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ABSTRACT 

Binary defocusing method was adopted in 3D profilometry as it allows real-time measurement and 

does not need to handle the luminance nonlinearity of a projector. Current patch-based binary fringe 

patterns are periodic and carry strong harmonic distortion as compared with the ideal sinusoidal 

fringe patterns, which affects the measuring performance remarkably. In this paper, we propose a 

framework for generating aperiodic fringe patterns based on optimized patches. The produced fringe 

patterns can significantly lower the noise floor and suppress the harmonic distortion in the 

constructed phase map. Accordingly, the achieved depth measuring performance can be significantly 

improved. Special care is also taken during the optimization of the patches in our framework such 

that the depth measuring performance is robust to fringe period and defocusing extent.  

1. I�TRODUCTIO�

Digital fringe projection technique[1] has been widely used in commercial 3D depth map 

acquisition in the past decades due to its simplicity, reliability and flexibility. When it is used, the 

projected fringe patterns impact the measurement quality directly. Phase-shifting sinusoidal patterns 

[2] are popular patterns used in digital fringe projection as they can provide pixel resolution

measurement with reliable resistance to environmental noise. However, the measurement speed of

the systems developed based on this technique is subject to the frame rates of a projector (typically

<120 Hz). To release the speed bottleneck, square binary fringe patterns (SBM) were introduced by

Su et. al. [3] and Lei et. al. [4] to produce sinusoidal-like fringe patterns with a properly defocused

projector. These binary fringe patterns can be generated by simply toggling the mirrors of a digital

micromirror device (DMD) and hence the frame rate can be increased dramatically. Another

advantage of using binary fringe patterns is that they are not affected by the luminance nonlinearity

of a projector, which eliminates one of the most annoying noise sources in 3D measurement.

However, measurements based on SBM still suffer from their sensitivity to the extent of defocusing

and the noise contributed by the high frequency harmonics of a binary square fringe pattern.

Various solutions have been proposed to reduce the unwanted high frequency harmonics induced 

by a square binary pattern. Early-stage proposals are mainly based on pulse width modulation (PWM) 

[5-11]. Recently, halftoning techniques have been extensively applied to produce high quality binary 

halftone patterns that can approximate the ideal sinusoidal patterns more closely after defocusing[12-

19]. Their superiority over PWM-based solutions is due to the fact that halftoning is a two-

dimensional process that can manipulate the noise more flexibly [20-22].   

The optimization of the halftone patterns can be carried out in either intensity or phase domain. 

The former approach [13-15,17-19] tries to minimize the error between the defocused halftone and a 
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sinusoidal fringe pattern while the latter approach [16] tries to minimize the phase error achieved 

with the defocused halftone patterns. Since the quality of the depth measurement is determined by 

the phase error, the phase-based optimization tends to optimize the measurement quality directly 

while the intensity-based optimization does not. However, the performance of current phase-based 

optimization methods is more sensitive to the extent of defocusing which may not be controlled 

precisely in practical situations [15]. 

Sinusoidal fringe patterns are periodic. To provide flexibility and reduce the optimization effort, 

the optimization processes of recent proposals are generally patch-based [14,17-19]. In general, they 

optimize one single halftone patch of size �y×(T/2) such that its defocused output is close to a patch 

of a sinusoidal fringe pattern, where T is the fringe period (in number of pixels) and �y is an integer 

value. By tiling the patches and shifting the tiling results by ±2T/3 pixels, three full-size halftone 

patterns can be generated to approximate the ideal sinusoidal fringe patterns after being defocused. 

We have three observations on this common strategy as follows: (1) The tiling result must be 

periodic and hence it contains periodic noise with respect to the ideal sinusoidal fringe pattern. 

Consequently, the phase error contains harmonic distortion, which can mix with the phase variation 

contributed by the surface texture and reduce the measurement quality accordingly. (2) The shift 

must be an integer and hence the fringe period is bound to be an integer multiple of 3. (3) The phase 

error at a specific pixel, say (x,y), depends on three patch pixels, namely (x,y) and 

(x,mod(y+T±2T/3,T)), instead of patch pixel (x,y) itself, which introduces more constraint for the 

optimization process.      

Although state-of-the-art researches have already reduced the phase error achieved by defocused 

binary patterns sharply, there still leave room for improvement, especially when fringe patterns of 

large period are applied during the measurement. It is obvious that the quality of a a quantized fringe 

pattern can be improved by increasing its quantization levels. We have introduced multilevel fringe 

patterns in [19] and demonstrated how they can improve the measurement efficiently. However, the 

defocused fringe patterns still suffer from the aforementioned problems due to the patch-based 

optimization process exploited to produce them.  

To get an optimized halftone pattern the performance of which is robust to the amount of 

defocusing, conventional methods optimize halftone patterns under different conditions (e.g. 

different patch sizes [14,17-19] and different defocusing extent [14]) and then, from the optimized 

results, pick the one which is the most robust to defocusing conditions. This pick-the-best-from-the-

available approach is passive to some extent and makes the optimization effort grow in multiples. 

In this paper, we proposed a different optimization framework which generates multiple patches 

for tiling so that the periodicity of phase error can be effectively suppressed. 

The contribution of this paper includes: 

1)  It is able to generate fringe patterns the produced phase error of which is close to aperiodic and 

carries almost no harmonic distortion. 

2)  It is capable to generate multilevel fringe patterns of arbitrary fringe period. 

3)  It releases a constraint for the optimization and theoretically it is able to achieve a better 

optimization result. 

4)  It takes proactive action to find optimized patches that are robust to defocusing extent.   

The remainder of this paper is organized as follows. In Section 2, we briefly review the working 
principle of a three-step phase-shifting algorithm and the binary defocusing technique. In Section 3, 
we presented our idea of generating multi-level fringe patterns and our optimization procedures. 
Performance evaluation will be given in Section 4, and Section 5 presents the experimental results. 
Finally, a conclusion is provided in Section 6. 
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2. REVIEW OF BI�ARY DEFOCUSI�G THREE-STEP PHASE-SHIFTI�G ALGORITHM 

Phase-shifting algorithms have been extensively used in 3D surface measurement because it can 

provide pixel-level accuracy and robustness. A simple three-step phase-shifting algorithm projects 

three sinusoidal fringe patterns, each of which has a phase shift of 2π/3 from each other, onto the 

surface of the object to be measured. Accordingly, three phase-shifted fringe images, denoted as �� 

for k∈{1,2,3}, can be captured with a high speed camera. Their intensity values at pixel ��, �� are 

given as: 

����, �� = 
 + �
������, �� − 2�/3�     (1) 

����, �� = 
 + �
������, ���   (2) 

����, �� = 
 + �
������, �� + 2�/3�   (3) 

where 
 is the average intensity, � denotes the amplitude of intensity modulation, and ���, �� 

symbolizes the pixel-wise phase to be solved. By solving the above three equations, we have: 

���, �� = tan���√3  !�",#�� $�",#�

� %�",#�� !�",#�� $�",#�
�                   (4) 

Notably, the environmental noise can be eliminated by subtraction of different patterns. The solved 

phase from eqn. (4) is wrapped in range [-π, π]. After unwrapping ���, ��, one can obtain the depth 

information of the object.  

A digital-light-processing (DLP) projector projects a gray level image with pulse width 

modulation (PWM)[23] and hence it takes time to project a gray-level pattern. To solve this problem, 

8-bit sinusoidal patterns can be replaced with binary patterns such that the frame rate is only limited 

by the switching rate of the projection. Since switching can be super fast, it makes real-time 3D 

measurement feasible even though we still need to project 3 patterns onto the object being measured 

[24]. The issue is then how we can design a binary pattern that can approximate the original 

sinusoidal pattern well after being defocused under control.     

Let  &� be the ideal binary pattern for approximating �� for k={1,2,3}. In general, &�can be 

obtained by minimizing the error in intensity domain as follows [15]. 

2||||min BHSB k
B

k ⊗−=     for k={1,2,3} (5) 

where H is the blurring function that models the defocusing effect of the projector, B is a binary 

pattern having the same size of ��, ⊗ denotes 2-D convolution, and (. (� symbolizes L2 norm. 

During the optimization process, H is generally modeled as a 2D Gaussian filter [12-19]. Patterns 

&�, &� and &� can also be obtained by looking for three binary patterns that can minimize the L2 

norm of the phase error resulted by replacing �� with * ⊗ &� in eqn. (4)[16]. 

As  &� is binary, optimizing  &� in either intensity or phase domain is a Non-deterministic 

Polynomial-time (NP) hard problem. Thus, optimization is usually realized by iteratively mutating 

pixels of &� along raster scanning paths to find sub-optimal results [12-19]. 

3. PROPOSED FRI�GE PATTER�S A�D THEIR GE�ERATATIO� 

3.1 Octa-level fringe patterns 

A full color image can be separated into three color channels (R, G and B). Since the color 

channels are handled independently by a projector, one can produce three different binary patterns, 

one for each channel, for the projector to project a color fringe image X. The luminance channel of X, 

say L, can be generally determined as 

+ = 0.299&. + 0.587&2 + 0.114&5    (6) 
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where &. , &2 and &5 are, respectively, the binary patterns for channels R, G and B. Let &6��, ��,  
where c∈{R,G,B}, be the intensity value of pixel ��, �� of pattern &6. Since  &
��, ��∈{0,1} for all 

c, there are altogether 2� = 8 possible intensity levels in L. In other words, if we project the color 

fringe image X onto the object and extract the luminance plane of the color image captured by the 

camera, it will be equivalent to projecting an octa-level fringe pattern onto the object directly.  

Note that the actual luminance value associated with a particular color can vary among different 

projectors in practical situations. However, they can be acquired in the projector profile, or measured 

easily though a simple experiment before doing 3D measurements. Eqn. (6) can then be adjusted 

accordingly.  

Since the proposed octa-level fringe patterns are actually produced by manipulating binary 

patterns in individual channels, it enjoys the following advantages: 

1.  Super fast measurement is supported because the frame rate can be as high as in the case when 

binary defocusing technique is used.  

2.  No gamma correction is required because only two extreme intensity levels are used in each 

color channel.  

3.  No color-shifting calibration is needed because there is no restriction on the exact intensity 

values of the 8 luminance levels.  

4.  Higher accuracy can be achieved because multilevel instead of binary fringe patterns are 

projected.  

 

3.2 Objective function for optimization 

Obviously, we need 3 octa-level fringe patterns, say L1, L2 and L3, to approximate sinusoidal 

fringe patterns S1, S2 and S3 respectively with the defocusing method such that the approximation 

error in phase domain is minimized. Besides the minimum error criterion, we would also like to 

achieve the following criteria: (1) the approximation performance is not sensitive to amount of 

defocusing, (2) the octa-level fringe patterns of any desirable sizes can be flexibly and easily 

constructed on site whenever necessary, and (3) the octa-level fringe patterns carry no low frequency 

harmonics and noise.    

To achieve these goals, we propose to optimize two sets of three octa-level patch patterns, each of 

which is constructed with 3 binary patch patterns based on the color to luminance conversion defined 

in eqn. (6), by taking all the aforementioned criteria into account. Once they are obtained, by 

randomly tiling the two sets of patch patterns spatially, one can construct three aperiodic octa-level 

fringe patterns of any desirable size whenever necessary to do 3D shape measurement.  

The success relies on how to optimize the two sets of octa-level patch patterns such that they can 

seamlessly connected to each other. Let  ),( ksP  be the k
th

 octa-level patch pattern of set s∈{0,1}, 

where k∈{1,2,3}. In our approach, for each k, we tile patch patterns 7��,�� and 7��,�� as shown in 

Figure 1 to form an octa-level pattern kP , in which all possible neighboring combinations of 7��,�� 

and 7��,��are included, and then optimize kP  for k∈{1,2,3} together to minimize a cost function. 

Note that the occurrences of connection combinations  7��,��7��,��, 7��,��7��,��, 7��,��7��,�� and  

7��,��7��,��  are identical in kP  and hence there should be no bias to favor a particular connection 

combination after the optimization.   
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Fig.1  Constructing a circular connected octa-level pattern with two octa-level patch patterns for 

optimization. 

 

Let H be a Gaussian low pass filter that models the defocusing effect of a projector. The phase 

map obtained with the defocused octa-level fringe patterns kP  for k∈{1,2,3} is given as 

 ( ) ( )( )
( ) ( ) ( )











⊗−⊗−⊗
⊗−⊗

= −

yxPHyxPHyxPH

yxPHyxPH
yxH

,,,2

,,3
tan),(

312

311ϕ  (7)      

where ( )yxPH k ,⊗  denotes the intensity value of the (x,y)
th

 pixel of kPH⊗ . The approximation error 

in phase domain can hence be defined as  

( )∑ ∑= = −=∆ 1 2
1 21

2

1 /),(),(M
x

M
y H MMyxyx ϕϕϕ  (8) 

where M1×M2 is the size of kP . ∆� is generally referred to as phase root mean square (rms) error and 

it is considered as a good measurement of approximation quality [12-19]. 

Different amount of defocusing should be taken into account during the optimization such that 

the approximation performance can be robust to it. In this paper, we model slight defocusing and 

severe defocusing, respectively, with a 5×5 Gaussian filter and an 11×11 Gaussian filter with their 

standard derivations equal to 1/3 of their sizes. Octa-level patterns kP  for k∈{1,2,3} are optimized in 

parallel to minimize cost function  

115 ϕϕ ∆+∆=J                                 (9) 

where ∆ϕt
 for t={5,11} denotes the ∆ϕ obtained when H is a t×t Gaussian filter used to model a 

specific amount of defocusing as mentioned earlier. 

Recall that kP  is constructed with patch patterns as  shown in Figure 1 and ),( ksP  is actually the 

luminance plane of a color patch whose red, green and blue channels (denoted as ),( ksRB , ),( ksGB  and

),( ksBB  hereafter) are all bi-level patches. Optimizing kP  for k∈{1,2,3} is hence equivalent to solving 

the following optimization problem: 

J

kandsfor

BBB ksBksGksR

}3,2,1{}2,1{

),(),,(),,(

min

∈∈

                             (10) 

 subject to the constraints that kP  is constructed with ),( ksP  for s=1,2 as shown in Figure 1 and that 

),(),(),(),( 114.0587.0299.0 ksBksGksRks BBBP ++=  (11) 

 

 
 Fig. 2 Scheme of multilevel error diffusion 
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3.3 Optimization algorithm 

As it is an NP hard problem, the optimization is realized as follows: 

Let C
(s,k)

  for k∈{1,2,3} and s∈{1,2} be 6 color patches of size �y×�x each, where �x is 

fixed to be the fringe period of the target sinusoidal pattern. C
(s,k)

(x,y) denotes the color of 

pixel (x,y) in patch C
(s,k)

. A color is represented as a vector belonging to set 

Ω={(r,g,b)|r,g,b∈{0,1}}, where r, g  and b are the values of the red, green and blue 

components of the color. P
(s,k)

 is the luminance plane of C
(s,k)

. 

Step 1.  Initialization of P
(s,k)

: Generate sinusoidal fringe patterns S1, S2 and S3 of size 5�y×8�x 

each. Serpentine scan Sk for k∈{1,2,3} separately. For each scanned pixel, quantize its 

intensity value to the nearest luminance value of the colors in Ω and then diffuse the 

quantization error with the diffusion filter suggested in [25] as shown in Figure 2. After the 

last pixel is processed, chop two connected �y×�x segments from the quantization result of 

Sk to form the initial versions of 7��,�� and 7��,�� respectively. 

Step 2. Refining P
(1,k)

: Raster scan patches 7��,�� for all k  in parallel at the same pace and process 

their pixels sequentially according to the scanning order. Assume that the pixel location 

being scanned is (x,y). Let 7��,����, �� be the luminance value of the (x,y)
th

 pixel of 7��,��. 

Since 7��,��  is an octa-level pattern for each k, there are 8
3
=512 possible value 

combinations of 7��,����, �� for k∈{1,2,3}. For each combination, construct a candidate 

patch set Λ={7��,��|k=1,2,3}, in which all other pixels of 7��,�� remain the same as the most 

updated 7��,��, and tile 7��,��∈Λ with the most updated 7��,�� as shown in Figure 1 to form a 

set of fringe patterns 7�, 7� and 7�. Among all 512 candidate sets of {7��,��|k=1,2,3}, the 

one used to construct the fringe patterns  that minimizes J is the newly updated set of 7��,��  

for all k. It continues until all pixels are scanned and processed. 

Step 3.  Refining P
(2,k)

: Do step 2 again but exchange the roles of 7��,�� and 7��,��. 

Step 4. Termination analysis: If the total improvement in steps 2 and 3 is larger than 0.01% in 

terms of J, go back to step 2. Otherwise the most updated 7��,�� and 7��,�� are considered as 

the optimal patches. 

Step 5.  Finalizing Fringe patterns: Randomly tile optimized patches 7��,�� and 7��,�� horizontally to 

form a patch row and then repeat the patch row vertically to form full-size octa-level fringe 

patterns Lk for k∈{1,2,3} under the condition that L1, L2 and L3 share the same random 

tiling pattern. 

Notably, the optimization procedures are different from other patch-based optimization schemes 

(e.g. [14,17-19]) as follows: 

1)  We develop 2 sets instead of 1 set of patches such that one can construct full-size fringe patterns 

with them to eliminate periodic phase error and improve measurement quality. 

2)  We explicitly optimize 3 different patches for each set while the conventional approaches 

optimize only one single patch and then shift it by ±1/3 period to generate the other two patches, 

which removes the constraint that the fringe period must be an integer multiple of 3.  

3) We explicitly take different defocusing conditions into account when constructing the objective 

function for optimization so that the optimized patterns are automatically robust to defocusing 

extent. 
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The optimization is time-consuming, but it is offline. Once the optimal patches 7��,�� and 7��,��  

are determined, fringe patterns of different sizes can be easily generated by randomly tiling the 

patches. 

4. SIMULATIO�S 

Simulations were carried out to evaluate the performance of the proposed octa-level fringe 

patterns. The performance is measured in terms of the phase error achieved with the defocused fringe 

patterns. For comparison, the phase errors achieved with the fringe patterns proposed in [16], [15], 

[14] and [19] were also evaluated. These fringe patterns are, respectively, referred to as opt-p, opt-i, 

bpatch and cpatch hereafter. The defocusing process was modeled as a 5×5 Gaussian filter with its 

standard derivation equal to 5/3 in our simulations unless else specified. Accordingly, fringe patterns 

opt-p, opt-i, cpatch were optimized for this defocusing condition while fringe patterns bpatch and the 

proposed were optimized to handle various defocusing conditions as in their original designs.  

Fig. 3 shows the mean absolute phase errors achieved with different evaluated fringe patterns. 

The period of the target sinusoidal fringe pattern is 60 pixels. The x-axis corresponds to a line that 

cuts across a fringe pattern perpendicularly. The plot covers two fringe periods. The phase errors 

achieved with octa-level fringe patterns (cpatch and the proposed) are reduced significantly as 

compared with those achieved with binary fringe patterns (opt-p, opt-i and bpatch). Unlike bpatch 

and cpatch, the proposed fringe patterns do not introduce periodic phase errors though they are all 

patch-based. 

Fig.4 shows the power spectral densities of the phase errors achieved with different fringe 

patterns. The spectrum associated with opt-p is not included because it is similar to the one 

associated with opt-i. One can see the strong harmonic distortion in the plots of bpatch and cpatch. 

In contrast, the phase errors associated with opt-i and ours are more like white noise. The noise floor 

of ours is much lower than opt-i and bpatch. 

 

 
Fig. 3 Mean absolute phase errors achieved with opt-i, opi-p, bpatch, cpatch and the proposed fringe 

patterns 

 
Fig. 4  Power spectral densities of the phase errors associated with opt-i, bpatch, cpatch and the 

proposed fringe patterns 
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Fig. 5(a) shows the performance achieved with the evaluated fringe patterns in terms of phase 

rms error when their fringe periods vary from 30 to 120 pixels. Note that the fringe periods of other 

evaluated fringe patterns must be an integer multiple of 3 while ours do not have this limitation. One 

can see that the proposed fringe patterns perform well consistently when the fringe period changes. 

As expected, octa-level fringe patterns (cpatch and the proposed) performs better than binary ones 

(opt-i, opi-p, bpatch). The difference between cpatch and the proposed fringe patterns shows the 

advantage of using fringe patterns with less harmonic distortion. 

The same set of fringe patterns evaluated to produce Fig. 5(a) were also evaluated under different 

defocusing conditions to investigate whether their performance is robust to defocusing. In our study, 

different amount of defocusing is achieved by filtering the fringe patterns with  a t×t Gaussian filter 

with its standard derivation equal to t/3 , where t∈{7,9,11}. The simulation results shown in Figs. 

5(b)-(d) show that the performances of the proposed fringe patterns are robust to defocusing. 

 

Fig. 6 shows some simulation data for measuring a three-dimensional surface. In the simulation, 

the fringe period of all fringe patterns is 60 pixels, and a simple phase unwrapping algorithm [26] is 

exploited. The defocusing process is modeled as a 5×5 Gaussian filter with standard derivation equal 

to 5/3. Obviously, the unwrapped phase maps obtained with octa-level fringe patterns are more 

accurate. Note that the gain is at no cost to a certain extent as only a binary pattern is manipulated in 

each color channel. After suppressing the harmonic distortion, the unwrapped phase map obtained 

with our fringe patterns can preserve the parallel ridges much better than the one obtained with 

cpatch.   

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5  Simulated phase rms errors achieved with different fringe patterns of different fringe periods 

when defocusing levels are simulated by Gaussian filter of size (a) 5×5, (b) 7×7, (c) 9×9, and 

(d) 11×11 pixels 
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(a) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

 
(d) 

 
(g) 

 

  

Fig.6  Simulation results for measuring an object. (a) 3D plot of the object; (b) ideal unwrapped 

phase map; and unwrapped phase maps obtained with (c) ours, (d) cpatch, (e) bpatch, (f) opt-i 

and (g) opt-p. 

 

 

5. EXPERIME�TS 

A real 3D shape measurement system was set up to measure the object shown in Fig. 7(a). The 

system consists of a DLP projector (Texas MP723) and a CCD camera (Canon 400D). The size of a 

projected fringe pattern is 1024×768 pixels. The fringe period is 18 pixels. The reference plane is 

placed around 0.5 meters away from the projector.  

Fig. 7(b) shows the depth map (unit in cm)  obtained with the grayscale nine-step phase-shifting 

algorithm[2]. To tackle the gamma nonlinearity of the projector, active gamma correction [27] was 

done to produce the grayscale sinusoidal fringe patterns. The depth map is used as the reference 

depth map for comparison. 

Figs. 7(c), 7(d), 7(e) and 7(f)  show, respectively, the depth maps obtained with bpatch, opt-i, 

cpatch and the proposed aperiodic multilevel fringe patterns. All of them are similar to the reference 

depth map shown in Fig. 7(b). However, their rms depth errors are, respectively, 0.0324 cm, 0.0334 

cm, 0.0252 cm and 0.0175 cm. The proposed fringe patterns perform better than binary patterns. 

Remind that no gamma calibration for the projector is required and real-time realization is feasible 

when the proposed method is used.  

6. CO�CLUSIO�S 

In this paper, we propose a framework for generating aperiodic octa-level fringe patterns for real 

time 3D shape measurement. As compared with conventional patch-based frameworks, it is able to 

produce fringe patterns of arbitrary fringe period and higher gray-level resolution without 

introducing harmonic distortion. The achieved depth measuring performance can be significantly 

improved and is robust to fringe period and defocusing extent. The gain is almost at no cost because 

a measuring system exploiting the proposed octa-level fringe patterns shares the same advantages 

with the systems using binary fringe patterns.  
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7 Experimental results for measuring a jug: (a) object and the depth maps obtained with (b) 

sinusoidal fringe patterns, (c) bpatch, (d) opt-i, (e) cpatch, and (f) our proposed aperiodic fringe 

patterns.  
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