional algorithm. 

3.1 Efficient face-model initialization scheme 

In the literature of face detection, recognition and facial-expression analysis, various 

types of facial features are employed. In our proposed framework, we use two efficient 

and effective features, namely the Histogram of Oriented Gradients (HOG) [37] and 

Local Binary Patterns (LBP) [38], for searching example face images with a similar 

pose and texture appearance to the query face, respectively. 
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Each face image is cropped to the size of 160160 and normalized based on the 

positions of two eyes’ centers [39]. Then, a K-NN search based on the HOG features 

and Euclidean distance is used to select the most similar faces from a dataset. As shown 

in Fig. 1.(b), the K nearest neighbors have similar poses to the test face, due to the fact 

that HOG captures the edges’ orientations and hence an object’s shape. However, 

retrieving faces with similar poses only is insufficient, because some parts of a test face 

image may be occluded by facial hair or hair shading, in particular when the test face 

has no images in the training dataset. In order to achieve a more efficient and accurate 

subspace learning based on the selected samples, the weighted LBP features are also 

considered in the search, which aims to select faces having a similar texture to the test 

face. In the search, faces are cropped and normalized in the same way as the training 

faces, and are also divided into 7×7 windows, which can achieve the best performance 

by experiment. Because each of the windows has a different degree of importance, 

different weights are set for them, as shown in Fig. 2. 

With the LBP feature histogram for each block of a face image, the weighted Chi 

square distance is used to measure the similarity between the test face and all the faces 

in the training dataset as follows: 

2

, ,2

, , ,

( )
( , )

i j i j

w j

j i i j i j

f g
f g w

f g






 , (10) 

where f and g are the normalized histograms of the test and training face images, 

respectively; i and j are the indices representing the ith bin in the histogram of the jth 

       

       

       

       

       

       

       

 (a) (b) 

Fig. 2. (a) A cropped face partitioned into 7×7 windows for extracting the LBP features. (b) 

The weights used in the Chi square distance measure, where black, dark gray, light gray, 

and white represent the weights of 4, 3, 2, and 1, respectively. 
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block; and jw  is the weight predefined for block j. 

Fig. 1(b) shows the top five faces selected from the training dataset using the LBP 

feature. We can see that the selected face images have a similar appearance around the 

mouth regions. However, these selected faces may have poses that are different from 

the test face. Having retrieved the similar-pose faces and similar-texture faces using the 

HOG and LBP features, respectively, the mean shape of the similar-pose faces is 

computed. In order to use the similar-texture faces more efficiently in learning, they are 

wrapped to the mean shape by using Procrustes warp. In this way, the initial face model 

is more similar to the test face in terms of shape and appearance, and thence helps to 

establish a more locally linear subspace for representation. It should also be noted that, 

for normal faces without large occlusion or pose variation, our initialization scheme 

does not affect the efficiency and can achieve a slightly better performance compared 

to using either one of the two features to search the dataset, as shown in Fig. 10. The 

overall initialization scheme is illustrated in Fig. 3. 

In experiments, we have found that using only the top five pose faces and the top 

twenty texture faces is sufficient to achieve a good performance. More experimental 

results will be shown in subsequent sections. 

 

3.2 Orthogonal CCA for SAC-AAM 

With the K texture faces selected from training samples (after wrapping to the mean 

shape of the retrieved pose faces), PCA is applied to both the shape matrix 

1 2,[ , ..., ]KS s s s  and the appearance matrix 1 2,[ , ..., ]KR r r r , where the columns of the 

matrices are the landmark coordinates and gray-level intensities, respectively, within 

Fig. 3. Illustration of the proposed fast initialization scheme (FIS). 

Test Face (Dataset) 

 HOG  

wLBP 

Pose Faces 

Texture Faces 

Mean shape 

Procrustes warp 

Shape Model 

Appearance Model 

…… 
PCA 

PCA K-NN 

K-NN 
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the shape hull of the respective training faces. We compute the mean shape vector s  

and the mean appearance vector r . Then, matrices sP  and rP  are composed of the 

orthonormal eigenvectors of the shape and appearance training vectors, respectively. 

The corresponding projection coefficients of the shape and appearance vectors are 

denoted by 1 2,[ , ..., ] m K

K

 A a a a   and 1 2,[ , ..., ] n K

K

 B b b b  . 95% of the total 

energy of both the shape and appearance information is retained. The number of 

eigenvectors used for shape and appearance are denoted as m and n, respectively, of 

which both are smaller than K (m and n are usually less than 10, while K is set at 20 in 

our algorithms). Similar to Eq. (2) and Eq. (4), the projection coefficients can be 

computed by: 

( )T

i s i Pa s s , and 

( )T

i r i Pb r r . (11) 

Since the shape and appearance information of a person possesses an intrinsic 

correlation, it can be explored and enhanced by applying oCCA to the demeaned 

coefficients matrices 1 2,
ˆ ˆ ˆ ˆ[ , ..., ]KA a a a  and 1 2,

ˆ ˆ ˆˆ [ , ..., ]KB b b b . In fact, it is proven that 

this is equivalent to applying oCCA to matrices A and B which are already demeaned. 

By solving the optimization problem in Eq. (9), we can obtain two projection matrices 

with orthonormal column vectors sW  and rW , and two canonical variate matrices 

T

s sC = W A   and 
T

r rC = W B  , where the correlation coefficient 
2 2

[ ]

( ) ( )

s r

s r

E

E E
 

C C

C C
 

is maximized. Then, we rewrite sC  and rC  as follows: 

ˆ( )T T T T

s s s s sC = W A = W P S S = P S  and  

ˆ( )T T T T

r r r r r C = W B = W P R R P R , (12) 

where ˆ = S S S   and ˆ =R R R   are the demeaned shape and appearance matrices, 

respectively, and s s sP P W   and r r rP P W   are the corresponding eigen-matrices 

after the oCCA transformation. 
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As shown in Eq. (12), the multiplication of an original eigen-matrix ( sP  or rP ) 

and the corresponding oCCA projection matrix ( sW   or rW  ) forms a new eigen-

matrix ( sP  or rP ), which can project the shape or appearance vector on to a more 

correlated subspace. In addition, these two new eigen-matrices are orthonormal, which 

can be proven as follows: 

( ) ( )T T

s s s s s s P P P W P W I  and 

( ) ( )T T

r r r r r r P P P W P W I , (13) 

where I is an identity matrix. Therefore, the new eigen-matrices are applied in the 

model-fitting process of the feature points. Since the matrices of PCA projection 

coefficients A and B are both small, applying oCCA will only increase the 

computational cost slightly, but can improve the accuracy of final fitting as shown in 

the experimental results. 

3.3 Fitting scheme for SAC-AAM 

Fitting an AAM usually involves estimating the model parameters so that the distance 

between the model instance and the given image is minimized. Typically, this process 

is presented as the optimization of a least-square problem, as shown in Eq. (5). In our 

framework, with training faces resembling the test face in terms of shape and 

appearance and being used for initialization, and the use of more correlated eigen-

matrices and the corresponding projection coefficients, we refine the optimization in 

Eq. (6) with far fewer shape and appearance eigenvectors. In the related work [10], the 

optimization problem is solved by using the project-out inverse compositional (POIC) 

algorithm. However, as illustrated in [24], the POIC algorithm is efficient but does not 

work well for unseen variations, so it is unsuitable for generic situations. In contrast to 

POIC, the simultaneous inverse compositional (SIC) algorithm [40] has been proven to 

perform robustly in the case of generic fitting but is extremely complex computationally. 

To tackle this problem, the fast simultaneous inverse compositional (Fast-SIC) 

algorithm is employed to achieve relatively accurate fitting results while greatly 
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reducing the computation time. Instead of concatenating the warped shape parameters 

and appearance parameters, and optimizing them as a whole, Fast-SIC first optimizes 

the fitting with respect to the appearance parameters, and the solution is then used for 

optimization with respect to the warped parameters in each iteration. The cost required 

is slightly more than that of POIC, which is only an approximation to Fast-SIC (and 

hence to SIC), but achieves better fitting results. 

Algorithm 1: Fast-SIC for SAC-AAM 

Pre-compute:  

 

(3) Evaluate the gradients r  and riP  for i = 1, …, K 

(4) Evaluate the Jacobian 
K

W

α
at (x;0) 

Iterate:  

 

(1) Warp I with ( ; )KW x α  to compute ( ( ; ))KWI x α  

(2) Compute the error image ( ) ( ( ; ))Fsic r K KE W Px = r - I x α  

(5) Compute the steepest descent image 
K

W
 


J r

α
 

(6) Project out appearance from J to obtain [ , ]Fsic K rx K ry K

K

W
 


J P P= α

α
   

(7) Compute the Hessian Matrix 
T

Fsic Fsic FsicH = J J  and invert it 

(8) Compute ( )T

Fsic FsicEJ x  

(9) Compute 
1 ( )T

K Fsic Fsic FsicE = H Jα x  

(10) Update 
1( ; ) ( ; ) ( ; )K K KW W W  x α x α x α  and K K K     

Until K  α  

 

In our algorithm, we also fit our model into the Fast-SIC optimization framework 

which firstly linearizes the appearance model and then projects it out. However, in 

contrast to Fast-SIC, which directly uses the raw pixel intensities as the features without 
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applying any priors, our algorithm can show a further improvement on the fitting 

performance. Another advantage of our algorithm is that we solve the standard generic 

AAM dilemma (the number of appearance parameters is at least one order of magnitude 

greater than the number of shape parameters, i.e. n m  for matrices A and B) using 

a simple fitting process, where both the numbers of shape and appearance parameters 

are small, and also smaller than the number of nearest neighbors. We refine the fitting 

model as in Eq. (14): 

   0 0
{ , }

arg min ( ( ; ))
K K

K r KW   P
α β

, I x α r   , (14) 

where Kα  and K  are the PCA projection parameters in the more correlated shape 

and appearance eigen-spaces constructed by using the retrieved K nearest face 

neighbors. The Fast-SIC algorithm used in our proposed fitting model is summarized 

in Algorithm 1. More details of Fast-SIC can be found in [24]. 

 

4. Experiments and analysis 

To evaluate the performance of our proposed generic AAM framework, we compare it 

with several state-of-the-art methods on different datasets, namely the IMM dataset [41] 

under controlled variations of pose and expression, the Bosphorus dataset [42] with 

cropped face images under semi-controlled variations of pose and expression, and the 

labeled faces in the wild datasets LFPW [22] and PubFig [43] with uncontrolled 

variations of pose and expression, as well as with occlusion. Some faces of these 

datasets are shown in Fig. 4. All experiments were conducted under Matlab R2010b 

environment on an Intel i7 3.5 GHz CPU with 16GB RAM PC. 

Numerous measurement metrics are proposed for different face analysis methods, 

such as ROC curves for face recognition and F1-score, precision and recall for face 

classification and retrieval etc. To measure the performances of facial feature 

localization, we use the ground-truth-based localization error, as in [9] [26], which is 

the point-to-point error (PtP Error), normalized by the eye distance. Given the ground-

truth landmarks, the localization error 
k

ie  is computed as follows: 
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[( , ), ( , )]k k k k
k i i i i
i

d x y x y
e

IOD
 , (15) 

where (.,.)d  is the Euclidean distance between the k-th landmark of the ground-truth 

face and the corresponding detected landmark of the i-th test face; and IOD is the Inter-

Ocular Distance, which is the distance between the two eye pupils. According to the 

measurement in [26], 0.1k

ie   can be taken as an acceptable error criterion under a 

controlled environment. In other words, a landmark is considered to be detected 

correctly if its normalized error is below the threshold. In our paper, we employ the 

cumulative curve corresponding to the percentage of test images for which the mean 

localization error of all the landmarks (also called normalized root-mean-squared error 

(NRMSE)) is less than a specified threshold. In the following subsections, we will 

elaborate on the experimental setup on each dataset, and compare our proposed method 

with several state-of-the-art methods both statistically and visually. 

 

4.1 Performance on a controlled dataset 

In this experiment, 156 gray-scale face images of 39 distinct subjects in the IMM 

dataset [41] are selected. Each subject is sized 640480 and has 4 images with neutral-

Fig. 4. Sample face images from the selected datasets: (a) IMM dataset, (b) 

Bosphorus dataset with pose variations, (c) Bosphorus dataset with 

expression variations, (d) LFPW dataset, and (e) PubFig dataset. 

(a) (b) (c) (d) (e) 
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frontal, smiling-frontal, neutral-left, and neutral-right views, respectively. We use the 

re-annotated faces with 58 landmarks similar to our previous work [9]. Since it is a 

relatively small and simple dataset, we select one subject for testing and others for 

training each time. We mainly examine the efficiency of our proposed SAC-AAM 

framework together with each of the contributions of our proposed framework, i.e. the 

fast initialization scheme (denoted by SAC-AAM without oCCA) and using oCCA to 

increase the correlation between shape and appearance (denoted as SAC-AAM without 

FIS). We compare them with the recent locality-constrained AAM (LC-AAM) [10] and 

the adaptive-profile ASM (APASM) [9]. For the IMM dataset, we retrieve the top five 

pose faces and twenty texture faces using the K-NN search for our proposed SAC-AAM, 

and the top twenty nearest neighbors for LC-AAM as described in [10]. The 

experimental setup is the same for all the methods compared, and the experiment results 

are presented in Fig. 5 in terms of the cumulative curves. 

 

From the results, we can see that by using the proposed face-model initialization 

scheme and oCCA to improve the correlation of appearance and shape, our proposed 

method can achieve a more accurate fitting performance than LC-AAM. Each of the 

contributions can make some improvements to our proposed framework, and our SAC-

AAM achieves detection accuracy of higher than 80 percent when the error criterion 

equals 0.1, and is at least 10 percent higher than LC-AAM. However, for the IMM 

Fig. 5. Fitting results of different methods on the IMM dataset. 
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dataset, our previous work, APASM, achieves the best performance because it is based 

on the ASM model which locally searches for the best position for each landmark and 

works well under controlled environments. Nevertheless, it is the slowest one among 

the methods compared. For our proposed SAC-AAM, it takes 10-12s to process and 

localize each query image in the IMM dataset. LC-AAM requires a similar runtime, but 

APASM needs about 20s. 

4.2 Performance on a semi-controlled dataset 

To further examine each of the contributions of our proposed framework, and to 

compare them with the methods mentioned in Section 4.1, the Bosphorus dataset [42] 

is employed. It contains the high-resolution images of 105 people with larger variations 

in pose and expression than the IMM dataset, as illustrated in Figs. 4(b) and 4(c). These 

face images have been cropped to include only the face, such that the landmarks on 

their face contours cannot be localized. We further divide the dataset into faces with 

pose variations and faces with expression variations. For those faces with pose 

variations, each subject has four poses: frontal, right10, right20, and right30, 

respectively, with a total of 32 landmarks. For those with expression variations, each 

subject has five different expressions: angry, happy, disgusted, surprised, and eye-

closed, with a total of 22 landmarks. The image size is reduced to 280340 for faster 

computation. The same experimental settings and parameter selection are used as in 

Section 4.1, and one subject is selected for testing, while the others are selected for 

training each time. Fig. 6 and Fig. 7 show the corresponding cumulative curves with 

pose variations and expression variations. 

From the results, we can see that refining the initial face model, by adding local 

constraints, can improve the overall performance of the AAM models on the cropped 

face images from the semi-controlled dataset. Even if those points lying along the face 

contour are excluded, our proposed AAM framework with each contribution achieves 

better performance than LC-AAM and our previous work APASM, with about 5-10 

percent higher in detection accuracy. For APASM, we can also observe that it deals with 

pose variations better than expression variations due to the use of the HoG feature being 
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able to select training images with similar poses. Compared with our proposed AAM 

framework, which increases the correlation between shape and texture under pose and 

expression variations, when the variations become larger, the performance of ASM-

based methods deteriorates because they determine the final location of each feature 

point separately. The average runtime of the proposed SAC-AAM method on the 

Bosphorus dataset is about 5.5s. To give a better illustration, some of the visual fitting 

results based on APASM, LC-AAM, and our proposed SAC-AAM on the IMM and 

Bosphrus datasets are shown in Fig. 8.  

 

 

Fig. 6. Fitting results of the different methods on the Bosphorus dataset with pose variations. 
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Fig. 7. Fitting results of different methods on the Bosphorus dataset with expression variations. 
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For each individual face image, we calculate the mean point-to-point error (MPtP 

error) between the estimated landmarks and the ground-true landmarks for all the 

feature points. This measurement shows the overall localization performance in a 

MPtP Error: 1.841 MPtP Error: 2.005 MPtP Error: 4.584 

MPtP Error: 2.861 MPtP Error: 5.262 MPtP Error: 2.914 

MPtP Error: 3.854 MPtP Error: 7.871 MPtP Error: 3.133 

MPtP Error: 2.623 MPtP Error: 9.317 MPtP Error: 2.199 

Fig. 8. Visual fitting results and the corresponding mean point-to-point errors of different methods 

on the IMM dataset (the first two rows) and Bosphorus dataset (the last two rows): (a) APASM, (b) 

LC-AAM, (c) our proposed SAC-AAM framework, and (d) the corresponding face image with 

ground-true landmarks. 

(a)  

  

(b)  

  

(c)  

  

(d)  

  



22 
 

straightforward way. Although all the methods can achieve a good performance on this 

semi-controlled dataset, we can still observe an obvious improvement using our 

proposed SAC-AAM framework compared to LC-AAM, as highlighted by the yellow 

circles and the corresponding enlarged regions shown in the yellow rectangles. 

4.3 Performance on an in-the-wild dataset 

Nowadays, with the rapid improvement of facial-feature localization techniques, as 

well as the availability of new face datasets, the ultimate goal of recently proposed 

methods is to localize facial points accurately on faces in the wild, especially under 

unseen variations. Therefore, in this experiment our proposed AAM framework is 

evaluated on a famous in-the-wild dataset, namely the re-annotated LFPW dataset [44]. 

To have a fair evaluation, we compare our method (together with each of the 

contributions) with several state-of-the-art AAM methods, namely LC-AAM, Active 

Orientation Models (AOMs) [23], and AAM with the fast simultaneous inverse 

compositional algorithm (AAM-FSIC) [24].  

 

The re-annotated LFPW dataset is an improved version of the original LFPW 

dataset [22], where each face is labeled with 68 points. All images in the dataset were 

downloaded from the web with large variations in pose, expression, and lighting 

conditions, as shown in Fig. 4(c). The resolutions of the images also vary hugely from 

Fig. 9. Fitting results of the different methods on the LFPW dataset in the wild. 
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100100 to 400400. We select 800 face images for training and 222 face images for 

testing, without the subjects in the training set included in the testing set. The fitting 

results of the different methods are shown in Fig. 9. We can observe that the 

performance of all methods decreases with the in-the-wild faces, while our methods, 

together with each contribution, achieve superior results compared to other state-of-art 

methods, with an average of 10 percent higher detection accuracy. 

4.4 Visual performance on faces in the wild  

In this section, we conducted two experiments based on face images in the wild. The 

fitting results are illustrated visually, based on the PubFig dataset [43]. This dataset is 

similar to the LFPW dataset, but each face image has 36 feature points.  

In the first experiment, the PubFig dataset was used for both training and testing. 

Because our framework is based on LC-AAM, we visually compare the fitting results 

based on LC-AAM, SAC-AAM with one of the two contributions, i.e. SAC-AAM 

without oCCA and SAC-AAM without FIS, and SAC-AAM with both oCCA and FIS. 

Some selected fitting results, as well as their corresponding mean point-to-point errors 

(MPtP errors), are shown in Fig. 10. 

We can observe that, for those generic cases under simple pose and illumination 

variations (shown in the first two rows), all methods can work well. However, for the 

faces with strong variations in illumination or with occlusion, our proposed SAC-AAM 

framework, as well as SAC-AAM with one of the two contributions, achieves much 

better performance, which are highlighted with yellow circles in Fig. 10.  

For better visualization, we have also illustrated in Fig. 11 the improvements of the 

fitting results by enlarging the regions marked by the yellow circles in Fig. 10. With 

both of the proposed contributions, our SAC-AAM method can achieve much better 

localization performances in the occluded mouth regions, facial contours, and eye 

regions, where most existing AAM methods cannot achieve accurate results. 
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In the second experiment, we evaluated the generalization capability of different 

methods using training and testing data from two different datasets. Similar to Section 

4.3, we compare our proposed SAC-AAM framework with LC-AAM, AOMs, and 

AAM-FSIC. For AOMs, the source code provided uses the Multi-PIE dataset as the 

training set. For the other methods, the LFPW dataset is the training dataset, while 

PubFig is the testing dataset. Some visual results are illustrated in Fig. 12, and some 

Fig. 10. Visual fitting results and the corresponding mean point-to-point errors of different methods 

on the PubFig dataset: (a) LC-AAM, (b) SAC-AAM without oCCA, (c) SAC-AAM without fast 

initialization scheme, and (d) our proposed SAC-AAM framework. 

MPtP Error: 3.112 MPtP Error: 2.6051 MPtP Error: 1.9696 MPtP Error: 1.6084 

MPtP Error: 15.191 MPtP Error: 7.4233 MPtP Error: 2.5327 MPtP Error: 1.0162 

MPtP Error: 10.261 

 

MPtP Error: 8.2356 

 

MPtP Error: 3.6914 

 

MPtP Error: 1.4778 

 (a)  

 

(b)  

 

(c)  

 

(d)  

 

MPtP Error: 7.6091 

 

MPtP Error: 5.6249 

 

MPtP Error: 3.8082 

 

MPtP Error: 2.6438 
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highlighted regions (e.g. the mouth region, facial contour, and eye region) are also 

enlarged and illustrated in Fig. 13 for better visualization. Our proposed SAC-AAM 

again generalizes better for unseen faces than other recent AAM variants. 

 

5. Conclusions 

In this paper, we have proposed a shape-appearance-correlated Active Appearance 

Model (SAC-AAM) for generic facial-feature localization. Based on the idea of 

approximating the local appearance of feature points with locality constraints to 

improve face-model initialization, we have proposed an efficient initialization scheme 

which retrieves K nearest neighbors with similar poses and textures to a test face from 

a training set. With a small number of representative samples, the correlation between 

the shape and the appearance models can be learned more efficiently and this can better 

represent the test face images. To further improve the fitting performance of AAM, we 

have applied oCCA to increase the correlation between the shape features and the 

appearance features represented by PCA. With these two main contributions, we have 

devised our AAM model and solved the optimization using the recently proposed fast 

simultaneous inverse compositional (Fast-SIC) algorithm. With only a small number of 

training images selected for learning and the fast optimization algorithm used, our 

Fig. 11 Enlarged visual fitting results of selected results from Fig. 10. The first row is the mouth 

region, the second row is the face contour, and the third row is the eye region: (a) LC-AAM, (b) 

SAC-AAM without oCCA, (c) SAC-AAM without fast initialization scheme, and (d) our proposed 

SAC-AAM. 

(a)  

  

(b)  

  

(c)  

  

(d)  
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proposed framework is efficient and accurate. Experimental results on different datasets 

have shown the better performance, in terms of the statistical and visual performances, 

of our proposed framework, as well as each of the two contributions i.e. fast 

initialization scheme and oCCA to increase correlation between shape and appearance. 

The fitting results have also demonstrated that our method can achieve superior 

performance compared to other state-of-the-art AAM models, especially under generic 

environments. 
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Fig. 12. Visual fitting results of different methods training on the LFPW dataset and testing on the 

PubFig dataset: (a) LC-AAM, (b) AOMs, (c) AAM-FSIC, and (d) our proposed SAC-AAM. 

(a)  

 

(b)  

 

(c)  

 

(d)  
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Fig. 13. Enlarged visual fitting results of selected results from Fig. 12. The first row is the mouth 

region with mustache, the second row is the face contour, and the third row is the eye region: (a) LC-

AAM, (b) AOMs, (c) AAM-FSIC, and (d) our proposed SAC-AAM. 

(a)  

  

(b)  

  

(c)  

  

(d)  
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