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Abstract

In the post-genomic era, the number of unreviewed protein sequences is remarkably

larger and grows tremendously faster than that of reviewed ones. However, existing

methods for protein subchloroplast localization often ignore the information from these

unlabelled proteins. This paper proposes a multi-label predictor based on ensemble

linear neighborhood propagation (LNP), namely LNP-Chlo, which leverages hybrid

sequence-based feature information from both labelled and unlabelled proteins for pre-

dicting localization of both single- and multi-label chloroplast proteins. Experimental

results on a stringent benchmark dataset and a novel independent dataset suggest that

LNP-Chlo performs at least 6% (absolute) better than state-of-the-art predictors. This

paper also demonstrates that ensemble LNP signi�cantly outperforms LNP based on

individual features. For readers' convenience, the online web-server LNP-Chlo is freely

available at http://bioinfo.eie.polyu.edu.hk/LNPChloServer/.

Keywords

protein subchloroplast localization; linear neighborhood propagation; multi-label classi�ca-

tion; transductive learning; split amino-acid composition
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Introduction

As one of the most prominent plant-speci�c organelles, the chloroplast serves as a spe-

cialized subcellular location to conduct photosynthesis, which is arguably the most funda-

mental biological process maintaining atmospheric oxygen levels and supplying energy and

organic compounds for life on Earth 1. Besides, chloroplast proteins also carry out a series of

other molecular functions, such as fatty acid synthesis 2, amino acid biosynthesis 3 and lipid

metabolism4. Conventionally, the chloroplast can be further divided into a number of micro-

scopic yet intricate structures at the sub-subcellular level, including envelope, thylakoid mem-

brane, thylakoid lumen, stroma and plastoglobule. Knowing where a protein locates in these

chloroplast sub-structures can shed light on its biological functions. With the avalanche of

novel protein sequences found in the post-genomic era, computational approaches are highly

required to assist conventional time-consuming and costly wet-lab techniques for accurate,

fast and large-scale prediction of protein subchloroplast localization.

Recent decades have witnessed various in-silico approaches applied in protein subcel-

lular localization prediction. These approaches are generally divided into four categories:

(1) amino-acid composition-based 5�7, (2) homology-based 8,9, (3) sorting-signals based 10�12

and (4) knowledge-based 13�22. The �rst three categories are often regarded as sequence-

based methods. Yet, because subchloroplast localization is more microscopic than subcellu-

lar localization, not all aforementioned methods that work very well for the former can be

readily applied to the latter. To the best of our knowledge, only a few predictors are capa-

ble of predicting protein subchloroplast localization which includes BS-KNN 23, SubIdent24,

ChloroRF25 and SubChlo26. Among these predictors, BS-KNN and SubChlo use the K-

nearest neighbor (KNN) classi�er whereas SubIdent and ChloroRF use more advanced clas-

si�ers such as support vector machines (SVM) and random forest (RF). All of these four

predictors use amino-acid sequence-based information as features.

However, these subchloroplast-localization predictors become ine�ective when dealing

with cases where both single- and multi-location chloroplast proteins are involved. This prob-
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lem becomes a grave concern when more and more chloroplast proteins are found to co-locate

in more than one subchloroplast compartments. For example, Ferredoxin-NADP reductase

(leaf isozyme 2) 27 is found to co-reside in both chloroplast stroma and thylakoid membrane;

glyceraldehyde phosphate dehydrogenase 28 can co-locate in both chloroplast envelope and

stroma. Recently, two multi-label subchloroplast-localization predictors have been proposed,

namely MultiP-SChlo 29 and AL-KNN14.a Both predictors can predict single- and multi-label

chloroplast proteins, and they use pseudo amino-acid composition (PseAA) 5 as features fol-

lowed by a genetic algorithm for feature selection. In terms of classi�cation, MultiP-SChlo

uses a multi-label SVM classi�er while AL-KNN uses a multi-label KNN classi�er. The for-

mer is found to outperform the latter 29. Nevertheless, the performance of both predictors

is still far from satisfactory. Moreover, previous studies have suggested that the evolution-

ary background of plant proteins is correlated with their subcellular localization 30 and that

predictors not considering the N-terminal modi�cations of proteins have a higher chance of

making false predictions of chloroplast localization 31. Therefore, evolutionary based features

and N-terminal features should be considered for reliable protein subchloroplast localization.

Actually, all of the aforementioned computational approaches (no matter single-label or

multi-label) predict the subchloroplast localization of proteins by extracting feature informa-

tion from the training proteins (or reviewedb/labelled proteins) only. They often ignore the

information from those unreviewed/unlabelled proteins. In fact, recent advances in high-

throughput genome sequencing projects lead to a larger number of novel yet unreviewed

protein sequences than that of reviewed ones. Moreover, the former increase at a much

faster pace than the latter. For example, the numbers of reviewed and unreviewed protein

sequences on 02-Feb-2004 are 137,916 and 895,002, respectively, whereas those numbers on

17-May-2016 become 551,193 and 62,148,086, respectively. This means that the ratio of the

number of reviewed/unreviewed protein sequences has been remarkably widen from 1:6 to

aNote that AL-KNN was implemented in 29.
bThe reviewed proteins should be those proteins that are manually annotated, whereas the unreviewed

proteins are those that are not manually annotated.
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1:112. Therefore, it is unwise to ignore the information from the unlabelled proteins.

Our recent �nding 32 suggests that a transductive-learning approach that exploits infor-

mation from both labelled and unlabelled proteins can achieve a much higher prediction

accuracy than the conventional approaches that only rely on labelled proteins. In 32, a multi-

label multi-class predictor called EnTrans-Chlo was proposed. EnTrans-Chlo uses ensemble

features comprising PseAA sequence information and pro�le-based evolutionary information

from both labelled and unlabelled proteins, which are classi�ed by a multi-label transductive

algorithm based on least squares and nearest neighbors. However, EnTrans-Chlo has the fol-

lowing drawbacks: (1) it uses a similarity-based feature-vector construction method, which

restricts the feature vectors to be pairwise-similarity based only; (2) it adopts a classi�cation

scheme that minimizes the least squared error between the predicted score vectors and their

nearest neighbors with their pairwise-similarity weighting applied to the nearest neighbors,

meaning that the weights of the nearest neighbors are probably not optimized; and (3) it

uses the PseAA features which are found to perform poorly and should be replaced by better

features.

To address these problems, this paper proposes a multi-label predictor based on ensemble

linear neighborhood propagation (LNP), namely LNP-Chlo, for predicting subchloroplast lo-

calization of both single- and multi-location proteins. Compared to conventional multi-label

predictors, LNP-Chlo can leverage information from both labelled and unlabelled proteins.

Compared to EnTrans-Chlo, LNP-Chlo adopts a multi-label classi�er based on ensemble

LNP, which allows various kinds of input features with di�erent dimensions, and at the same

time adopts a quadratic programming method to optimize the weights of nearest neighbors.

In addition, LNP-Chlo uses the split amino-acid composition (SAAC) features to replace the

PseAA features to improve the performance. Experiential results demonstrate that LNP-

Chlo performs signi�cantly better than state-of-the-art multi-label predictors. Moreover, this

paper also found that the SAAC features and pro�le-alignment features are complementary

with each other for protein subchloroplast localization prediction.
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Feature Extraction

In this paper, we extract two kinds of sequence-based features from amino acid sequences:

split amino-acid composition features and pro�le-alignment features.

Split Amino-Acid Composition Features

Previous studies 11,12 have indicated that sorting signals may exist in the short segment of

amino acid sequences around the N-terminus, particularly for chloroplast proteins. There-

fore, more speci�c information can be extracted from di�erent regions of a protein sequence

independently. To this end, a method named split amino-acid composition (SAAC) was

proposed33,34.

Given a protein, its sequence is �rst split into three mutually exclusive regions: N-

terminal, middle and C-terminal. Then, the frequencies of occurrences of the 20 amino acids

in each of these three segments are counted,c which are then uniformly normalized by the

length of the whole sequence. Mathematically, given a query protein Qi with sequence length

Li, its SAAC feature vector is:

qSAACi =
1

Li

 fN
i,1, . . . , f

N
i,20︸ ︷︷ ︸

N-terminal region

, fM
i,1 , . . . , f

M
i,20︸ ︷︷ ︸

middle region

, fC
i,1, . . . , f

C
i,20︸ ︷︷ ︸

C-terminal region


T

, (1)

where Li =
∑20

u=1(f
N
i,u + fM

i,u + fC
i,u). In Eq. 1, {fN

i,u}20u=1, {fM
i,1}20u=1 and {fC

i,1}20u=1 are the

frequencies of occurrences of the u-th amino acid in the N-terminal region, middle region

and C-terminal region, respectively, of the i-th protein. For simplicity and according to

previous studies 35, we set the lengths of both N-terminal and C-terminal regions to 25.d

Because of its simplicity and e�ciency, SAAC has been widely applied to various domains,

including multi-functional enzyme classi�cation 35, mitochondrial protein identi�cation 33 and

membrane protein prediction 34.

cWe ignore those non-standard amino acid residues.
dNote that all proteins of interest have more than 50 amino acid residues.
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Pro�le-Alignment Features

The pro�le of a protein contains its sequence evolutionary information, which is usually

represented by two matrices: a position-speci�c scoring matrix (PSSM) and a position-

speci�c frequency matrix (PSFM). The columns of PSSM and PSFM correspond to the

position of residues along the protein sequence. For each column in a PSSM, the entries

represent the log-likelihood of residue substitutions at that position. Each column of a PSFM

contains the weighted observation frequencies of amino acid residues at the corresponding

position of the aligned sequences. Both PSSM and PSFM can be obtained from performing

multiple sequence alignments on a large protein database (e.g., Swiss-Prot) using PSI-BLAST

(position-speci�c iterative BLAST) 36. PSI-BLAST involves an iterative search process in

which the pro�le of a query protein is searched against the database to iteratively update

itself to detect distant relationships between protein families. Thus, the pro�le of a protein

encapsulates the information of its homologs. Typically, the E-value cuto� and the number

of iterations for PSI-BLAST are set to 0.001 and 3, respectively.

The similarity score between a known and an unknown protein sequence can be computed

by aligning the pro�le of the known sequence with that of the unknown sequence 37. Given a

query protein Qi, we align its pro�le with the pro�le of every protein in a dataset of interest

to form an alignment score vector qi. Then, the pro�le-alignment (PA) feature vector for

the i-th protein is computed as:

qPAi = [q
(g)
i,1 , . . . , q

(g)
i,j , . . . , q

(g)
i,N ]

T, (2)

where q
(g)
i,j =

qi,j√
qi,iqj,j

, T is the transpose operator, N is the number of proteins in the dataset,

and qi,j is the j-th element of qi. Details of obtaining the pro�les and pro�le alignment can

be found in38.

Over the years, the pro�le-based evolutionary features have been extensively used in many

bioinformatics domains, such as protein disorder prediction 39, protein subcellular localization
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prediction40 and RNA binding sites prediction 41.

Multi-Label Classi�cation

Multi-Label Linear Neighborhood Propagation

Linear neighborhood propagation (LNP) 42 is a powerful semi-supervised learning method.

Essentially, LNP assumes that each instance in a classi�cation problem can be linearly

reconstructed by its neighboring instances (either labelled or unlabelled). LNP has been

successfully applied to various classi�cation topics, including protein function prediction 43,

video annotation 44 and image retrieval 45.

In this work, we extended LNP to multi-label classi�cation and applied it to subchloro-

plast localization. Without loss of generality, given a dataset of N chloroplast proteins dis-

tributed in M subchloroplast locations, the �rst L proteins are with known subchloroplast

location(s) (i.e., the training part), and the localization of the remaining T (= N−L) proteins

are to be predicted (i.e., the test part). Denote {Yi,qi}Ni=1, where Yi ⊂ {1, 2, . . . ,M} and

qi ∈ Rd as the label set and the feature vectors, respectively, of this dataset. By using the

concept of transformed labels 46, the label set of the i-th protein can be converted to a label

vector yi = [yi,1, . . . , yi,m, . . . , yi,M ]T, where yi,m ∈ {0, 1}. Because this is a multi-label clas-

si�cation problem, for multi-location proteins,
∑M

m=1 yi,m > 1; for single-location proteins,∑M
m=1 yi,m = 1. For a training protein (0 < i ≤ L), yi,m = 1 if the i-th protein is located in

the m-th subchloroplast location; otherwise, yi,m = 0. For a test protein ((L+ 1) < i ≤ N),

because initially we do not know to which of these M locations the protein belongs, we

assume that yi,m = 0, 1 ≤ m ≤M .

Then, given the i-th protein Qi, its feature vector qi can be reconstructed from a set of
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neighboring proteins, which leads to the following objective function for optimization:

{ŵi,k}Ni=1 = arg min
{wi,k}Ni=1
k∈K(i)

N∑
i=1

∥∥∥∥∥∥qi −
∑

k∈K(i)

wi,kqk

∥∥∥∥∥∥
2

, (3)

where
∑

k∈K(i)wi,k = 1, wi,k ≥ 0 is the contribution of qk in constructing qi, and K(i) is a

set of neighbors to the i-th protein. In this work, K(i) is a set comprising the top-K nearest

neighbors.

After some mathematical manipulations, Eq. 3 is equivalent to solving the following

quadratic programming problem:

min
N∑
i=1

∑
k,r∈K(i)

wi,k(qi − qk)
T(qi − qk)wi,r,

s.t.
∑

k∈K(i)

wi,k = 1, wi,k ≥ 0, i = 1, . . . , N.

(4)

After Eq. 4 is solved, an optimized weight matrix W can be obtained, whose (i, k)-th entry

is ŵi,k.

According to Wang and Zhang 42, predicted score vectors can be determined by prop-

agating the labels of labelled instances to unlabelled instances via an iterative procedure.

Let {sti}∞t=0 ∈ RM as the predicted score vector of the i-th protein at the t-th iteration,

whose m-th (m ∈ {1, . . . ,M}) element sti,m represents the score in the m-th class at the t-th

iteration. We set the initial s0i = yi. Then, the predicted score vector of the i-th protein at

the (t+ 1)-th iteration is given by:

st+1
i = αWsti + (1− α)yi, (5)

where α ∈ (0, 1) is a parameter controlling the amount of label information from the neigh-

boring data for updating the score vector. When Eq. 5 converges 42, we obtain the i-th

predicted score vector, which is denoted as ŝi, i.e., ŝi = limt→∞ sti. Note that because W in
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Eq. 5 incorporates information from both labelled (training) and unlabelled (test) proteins

(see Eq. 4), the way to obtain ŝi is a typical transductive-learning method.

Ensemble LNP

In this work, we adopted a classi�er ensemble scheme to incorporate both SAAC features and

PA features in our proposed predictor. Denote ŝSAACi and ŝPAi as the LNP scores obtained

from Eq. 5 by using the SAAC features and PA features, respectively. Then, the ensemble

score can be obtained as follows:

ŝeni = βŝSAACi + (1− β)ŝPAi , (6)

where β ∈ [0, 1] is a parameter controlling the in�uence of SAAC features and PA features.

To predict proteins with both single- and multi-label locations, a decision scheme for

multi-label classi�cation should be used. In this work, we used a decision scheme similar to

our previous studies 47�49. Speci�cally, the predicted subchloroplast location(s) of the i-th

query protein Qi are given by:

M∗(Qi) =


⋃M

m=1

{
m : ŝeni,m ≥ min

(
0.5, θŝeni,max

)}
,

where ∃ ŝeni,m > 0;

arg maxMm=1ŝ
en
i,m, otherwise,

(7)

where

ŝeni,max =
M

max
m=1

ŝeni,m,

min(·) is the minimum operator, and ŝeni,m is the (i,m)-th entry of ŝeni given by Eq. 6. In

Eq. 7, θ ∈ (0.0, 1.0] is a parameter controlling the ratios of multi-label predictions. A larger

θ leads to a stringent criteria; and vice versa.

For ease of reference, we refer to the proposed predictor as LNP-Chlo. The �owchart of

LNP-Chlo is shown in Fig. 1.
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Training 
Sequences

Testing 
SequencesSequences Sequences

SAAC PSI‐BLASTSAAC PSI‐BLAST

SAAC PA
Profile Alignment

SAAC 
features

PA 
features

β 1 β
LNPLNP +β 1-β

Adaptive 
DecisionEnsemble 

LNP

Subchloroplast
Location(s)

Figure 1: The �owchart of LNP-Chlo. Training sequences: proteins {Qi}Li=1; testing se-
quences: proteins {Qi}Ni=L+1; SAAC: split amino-acid composition; PA: pro�le-alignment;
LNP: linear neighborhood propagation; adaptive decision: the decision scheme given in
Eq. 7.
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Datasets and Performance Metrics

In this paper, a recent stringent benchmark dataset 29 and a novel independent dataset 13 were

used to evaluate the performance of LNP-Chlo. All proteins in the benchmark dataset were

added to the Swiss-Prot database before 31-May-2013, whereas those of the novel dataset

were added to Swiss-Prot from 1-Jun-2013 and 11-Nov-2015. This guarantees that the novel

dataset contains the latest chloroplast proteins that have never been used by other studies

and researchers. The sequence identity of the benchmark dataset was cut o� to 25%, whereas

we did not cut o� the sequence similarity of the novel dataset due to the limited number of

novel proteins. The benchmark dataset contains 578 actual proteins 13, of which 556 belong

to one subchloroplast location, 21 to two locations, 1 to three locations and none to four

or more locations. The novel dataset contains 122 actual proteins, of which 113 and 9 are

single-location proteins and two-location proteins, respectively. The 578 actual proteins in

the benchmark dataset correspond to 601 (= 556× 1 + 21× 2 + 1× 3) locative proteins 50,e

whereas 122 actual proteins in the novel dataset correspond to 131 (= 113 × 1 + 9 × 2)

locative proteins. The speci�c breakdown of both datasets are shown in Table 1. As can

be seen, the majority (> 70%) of proteins in both datasets are located in envelope and

thylakoid membrane, while proteins located in the other 3 subchloroplast locations account

for less than 30%. This means that both datasets are very imbalanced. Both datasets can

be downloadable from the links of the LNP-Chlo web-server.

To facilitate comparison between LNP-Chlo and other multi-label predictors, some pop-

ular multi-label measures were used, including Overall Actual Accuracy (OAA) 51, Accuracy,

Precision, Recall, and F1-score (F1)52,53. For all performance measures, the higher the val-

ues, the better the prediction performance. Particularly, OAA is the most stringent and

objective among these �ve measures because it requires `exact-match' of a predicted label

set and the corresponding ground-truth label set 54. Detailed analysis on these metrics can

eThe number of locative proteins for an actual protein is the number of subchloroplast compartments

where the actual protein co-locates.
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Table 1: Breakdowns of the benchmark and novel datasets. All proteins of the benchmark
dataset were added to Swiss-Prot before 31-May-2013, whereas those of the novel dataset
were added to Swiss-Prot from 1-Jun-2013 to 11-Nov-2015. ∗: no chloroplast plastoglobule
proteins were found when the novel proteins were retrieved from Swiss-Prot.

Label Location
No. of Proteins

Benchmark Novel
1 Envelope 199 61
2 Stroma 105 26
3 Thylakoid lumen 34 5
4 Thylakoid membrane 233 39
5 Plastoglobule 30 0∗

Number of locative proteins 601 131
Number of actual proteins 578 122

be found in supplementary materials of the LNP-Chlo web-server.

To strike a good balance among all of the performance measures, we propose a new

measure, namely GrandMean, which is de�ned as:

GrandMean =
1

5
(OAA + Accuracy + Precision + Recall + F1). (8)

Obviously, the higher the GrandMean, the better the prediction performance. Since Grand-

Mean incorporates all of the aforementioned performance measures, we used it as the criteria

for parameter optimization in our algorithm.

We used both leave-one-out cross-validation (LOOCV) and independent tests for evaluat-

ing classi�ers' performance. These statistical methods were used because LOOCV is regarded

as the most rigorous and bias-free procedure 55 and independent tests can demonstrate the

generalization capabilities of classi�ers 38.
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Table 2: Comparing LNP-Chlo with state-of-the-art multi-label predictors on the benchmark
dataset based on leave-one-out cross-validation (LOOCV) tests. The results of AL-KNN
reported here were extracted from 29.

Measures
Predictors

AL-KNN14 MultiP-SChlo 29 EnTrans-Chlo 32 LNP-Chlo
OAA 0.4377 0.5552 0.6003 0.6609

Accuracy 0.4521 0.6326 0.6600 0.7085

Precision 0.4663 0.6410 0.6730 0.7226

Recall 0.4530 0.7106 0.7106 0.7437

F1 0.4595 0.6738 0.6804 0.7249

GrandMean 0.4537 0.6426 0.6649 0.7121

Results and Discussion

Comparing with State-of-the-Art Predictors

Table 2 compares LNP-Chlo against several state-of-the-art multi-label chloroplast predic-

tors on the benchmark dataset based on LOOCV. As far as we know, only three exist-

ing multi-label predictors, namely MultiP-SChlo 29, AL-KNN14 and EnTrans-Chlo 32, are

designed to predict both single- and multi-location chloroplast proteins. Note that AL-

KNN was implemented in 29. From the perspective of feature extraction, both AL-KNN and

MultiP-SChlo use pseudo amino-acid composition (PseAA) features followed by a genetic

algorithm for feature selection, whereas EnTrans-Chlo uses features derived from PseAA

and pro�le-alignment. From the perspective of classi�cation, the former two use a multi-

label SVM classi�er and a multi-label KNN classi�er, respectively, whereas the latter uses a

multi-label classi�er based on least squares and nearest neighbors. Our proposed predictor

LNP-Chlo uses pro�le-alignment features and SAAC features and adopts an ensemble LNP-

based multi-label classi�er. In addition, EnTrans-Chlo and LNP-Chlo can exploit features

from both labelled and unlabelled data, whereas the other two were trained on labelled data

only.

As shown in Table 2, LNP-Chlo signi�cantly outperforms the other three predictors in
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terms of all performance measures. Particularly, for the most stringent and object crite-

ria OAA, LNP-Chlo outperforms EnTrans-Chlo, Multi-SChlo and AL-KNN by 6% (abso-

lute), 11% (absolute) and 23% (absolute), respectively. We noticed that the performance

of LNP-Chlo and EnTrans-Chlo surpasses that of the other two by a large margin. This

is possibly because transductive-learning based predictors are more powerful than conven-

tional inductive-learning based predictors, which will be con�rmed by the in-depth analysis

in Section `Transductive versus Non-Transductive'.

To con�rm that the improvement of LNP-Chlo over state-of-the-art predictors is statis-

tically signi�cant, we performed McNemar's tests 56,57 on the prediction scores of LNP-Chlo

and the existing top-performing predictor EnTrans-Chlo. We found that the p-value between

the OAA of LNP-Chlo and EnTrans-Chlo is 1.1225× 10−6 (� 0.05), suggesting that, statis-

tically speaking, the performance of LNP-Chlo is signi�cantly better that of EnTrans-Chlo.

To further demonstrate the superiority of LNP-Chlo over state-of-the-art predictors, we

performed independent tests for all of the four aforementioned predictors. Speci�cally, 20%

of the benchmark dataset were randomly chosen as the test dataset and the remaining

samples were used to train the four predictors. This procedure was repeated ten times

to test the robustness of the predictors for di�erent random selections. The performance

comparisons are shown in Fig. 2. As can be seen, the same conclusion as in Table 2 can

be drawn from Fig. 2: LNP-Chlo impressively outperforms the other three predictors in

terms of all performance metrics. Besides, the performance of the top two predictors (LNP-

Chlo and EnTrans-Chlo) is still remarkably superior to the other predictors, which further

demonstrate the e�ectiveness of transductive-learning models.

Transductive versus Non-Transductive

To unravel the advantages of the proposed transductive model, we compared our proposed

predictor LNP-Chlo with a state-of-the-art non-transductive predictor. We selected the

multi-label SVM (ML-SVM) as the non-transductive model due to its superior performance
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Figure 2: Comparing LNP-Chlo with state-of-the-art multi-label predictors on the bench-
mark dataset based on independent tests. Bars and errorbars denote the mean and standard
deviation of di�erent performance measures. AL-KNN, MultiP-SChlo and EnTrans-Chlo are
from14,29 and32, respectively. The results of AL-KNN reported here were extracted from 29.

Table 3: Comparing LNP-Chlo with a non-transductive predictor (ML-SVM) based on
leave-one-out cross-validation.

Measures
Predictors

ML-SVM46 LNP-Chlo
OAA 0.6194 0.6609

Accuracy 0.6332 0.7085

Precision 0.6401 0.7226

Recall 0.6401 0.7437

F1 0.6378 0.7249

GrandMean 0.6341 0.7121
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demonstrated in various bioinformatics domains, including subchloroplast localization pre-

diction (e.g., MultiP-Schlo 29) and protein subcellular localization (e.g., mGOASVM 46). Both

ML-SVM and LNP-Chlo use the same features (both PA features and SAAC features) and

adopt the same ensemble scheme (see Section `Ensemble LNP') for classi�cation.

As can be seen from Table 3, the performance of LNP-Chlo is impressively superior to that

of ML-SVM in terms of all performance measures, suggesting that using transductive models

is better than non-transductive models for predicting protein subchloroplast localization.

Ensemble LNP versus Individual LNP

Table 4: Comparing ensemble LNP against LNP with individual features on the bench-
mark dataset based on LOOCV. Pse-LNP-Chlo, Pro-LNP-Chlo and SAAC-LNP-Chlo use
pseudo amino-acid composition features, pro�le-alignment (PA) features and SAAC features,
respectively, whereas LNP-Chlo uses both PA and SAAC features.

Measures
Predictors

Pro-LNP-Chlo SAAC-LNP-Chlo LNP-Chlo
OAA 0.6228 0.6453 0.6609

Accuracy 0.6560 0.6597 0.7085

Precision 0.6684 0.6747 0.7226

Recall 0.6796 0.6597 0.7437

F1 0.6675 0.6646 0.7249

GrandMean 0.6589 0.6608 0.7121

To investigate the bene�ts of using ensemble LNP, we compared the ensemble LNP

(LNP-Chlo) against LNP that uses individual features on the benchmark dataset based on

LOOCV tests. We named LNP with PA features and SAAC features as PA-LNP-Chlo and

SAAC-LNP-Chlo, respectively. Table 4 shows the results, which demonstrates that using

the ensemble LNP performs better than PA-LNP-Chlo and SAAC-LNP-Chlo in terms of all

performance measures. Particularly, the OAA of the former is around 2% (absolute) and

4% (absolute), respectively, better than those of the latter two. The results suggest that the

PA features and SAAC features are complementary with each other for predicting protein
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subchloroplast localization. Besides, we noticed that the performance di�erence of SAAC-

LNP-Chlo and PA-LNP-Chlo in all performance metrics is by no means considerable. We

conjecture that this is usually a basic precondition for successful ensemble classi�cation.

To verify the above conjecture, we have also investigated the performance of LNP with

the PseAA features, which we name as Pse-LNP-Chlo. Totally, we have three di�erent

features: PseAA, pro�le-alignment (PA) and SAAC. Based on these individual features,

besides LNP-Chlo, we constructed three more ensemble LNP with di�erent combinations of

features, namely PseAA + Pro, PseAA + SAAC and PseAA + PA + SAAC, which we name

as PsePro-LNP-Chlo, PseSAAC-LNP-Chlo and All-LNP-Chlo, respectively. The results of

these seven predictors are shown in Fig. 3. As can be seen, in term of individual features,

the performance of Pse-LNP-Chlo is much worse than that of Pro-LNP-Chlo and SAAC-

LNP-Chlo, suggesting that the latter is probably suitable for being combined with other

features. In terms of the ensemble LNP with hybrid features, we found that our proposed

predictor LNP-Chlo performs the best. Particularly, LNP-Chlo performs better than All-

LNP-Chlo�the predictor that uses all of the three features. This is probably because PseAA

features contribute negatively to the �nal performance of All-LNP-Chlo, leading to poorer

performance. Therefore, we dropped the PseAA features, and adopted only PA features and

SAAC features.

Predicting Novel Proteins

A powerful bioinformatics predictor should possess good generalization capabilities, which

can be directly re�ected by predicting novel independent tests. To further demonstrate the

good generalization capabilities of LNP-Chlo, we created a novel and independent dataset

(See Table 1). To guarantee the strict objectivity of the independent tests, all of the proteins

in the novel dataset were added to Swiss-Prot later than those in the benchmark dataset,

which are used as the training set. This novel dataset contains all the proteins added to Swiss-

Prot between 1-Jun-2013 and 11-Nov-2015, and no similarity cuto� technique is adopted due
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Figure 3: Comparing LNP-Chlo against LNP with individual features and ensemble LNP
with various features on the benchmark dataset based on LOOCV. Pse-LNP-Chlo, Pro-LNP-
Chlo and SAAC-LNP-Chlo use pseudo amino-acid composition features, pro�le-alignment
(PA) features and SAAC features, respectively, whereas PsePro-LNP-Chlo, PseSAAC-LNP-
Chlo, LNP-Chlo and All-LNP-Chlo use features of PseAA + PA, PseAA + SAAC, PA +
SAAC and PseAA + PA + SAAC, respectively.

Table 5: Comparing LNP-Chlo with state-of-the-art multi-label predictors on the novel
dataset based on independent tests. The benchmark dataset was used as the training set
for all predictors. The results of MultiP-SChlo and EnTrans-Chlo were obtained from their
web-servers.

Measures
Predictors

MultiP-SChlo 29 EnTrans-Chlo 32 LNP-Chlo
OAA 0.2705 0.3607 0.5492

Accuracy 0.3279 0.4631 0.5738

Precision 0.3525 0.4850 0.5984

Recall 0.3607 0.5492 0.5738

F1 0.3470 0.4986 0.5820

GrandMean 0.3317 0.4713 0.5754
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to the limited number of novel proteins.

Table 5 compares LNP-Chlo against state-of-the-art multi-label predictors by using in-

dependent tests on the novel dataset. The benchmark dataset was used for training. The

performance of MultiP-SChlo is based on the results of its web-server. As can be seen,

LNP-Chlo outperforms both MultiP-SChlo and EnTrans-Chlo by at least 10% (absolute)

in terms of all performance measures except Recall, for which the former is 3% (absolute)

and 21% (absolute) better than EnTrans-Chlo and MultiP-SChlo, respectively. The results

suggest that LNP-Chlo is more capable of predicting novel proteins than MultiP-SChlo and

EnTrans-Chlo.

Moreover, the speci�c prediction results of LNP-Chlo and EnTrans-Chlo on the novel

dataset are shown in Section S4 of the supplementary materials. Generally speaking, LNP-

Chlo can correctly predict proteins in envelope and thylakoid membrane with higher accura-

cies than those in other locations. This is understandable because in the training benchmark

dataset, these two subchloroplast locations constitute the major part of the whole dataset,

making LNP-Chlo better trained in these two locations. Actually, most machine learning

based predictors (e.g., EnTrans-Chlo) su�er from the insu�cient-data problem. The pre-

diction performance of LNP-Chlo in other locations can be improved when more and more

chloroplast proteins in other locations are available for training.

Conclusion

In this paper, we propose an ensemble LNP based predictor called LNP-Chlo, which can ex-

ploit information from both labelled and unlabelled data for predicting localization of chloro-

plast proteins at the sub-subcellular level. Speci�cally, LNP-Chlo �rst extracts composition-

based sequence information and pro�le-based evolutionary information, which are respec-

tively used to train an LNP-based multi-label classi�er. Subsequently, the scores for these

two LNP classi�ers are combined to make the �nal decisions. Experimental results on a
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stringent benchmark dataset and a novel dataset demonstrate the superiority of LNP-Chlo

over state-of-the-art predictors. The main contributions of this paper are summarized below:

1. The proposed LNP-Chlo outperforms state-of-the-art subchloroplast-localization pre-

dictors.

2. LNP-Chlo leverages information from both labelled and unlabelled proteins.

3. The proposed ensemble LNP performs remarkably better than the LNP based on in-

dividual features as well as the ensemble LNP with other hybrid features.

4. Pro�le-alignment features and SAAC features are complementary with each other for

predicting protein subchloroplast localization.
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