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1. Introduction

High spectral efficiency modulation formats and digital signal processing (DSP) are the cornerstones of current 
optical transceivers for long-haul global fiber-optic communication networks. DSP algorithms allow complete and 
adaptive compensation of linear transmission impairments such as chromatic dispersion (CD), polarization-mode 
dispersion (PMD) and laser phase noise effects [1]. Telecommunication service providers, content providers and 
researchers worldwide are trying desperately to increase transmission capacities of fiber-optic networks (up to 1 
Tbps and beyond per carrier) so as to support emerging data center, cloud computing, 5G wireless, and Internet of 
Things (IoT) applications. Unfortunately, transmission performance of optical networks is still severely limited by 
fiber Kerr nonlinearity despite years of advanced DSP research to address the problem. The state-of-the-art DSP 
algorithms such as digital back-propagation (DBP) can only partially combat fiber nonlinearities as interactions 
between noise, CD, PMD and nonlinearity are extremely hard to analyze [2]. Consequently, fiber nonlinearity is still 
not appropriately compensated and continues to be a fundamental capacity-limiting factor. 

Apart from adopting advanced multi-level modulation formats and high-speed DSP-based coherent receivers, the 
network architectures in fiber-optic communication systems are also undergoing major changes and are increasingly 
becoming more complex, transparent and dynamic in nature. Real-time estimation of various channel impairments 
ubiquitously across the network, also called optical performance monitoring (OPM), is indispensable for reliable 
operation and efficient management of such complex optical networks [3]. OPM is also a key enabling technology 
for elastic optical networks (EONs) which have received considerable attention recently. EONs strongly rely on 
OPM to become aware of the network conditions and then adaptively adjust various transceiver and network 
elements parameters such as modulation formats, data rates, spectrum assignment, forward error correction (FEC) 
codes etc. in order to optimize the transmission performance [4]. Unfortunately, simultaneous and independent 
monitoring of multiple channel impairments using low-cost (and hence low-quality) components is a difficult task 
since the effects of various impairments are often intermixed and nearly physically inseparable [5]. Another critical 
requirement for proper functioning of EONs is the capability to autonomously identify modulation formats of optical 
signals at the receiver as well as in OPM units deployed at the intermediate network nodes since the algorithms 
employed in these devices may be modulation format dependent. 

A drastically new signal processing philosophy may be necessary for efficient mitigation of nonlinear distortions 
as well as for accurate estimation of various critical parameters in optical networks. To this end, machine learning 
techniques have appeared as a new direction of innovation to cope with many emerging challenges in fiber-optic 
communications. Machine learning is a branch of computer science in which computers/machines are trained to 
‘learn’ from the data without being explicitly programmed and act according to the information learnt. Over the last 
decade, machine learning has been applied successfully in a myriad of tasks for e.g. prediction, classification, 
pattern recognition, data mining etc. and has shown tremendous power in application areas such as computer vision, 
speech recognition, bioinformatics, and telecommunications [6]. Machine learning algorithms are well known to 
perform unexpectedly and exceptionally well when the underlying physics and mathematics of the problem are too 
difficult to analyze or impossible to describe explicitly. Recently, we are beginning to see preliminary attempts of 
applying machine learning methods to optical communication systems with quite promising results. Moreover, with 
the advent of deep learning, a machine learning approach based on the concept of hierarchical representation of data, 
the researchers are further motivated to exploit real potential of this emerging field in fiber-optic communications. 

2. Machine learning concepts in optical communications

The following publication F. N. Khan, C. Lu, and A. P. T. Lau, "Machine Learning Methods for Optical Communication Systems," in 
Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS), OSA Technical Digest (online) (Optica Publishing 
Group, 2017), paper SpW2F.3 is available at https://doi.org/10.1364/SPPCOM.2017.SpW2F.3.
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Fig. 1. Some key applications of machine learning in optical communications. 

Figure 1 depicts some important applications of machine learning algorithms in optical networks. A brief discussion 
on these applications is provided below. 
Nonlinearity mitigation: Recently, there have been several researches focusing on the use of machine learning 
techniques for combating nonlinear distortions in fiber-optic networks. These techniques learn the characteristics of 
various nonlinear impairments from the observed data and then synthesize probabilistic models of these impairments 
which can later be employed for either compensating these impairments or to quantify the amount of distortions 
introduced. In [7], stochastic backpropagation has been proposed which is shown to outperform conventional DBP 
in scenarios where nonlinear phase noise (NLPN) is the dominant impairment. Similarly, in [8], mitigation of NLPN 
is demonstrated by creating optimal decision boundaries through the use of M-ary support vector machines (SVMs). 
Other machine learning approaches for tackling fiber nonlinearities include the use of expectation maximization 
(EM) algorithm [9], extreme learning machine (ELM) [10], and higher-order statistical equalizer [11]. Despite the 
performance improvements shown by these algorithms in single-channel environments, multi-channel fiber 
nonlinearity compensation remains to be the most challenging goal in long-haul wavelength-division multiplexed 
(WDM) transmissions. In addition, individual WDM channels can be added or dropped mid-link in a terrestrial 
optical network which further adds a level of complexity for machine learning methods to address. 
OPM: Machine learning algorithms have been applied successfully for cost-effective multi-impairment monitoring 
in optical networks. These include artificial neural networks (ANNs) [12,13], deep neural networks (DNNs) [14], 
SVMs [15], principal component analysis (PCA) [16,17], and kernel-based methods [18]. However, the 
demonstrated works are mostly concerned with dispersion-managed systems only. Machine learning-based OPM 
techniques for dispersion-uncompensated systems employing low-speed/low-bandwidth components are currently 
under investigation. Furthermore, as EON paradigm is becoming a major area of research focus recently, there is 
ample interest in the development of OPM techniques for such heterogeneous optical networks supporting channels 
with multiple data rates, modulation formats and bandwidths. 
Modulation format identification (MFI): Knowledge of the signal’s modulation format in digital coherent receivers 
might be useful for choosing an appropriate carrier recovery module with superior performance as compared to 

                                   
                                                 (a)                                                                                                                            (c) 

Fig. 2. (a) Structure of DNN used. (b) Unique amplitude histograms for three modulation formats. (c) Identification accuracy of MFI technique [23]. 
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blind equalization approaches. Also, the availability of modulation format information in OPM devices (installed at 
the intermediate network nodes) can help determine most suitable optical signal-to-noise ratio (OSNR)/CD/PMD 
monitoring technique for that specific format [3]. Conventional machine learning methods such as K-means 
algorithm [19], ANNs [20,21], PCA [16,17], variational Bayesian expectation maximization (VBEM) [22] etc. have 
been used for MFI task. In [23], a hierarchical machine learning approach employing DNNs in combination with 
signals’ amplitude histograms is demonstrated for accurate MFI in digital coherent receivers as shown in Fig. 2. 
Other applications: Machine learning has also been applied for carrier synchronization [24] and laser linewidth 
effects mitigation [25] using EM algorithm and for laser phase noise characterization via Bayesian filtering [26]. 

We have discussed how the rich body of machine learning techniques can be effectively used as a unique and 
powerful set of signal processing tools in optical communications. However, much more remains to be investigated 
to unleash true potential of machine learning field and to incorporate it into much wider areas of optics research. 
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