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Abstract

Bacteria have a highly organized internal architecture at the cellular level. Identifying the subcellular localization of bacterial pro-
teins is vital to infer their functions and design antibacterial drugs. Recent decades have witnessed remarkable progress in bacterial
protein subcellular localization by computational approaches. However, existing computational approaches have the following dis-
advantages: (1) the prediction results are hard to interpret; and (2) they ignore multi-location bacterial proteins. To tackle these
problems, this paper proposes an interpretable multi-label predictor, namely Gram-LocEN, for predicting the subcellular localiza-
tion of both single- and multi-location proteins of Gram-positive or Gram negative bacteria. By using a multi-label elastic-net (EN)
classifier, Gram-LocEN is capable of selecting location-specific essential features which play key roles in determining the subcellu-
lar localization. With these essential features, not only where a bacterial protein resides can be decided, but also why it locates there
can be revealed. Experimental results on two stringent benchmark datasets suggest that Gram-LocEN significantly outperforms
existing state-of-the-art multi-label predictors for both Gram-positive and Gram-negative bacteria. For readers’ convenience, the
Gram-LocEN web-server is available at http://bioinfo.eie.polyu.edu.hk/Gram-LocEN/.

Keywords: Interpretable predictor; multi-location proteins; bacterial protein subcellular localization; Gram-positive;
Gram-negative.

1. Introduction

As a domain of prokaryotic microorganisms, bacteria were
among the first life forms on Earth. Bacteria have a di-
versity of shapes, including spirals, rods and spheres. With the
Gram-staining technique, bacteria are often classified as Gram-
positive bacteria and Gram-negative bacteria. The former are
stained violet or dark blue, whereas the latter do not retain
the stain but instead appear pink after a counterstain is ad-
ded. Bacteria can form complex relationships with other or-
ganisms, including parasitism, mutualism and commensalism.
While pathogenic bacteria can cause various kinds of human
diseases, such as tuberculosis, foodborne illness, tetanus, lep-
rosy and typhoid fever [1], over thousand types of bacteria in
the normal human gut flora contribute to gut immunity, vitam-
ins synthesis and sugars-to-lactic acid conversion [2]. There-
fore, studies of bacteria are of paramount significance for anti-
bacterial drug design and basic research.

Despite of the simple cellular structure and the lack of nuclei
and complicated organelles such as mitochondrion or chloro-
plast, bacteria have an intricate subcellular structure in which
proteins are dynamically located in particular sites of a cell
[3]. Knowing where a protein resides within a bacterial cell
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is vitally important to understanding its functions. With a huge
number of protein sequences discovered in the post-genomic
era, it is highly required to develop computational approaches
to assist conventional time-consuming and laborious wet-lab
experiments.

Recent decades have witnessed a remarkable development
in computational prediction of protein subcellular localization
(PSCL). Conventional approaches can be divided into four cat-
egories: (1) homology-based methods [4, 5]; (2) sorting-signals
based methods [6, 7, 8]; (3) amino-acid composition-based
methods [9, 10, 11, 12]; and (4) knowledge-based methods. The
former three only extract information from protein primary se-
quences, whereas the last one extracts information from both
protein sequences and knowledge databases, including Gene
Ontology (GO)1 based methods [13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23], PubMed abstracts based methods [24, 25], or
Swiss-Prot keywords based methods [26, 27]. Particularly, GO-
based methods were found to be superior [13, 28, 29, 30] among
these methods.

However, many of the aforementioned methods fail to pre-
dict multi-location proteins which may simultaneously reside
in, or move between two or more subcellular compartments.
In fact, the multi-location proteins are prevalently found in liv-
ing organisms [31, 32, 33, 34], playing major roles in various
biological activities in multiple cellular compartments. For ex-
ample, proteins involved in fatty acid β-oxidation are found to

1http://www.geneontology.org

Preprint submitted to Chemometrics and Intelligent Laboratory Systems 9th November 2016

https://doi.org/10.1016/j.chemolab.2016.12.014 This is the Pre-Published Version.

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



locate in the peroxisome and mitochondria; antioxidant defense
proteins are known to reside in the peroxisome, cytosol and mi-
tochondria [35]; and the glucose transporter GLUT4 is found
in both the plasma membrane and the intracellular vesicles of
adipocytes [36, 37].

Recently, several predictors [38, 39, 39, 40, 41, 42, 43] have
been proposed to predict gram-positve and gram-negative bac-
terial proteins. Among them, Gpos-PLoc [38] and Gneg-PLoc
[40] can only deal with single-location proteins for Gram-
positive and Gram-negative bacteria, respectively. Besides, to
the best of our knowledge, only five predictors, namely Gneg-
ECC-mPLoc [43], Gpos-mPLoc [39], iLoc-Gpos [44], Gneg-
mPLoc [41] and iLoc-Gneg [42], can predict both single- and
multi-label bacterial (Gram-positive, Gram-negative or both)
proteins. All of these predictors use GO information as the
features and adopt various kinds of multi-label classifiers, such
as multi-label K-nearest neighbor classifiers, or multi-label en-
semble of classifier chains. However, all of these predictors can
only predict where the query proteins are located, but cannot
give biological insights on why they reside there. In fact, biolo-
gists usually want to know not only the predictions results but
also the biological reasons that lead to the prediction results.
The lack of interpretability may limit the applications of these
predictors.

To address the aforementioned problems, this paper proposes
an interpretable multi-label predictor, namely Gram-LocEN for
large-scale predictions of both single- and multi-location pro-
teins in Gram-positive and Gram-negative bacteria. Specific-
ally, given a query protein, its GO feature information is re-
trieved from two newly created compact databases by the pro-
cedures described in [45]. By using the one-vs-rest multi-
label elastic-net (EN) classifier, a small number of GO terms
were selected from more than 8000 GO terms, which form
a dimension-reduced feature space consisting of essential GO
terms responsible for the final predictions. Subsequently, the
dimension-reduced feature vectors are classified by a multi-
label EN classifier. Compared to existing multi-label bacterial
predictors, Gram-LocEN can not only determine where a bac-
terial protein locates within a cell, but also give insights on why
it belongs there. Experimental results based on two stringent
bacterial benchmark datasets demonstrate that Gram-LocEN re-
markably outperforms existing state-of-the-art predictors.

2. Feature Extraction

2.1. Creating Compact Databases

Conventional GO-based approaches rely on two important
databases, namely Swiss-Prot and GOA databases. Typical pro-
cedures are as follows: given a query protein, BLAST [46] is
used to retrieve its top homologous protein from the Swiss-
Prot database, whose accession number (AC) is used as a key
to search against the GOA database for the GO information.
In this case, the homologous GO information can be trans-
ferred to the query protein. However, these methods will be-
come ineffective when there are no GO terms associated with
the AC of the top homolog. In such case, some predictors use

back-up methods that rely on other features, such as pseudo-
amino-acid composition [9] and sorting signals [47]; some pre-
dictors [30, 48] use a successive-search strategy to make sure
that at least one annotated GO term exists. Nonetheless, these
strategies may lead to poor performance and increase computa-
tion and storage complexity.
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Figure 1: Procedures of creating the compact databases (ProSeq and ProSeq-
GO). The circle with the same color represents the same AC. AC: accession
number; GO: gene ontology; GOA: gene ontology annotation database.

To address the aforementioned problems, similar to our
earlier work [45], we created two small yet efficient databases:
ProSeq and ProSeq-GO. The procedures of creating these data-
bases is shown in Fig. 1. As can be seen in Fig. 1, ProSeq
is a sequence database extracted from the Swiss-Prot database
and ProSeq-GO is a GO-term database extracted from the GOA
database.2 Detailed procedures can be found in [45]. By us-
ing ProSeq and ProSeq-GO, we can guarantee that every query
protein can be associated with at least one GO term. Also, the
memory consumption can be significantly reduced.

2.2. Constructing GO Vectors
Before we extract the features, we need to define the GO

space. LetW denotes a set of distinct GO terms corresponding
to a training dataset. W is constructed in two steps: (1) identi-
fying all of the GO terms in the dataset and (2) removing the
repetitive GO terms. Suppose W distinct GO terms are found,
i.e., |W|= W; these GO terms form a GO Euclidean space with
W dimensions.

Then, features relevant to subcellular localization are extrac-
ted in two steps: (1) retrieval of GO terms; and (2) construction
of GO vectors. For the former, the amino acid sequence of a
query protein is presented to BLAST [46] to find its homologs
in the ProSeq database. The homologous ACs are then used as
keys to search against the ProSeq-GO database to obtain a set
of GO terms associated with the query protein. For the latter,

2We have preprocessed the GOA database so that we could obtain a hasht-
able where the protein ACs are the keys and the corresponding sets of GO terms
are the value sets.
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the term-frequency method [48, 30] is adopted to construct the
GO vectors. Specifically, within the W-dim GO space, the GO
vector qi of the i-th protein Qi is defined as:

qi = [ fi,1, . . . , fi, j, . . . , fi,W ]T, (1)

where fi, j is the number of occurrences of the j-th GO term
(term-frequency) in the i-th protein sequence. Detailed inform-
ation about GO vectors can be found in [48, 30].

3. Multi-label Elastic Net Based Classifier

We have demonstrated previously [49] that the multi-label
LASSO [50] based classifier can be used to interpreting and
predicting subcellular localization of human proteins. Due to its
sparseness property, LASSO can produce “parsimonious” solu-
tions through which a set of features that are the most relevant
to the problem (target variables) can be found. LASSO uses an
L1-regularized linear regression model whose constraint forces
the weights of some features to exactly zero [51]. This prop-
erty enables LASSO to automatically select relevant features.
However, LASSO tends to produce very sparse solutions, caus-
ing some important information to be excluded from the feature
list.

To overcome this disadvantage, the elastic net (EN) was pro-
posed in [52]. EN uses a convex combination of L1− and
L2−penalties to yield sparse representations similar to LASSO,
while encouraging correlated features to be selected or deselec-
ted together. Actually, LASSO can be regarded as a special case
of EN. EN has been extensively used in various bioinformat-
ics domains, such as ICU mortality risk detection [53], single
nucleotide polymorphism (SNP) selection [54] and genetic trait
prediction [55].

3.1. Single-Label EN Classifier

Assume that in a two-class single-label problem, we are
given a set of training data {qi, yi}

N
i=1, where qi ∈ R

W and
yi ∈ {−1, 1}. qi is defined in Eq. 1.

Generally speaking, EN is to impose an (L1 + L2)-style regu-
larization to ordinary least squares (OLS):

l(β) =

N∑
i=1

(yi − f (qi))2 =

N∑
i=1

yi − ε0 −

W∑
j=1

β jqi, j


2

, (2)

subject to
W∑
j=1

|β j|≤ t1 and
W∑
j=1

β2
j ≤ t2,

where β = [β1, . . . , β j, . . . , βW ]T is the EN vector to be op-
timized, t1 and t2 are two positive parameters controlling the
shrinkage level applied to β, ε0 is a bias,3 and qi, j is the j-th

3For ease of presentation, we omitted the bias in equations in the sequel.

element of qi. The constrained minimization in Eq. 2 is equi-
valent to the following minimization:

min
β

l(β) = min
β

N∑
i=1

(
yi − β

Tqi

)2
+ ρ

W∑
j=1

|β j|+η

W∑
j=1

β2
j , (3)

where ρ > 0 and η > 0 are the penalty parameters controlling
the ridge regression penalty and LASSO penalty, respectively.
As can be seen, when ρ = 0, Eq. 3 becomes simple ridge regres-
sion; when η = 0, Eq. 3 is exactly the same as LASSO. Besides,
by simple transformation, Eq. 3 can be converted to an equival-
ent LASSO-style problem on augmented data [52]. Because of
this property, Eq. 3 can be solved by the same way as LASSO
by absorbing the L2-norm term into the sum of squared errors.
Detailed descriptions of the solutions can be found in [52].

3.2. Multi-label EN for Feature Selection

In an M-class multi-label problem, the training data set is
written as {qi,Yi}

N
i=1, where qi ∈ R

W and Yi ⊂ {1, 2, . . . ,M} is
a set which may contain one or more labels.

For the multi-label EN, M independent binary one-vs-rest
ENs are trained, one for each class. The labels {Yi}

N
i=1 are

converted to transformed labels [48] yi,m ∈ {−1, 1}, where
i = 1, . . . ,N, and m = 1, . . . ,M. Then, the EN vector for the
m-th class is given by:

β̂m = arg min
βm


N∑

i=1

(
yi,m − β

T
mqi

)2
+ ρm

W∑
j=1

|β j,m|+ηm

W∑
j=1

β2
j,m

 ,
(4)

respectively. In Eq. 4, m = 1, . . . ,M, {yi,m}
N
i=1 ∈ {−1, 1}, ρm and

ηm are the L1 and L2 penalized parameters for the m-th class, re-
spectively. Since L1 regularization tends to force some weights
{β j,m}

W
j=1 for the m-th class to exactly zero, EN can be used for

feature selection. Compared to LASSO, EN yields less parsi-
monious solutions.

The GO vectors obtained from Eq. 1 are used for training
multi-label one-vs-rest EN classifiers. For an M-class prob-
lem (here M is the number of subcellular locations), M inde-
pendent binary EN classifiers are trained, one for each class.
After training, the union of those GO terms with non-zero
weights (β j,m 6= 0) in any one of the M classes constitutes the
selected features. EN can remarkably remove those irrelev-
ant features (or GO terms). Suppose S out of the T weights
are nonzero, which forms a set S, i.e., |S|= S . They are
defined as {βs,m}s∈S,m={1,...,M} and their corresponding GO terms
are called essential GO terms. In fact, in our experiments,
through the proposed multi-label EN classifiers, 162 (or 245)
out of 8110 GO terms were selected for the Gram-positive (or
Gram-negative) bacterial dataset. This means that only around
2% (or 3%) of the 8110 GO terms are essential GO terms for
the Gram-positive (Gram negative) bacterial dataset. In other
words, the weights for about 98% (97%) of the 8110 GO terms
for the Gram-positive (Gram-negative) bacterial dataset are ex-
actly zero.

3



3.3. Multi-label EN for Classification

Besides feature selection, EN can also be used for classific-
ation. Specifically, given the t-th query protein Qt, the feature
vector qt ∈ R

W defined in Eq. 1 is obtained. Then, the ele-
ments of qt with non-zero weights β j,m (Eq. 4) are selected to
form a low-dimensional feature vector represented by qs

t ∈ R
S ,

where S < T is the number of essential GO terms. Similarly,
for an M-class problem, M independent binary EN classifiers
are trained, one for each class. Then, the score of the m-th EN
is:

sm(Qt) = β̃T
mqs

t , (5)

where β̃m for EN is given by

β̃m = arg min
αm


N∑

i=1

(
yi,m − α

T
mqs

i

)2
+ ρm

S∑
j=1

|α j,m|+ηm

S∑
j=1

α j,m
2

 ,
(6)

where αm = [α1,m, . . . , α j,m, . . . , αS ,m]T is the weight vector to
be optimized and qs

i ∈ R
S is the feature vector for the i-th train-

ing protein. Note that β̃m is obtained based only on the training
data.

To predict the subcellular locations of datasets containing
both single-label and multi-label proteins, a decision scheme
for multi-label EN classifiers should be used. Unlike the
single-label problem where each protein has one predicted
label only, a multi-label protein should have more than one
predicted labels. In this paper, we used the decision scheme
described in mGOASVM [48]. In this scheme, the predicted
subcellular location(s) of the i-th query protein are given by:

M∗(Qt) =


⋃M

m=1 {m : sm(Qt) > 0}, where ∃ sm(Qt) > 0 ;

arg maxM
m=1 sm(Qt), otherwise.

(7)
For ease of presentation, we refer to the proposed predictor

as Gram-LocEN.

4. Experiments

4.1. Datasets

Two stringent bacterial benchmark datasets published re-
cently [39, 41] were used to evaluate the performance of Gram-
LocEN. Both datasets were created from Swiss-Prot 55.3. The
Gram-positive dataset [39] contains 519 proteins distributed in
4 subcellular locations, whereas the Gram-negative dataset [41]
has 1392 proteins distributed in 8 subcellular locations. The
sequence identity of both datasets was limited to 25%. Fig. 2
shows the breakdown of the two datasets. The Gram-positive
bacterial dataset comprises 519 actual proteins [48] which cor-
respond to 523 locative proteins [48, 56].4 Among these 519
actual proteins, 515 belong to one location, 4 to two locations

4Locative proteins are defined as follows. If a protein exists in two different
subcellular locations, it will be counted as two locative proteins; if a protein
coexists in three locations, then it will be counted as three locative proteins;
and so forth.

and none to more than two locations. In the Gram-negative
dataset, there are 1392 actual proteins corresponding to 1456
locative proteins. Among the 1392 actual proteins, 1328 belong
to one location, 64 to two locations and none to more than two
locations. As can be seen from Fig. 2(a), the majority (97%)
of the Gram-positive bacterial proteins are located in the cell
membrane, cytoplasm and extracellular, whereas in Fig. 2(b),
78% of the Gram-negative bacterial proteins are located in the
cell inner membrane, cytoplasm and periplasm. This means that
both datasets are very imbalanced.

4.2. Performance Metrics
In multi-label classification scenarios, some sophisticated

performance metrics are used for performance measurement to
better reflect the multi-label capabilities of classifiers. Two typ-
ical measures [57, 48], namely overall locative accuracy (OLA)
and overall actual accuracy (OAA), are often used in multi-label
subcellular localization prediction. Specifically, denote L(Qi)
and M(Qi) as the true label set and the predicted label set for
the i-th protein Qi (i = 1, . . . ,N), respectively. Then, OLA is
given by:

OLA =
1∑N

i=1|L(Qi)|

N∑
i=1

|M(Qi) ∩ L(Qi)|, (8)

and the overall actual accuracy (OAA) is:

OAA =
1
N

N∑
i=1

∆[M(Qi),L(Qi)] (9)

where

∆[M(Qi),L(Qi)] =

{
1 , ifM(Qi) = L(Qi)
0 , otherwise. (10)

In addition, some other measures include Accuracy, Preci-
sion, Recall, F1-score (F1) and Hamming Loss (HL). The defin-
itions of these five measurements for multi-label classification
can be found in [58, 45]. Specifically, Accuracy, Precision, Re-
call and F1 indicate the classification performance. The higher
the measures, the better the prediction performance. Among
them, Accuracy is the most commonly used criteria. F1-score
is the harmonic mean of Precision and Recall, which allows us
to compare the performance of classification systems by taking
the trade-off between Precision and Recall into account. The
Hamming Loss (HL) [59, 60] is different from other metrics.
The lower the HL, the better the prediction performance.

Among all the metrics mentioned above, OAA is the most
stringent and objective. This is because if some (but not all) of
the subcellular locations of a query protein are correctly pre-
dicted, the numerators of the other five measures (including Ac-
curacy, Precision, Recall, F1 and OLA) are non-zero, whereas
the numerator of OAA in Eq. 9 is 0 (thus contributing nothing
to the frequency count). More details about the performance
metrics can be found in the supplementary materials.

Statistically speaking, leave-one-out cross validation
(LOOCV) is considered to be the most rigorous and bias-
free procedure [61] for evaluating classifiers’ performance.
Thus, LOOCV was used to examine the performance of
Gram-LocEN.

4



cell 
membrane 
174 (33%)

cell wall 
18 (3%)

cytoplasm 
208 (40%)

extracellular 
123 (24%)

(a) The Gram-Positive Bacterial Dataset

cell inner 
membrane 
557 (38%)

cell outer 
membrane 
124 (9%)

cytoplasm 
410 (28%)

extracellular 
133 (9%)

fimbrium
32 (2%)

flagellum 
12 (1%)

nucleoid 8 
(1%)

periplasm
180 (12%)

(b) The Gram-Negative Bacterial Dataset

Figure 2: Breakdown of datasets. In (a), the Gram-positive dataset contains 519 actual proteins corresponding to 523 locative proteins, whereas the Gram-negative
dataset in (b) contains 1392 actual proteins corresponding to 1456 locative proteins.

5. Results and Discussions

5.1. Statistical Analysis of the Essential GO Terms
Fig. 3 shows the location-specific categorical breakdown of

the essential GO terms found by Gram-LocEN for (a) the Gram-
positive bacterial dataset and (b) the Gram-negative bacterial
dataset. Fig. 3(a) shows that for each subcellular location, the
essential GO terms come from not only the cellular-component
category, but also from the other two categories. Besides,
we can observe that the number of essential GO terms from
the molecular-function category is significantly larger than that
from the other two categories. For example, for cell mem-
brane, 110 essential GO terms contribute to the final decisions,
of which 62 belong to the molecular-function (MF) category;
the remaining 17 and 31 belong to cellular-component (CC)
and biological-process (BP) categories, respectively; in other
words, more than half of the essential GO terms are from the
MF category. However, as shown in Fig. 3(b), the percentage
of MF GO terms found by Gram-LocEN is much smaller for
the Gram-negative bacterial dataset. For example, for fimbrium,
only around 40% (50 out of 123) belongs to MF, whereas 45%
(55 out of 123) essential GO terms are from BP.

When we group the essential GO terms according to their
GO categories (BP, CC, and MF) without taking the location-
specific information into account, we obtain the pie charts
(labeled with “All”) at the top of Fig. 3(a) and Fig. 3(b). Ob-
viously, the number of essential GO terms across all locations
(upper pie chart) is much smaller than the sum of the location-
specific GO terms (lower pie charts), suggesting that some of
essential GO terms appear in multiple classes and may contrib-
ute to the prediction of more than one location.

5.2. Significance of Location-Specific GO Terms
To quantitatively demonstrate how and to what extent essen-

tial GO terms contribute to the prediction of subcellular loca-
tions, we analyzed the location-specific weights {β̃m}m={1,...,M}
defined in Eq. 6 for the essential GO terms.5 Fig. 4 shows the

5Specific weights {βs,m}s∈S,m={1,...,M} of each subcellular location for both
Gram-positive and Gram-negative bacterial datasets by Gram-LocEN can be
found in the supplementary materials.
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Figure 3: Location-specific categorical breakdown of essential GO terms for (a)
the Gram-positive bacterial dataset and (b) the Gram-negative bacterial data-
set. In (a), the 4 subcellular locations for the Gram-positive bacterial dataset
include: cell membrane (CM), cell wall (CW), cytoplasm (CYT) and extracel-
lular (EXT); In (b), the 8 subcellular locations for the Gram-negative bacterial
dataset include: cell inner membrane (CIM), cell outer membrane (COM), cyto-
plasm (CYT), extracellular (EXT), fimbrium (FIM), flagellum (FLA), nucleoid
(NUC) and periplasm (PER). CC: cellular component; MF: molecular function;
and BP: biological function.
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Figure 4: Categorical significance of essential GO terms for different subcellular locations for the Gram-positive bacterial and Gram-negative bacterial datasets.
(a1)–(a4) are for the 4 subcellular locations of the Gram-positive bacterial dataset, whereas (b1)–(b8) are for the 8 subcellular locations of the Gram-negative bacterial
dataset. The 4 subcellular locations for the Gram-positive bacterial dataset include: cell membrane (CM), cell wall (CW), cytoplasm (CYT) and extracellular (EXT);
the 8 subcellular locations for the Gram-negative bacterial dataset include: cell inner membrane (CIM), cell outer membrane (COM), cytoplasm (CYT), extracellular
(EXT), fimbrium (FIM), flagellum (FLA), nucleoid (NUC) and periplasm (PER).
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boxplots of categorical significance of location-specific essen-
tial GO terms for both the Gram-positive and Gram-negative
bacterial datasets. Specifically, Fig. 4(a1)–(a4) are for the
weights of essential GO terms of the 4 subcellular locations
of the Gram-positive bacterial dataset, whereas Fig. 4(b1)–(b8)
are for those of the 8 subcellular locations of the Gram-negative
bacterial dataset. For simplicity, βs,m is abbreviated as β in the
figures. Note that GO terms with positive weights and neg-
ative weights are both essential GO terms which contribute to
the final prediction decisions. GO terms with positive weights
for a particular subcellular location indicate that the query pro-
tein resides in this subcellular location; the larger the positive
weight of a GO term is, the higher confidence the indication
has. On the contrary, GO terms with negative weights for a par-
ticular subcellular location indicate that the query protein does
not belong to this subcellular location; the smaller the negative
weight of a GO term is, the higher confidence the indication
has.

As shown in Fig. 4(a1), for the cell membrane, we can see
that the median and maximum weights of CC GO terms are
smaller than those of GO terms from the other two categories.
Besides, the essential GO term with the largest weight (> 0.2)
is from the MF category. These results suggest that the essential
GO terms from the CC category may play a less significant role
in indicating the presence of a query protein in cell membrane.
However, the cases are different for the other three subcellular
locations as shown in Fig. 4(a2)–(a4), where the CC GO terms
have a wider range of weights and essential GO terms with the
minimum and the maximum weights are from the CC category.
On the other hand, the weights of the MF and BP GO terms are
within a much smaller range and the absolute values of their
minimum/maximum weights are much smaller than those from
the CC category. This indicates that the CC GO terms con-
tribute more to the final prediction of these three subcellular
locations than those GO terms from the MF and BP categories.

For the Gram-negative bacterial dataset, as shown in
Fig. 4(b1)–(b8), the CC GO terms have a wider range than the
GO terms of the other two categories for all of the 8 subcellular
locations. However, the CC GO terms for the first three subcel-
lular locations (cell inner membrane, cell outer membrane and
cytoplasm) have larger positive weights than those for the other
five subcellular locations. This suggests that the CC GO terms
are indicative of the presence of the query proteins in the first
three subcellular locations with higher confidence whereas for
the other five subcellular locations, most of the CC GO terms
are indicative of being not present in the corresponding subcel-
lular location(s).

5.3. Circular Networks for Essential GO Terms and Subcellu-
lar Locations

To gain a comprehensive impression of the relationships
between the essential GO terms and the subcellular locations
(GO-SCL relationships) for Gram-LocEN, we have drawn two
circular networks linking the essential GO terms and subcellu-
lar locations, namely Fig. 5(a) and Fig. 5(b), to show the GO-
SCL relationships for the Gram-positive and the Gram-negative
bacterial datasets, respectively. In both figures, small green dots

represent the GO terms and the large dots in different colors
represent different subcellular locations. A line connecting an
essential GO term and a subcellular location means that the GO
term contributes to the prediction of the subcellular location.
On the other hand, if there is no connection between an essen-
tial GO term and a subcellular location, then this GO term does
not provide any information about the presence or absence of a
protein in this particular subcellular location.

Starting from the top-left green dot to the bottom-left green
dot in clockwise direction in Fig. 5, the degree of overlapping
among the lines gradually increases, meaning that the number
of subcellular locations to which a GO term contributes
also gradually increases. For example, in Fig. 5(a), the first
10 GO terms (GO:0008982, GO:0008940, GO:0008745,
GO:0008236, GO:0004826, GO:004817, GO:0004497,
GO:0003887, GO:0030420 and GO:0016779) are indicative of
cell membrane only, i.e., suggesting whether a Gram-positive
bacterial protein belongs to cell membrane or not. Similarly,
in Fig. 5(b), the first 13 GO terms can only indicates whether
a Gram-negative bacterial protein is located in cell inner
membrane or not. On the other hand, for the Gram-positive
bacterial proteins, GO:0009002 is indicative for both cell
membrane and cell wall; for the Gram-negative bacterial
proteins, GO:0006099 contributes to the prediction of both
cell inner membrane and cytoplasm. More aggressively, the
last several GO terms, such as GO:0000160, GO:0016020
and GO:0016021, contribute to the prediction of all of the 4
subcellular locations for the Gram-positive bacterial proteins,
whereas for the Gram-negative bacterial proteins, the last
several GO terms such as GO:0016491, GO:0016021 and
GO:0016020 is indicative for all of the 8 subcellular locations.
These essential GO terms are indicators of whether a protein
resides in one or more subcellular location(s) or not.

For readers’ convenience, all the essential GO terms found
by Gram-LocEN for both the Gram-positive and Gram-negative
bacterial proteins are listed in supplementary materials.

5.4. Comparing with State-of-the-Art Predictors
Table 1 and Table 2 compare the performance of Gram-

LocEN against several state-of-the-art multi-label predictors on
the Gram-positive bacterial benchmark dataset and the Gram-
negative bacterial benchmark dataset, respectively, based on
leave-one-out cross-validation (LOOCV). Among them, Gpos-
PLoc [38] and Gneg-PLoc [40] can only predict single-location
proteins, whereas the other predictors can deal with both
single- and multi-location proteins. All of the predictors use
some forms of GO vectors as features. From the classific-
ation perspective, Gpos-PLoc and Gneg-PLoc use an optim-
ized evidence-theoretic based K-nearest neighbors (OET-KNN)
classifier; Gpos-mPLoc [39] and Gneg-mPLoc [41] use a multi-
label version of OET-KNN classifier; iLoc-Gpos [44] and iLoc-
Gneg [42] use an improved multi-label KNN (ML-KNN) clas-
sifier; Gpos-ECC-mPLoc [43] and Gneg-ECC-mPLoc [43] use
an ensemble of SVM classifier chains; and the proposed Gram-
LocEN uses multi-label EN classifier.

As shown in Table 1, in terms of all performance metrics,
Gram-LocEN performs significantly better than the other four
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(a) The Gram-Positive Bacterial Dataset
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(b) The Gram-Negative Bacterial Dataset

Figure 5: A network showing the relationship between the essential GO terms and each subcellular location for (a) the Gram-positive bacterial dataset and (b)
the Gram-negative bacterial dataset. Small green dots represent the GO terms and the large dots in different colors represent the 4 subcellular locations. A line
connecting an essential GO term and a subcellular location denotes that the GO term contributes to the prediction of the subcellular location. On the contrary, if
there is no line connecting an essential GO term with a particular subcellular location, then this GO term does not provide any information about the presence or
absence of a protein in this particular subcellular location. The 4 subcellular locations for the Gram-positive bacterial dataset include: cell membrane (CM), cell
wall (CW), cytoplasm (CYT) and extracellular (EXT); the 8 subcellular locations for the Gram-negative bacterial dataset include: cell inner membrane (CIM), cell
outer membrane (COM), cytoplasm (CYT), extracellular (EXT), fimbrium (FIM), flagellum (FLA), nucleoid (NUC) and periplasm (PER).

Table 1: Comparing Gram-LocEN with state-of-the-art multi-label predictors using the Gram-positive bacterial dataset based on leave-one-out cross-validation
(LOOCV) tests. “–” means the corresponding references do not provide the related metrics.

Label Subcellular Location LOOCV Test Locative Accuracy (LA)
Gpos-PLoc [38] Gpos-mPLoc [39] iLoc-Gpos [44] Gpos-ECC-mPLoc [43] Gram-LocEN

1 Cell membrane – – 167/174= 0.960 168/174 = 0.965 170/174= 0.977
2 Cell wall – – 12/18= 0.667 12/18 = 0.667 17/18= 0.944
3 Cytoplasm – – 198/208= 0.952 200/208= 0.962 202/208= 0.971
4 Extracellular – – 110/123= 0.894 114/123 = 0.927 117/123= 0.951

Overall Locative Accuracy (OLA) 379/523 = 0.725 430/523 = 0.822 487/523 = 0.931 494/523 = 0.944 506/523 = 0.968
Overall Actual Accuracy (OAA) – – 482/519 = 0.929 488/519 = 0.940 500/519 = 0.963

Accuracy – – – – 0.968
Precision – – – – 0.971

Recall – – – – 0.970
F1 – – – – 0.970
HL – – – – 0.016
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predictors for the Gram-positive bacterial dataset. Specifically,
the OLA of Gram-LocEN is more than 24% (absolute), 14%
(absolute), 3% (absolute) and 2% (absolute) better than that of
Gpos-PLoc, Gpos-mPLoc, iLoc-Gpos and Gpos-ECC-mPLoc,
respectively; the OAA of Gram-LocEN is 3% (absolute) than
that of both iLoc-Gpos and Gpos-ECC-mPLoc; the individual
locative accuracies of Gram-LocEN are remarkably higher than
those of iLoc-Gpos and Gpos-ECC-mPLoc in terms of all of
the four subcellular locations. The results suggest that Gram-
LocEN performs better than the state-of-the-art classifiers.

Similar conclusions can be drawn from Table 2, in which
Gram-LocEN also outperforms the other existing state-of-the-
art predictors for the Gram-negative bacterial dataset.

6. Predicting and Interpreting Novel Proteins

To further exemplify how Gram-LocEN predicts and in-
terprets the subcellular localization of proteins, we collected
several novel proteins as test proteins (including both Gram-
positive and Gram-negative bacterial proteins), which were
manually reviewed and were added to Swiss-Prot after Septem-
ber, 2016. The novelty of these proteins can impartially demon-
strate the prediction powers and the interpretability of our pro-
posed predictors. Table 3 shows the prediction results of the 6
novel proteins (3 from the Gram-positive bacteria and 3 from
the Gram-negative bacteria) by Gram-LocEN. As can be seen,
although these proteins are totally unseen to our training data-
set (created before 2009), all of them are correctly predicted.
The essential GO terms that contribute to the prediction de-
cisions are also presented in Table 3. A comparison between
the essential GO terms in Fig. 5 and the last column in Table 3
reveals that not all of the essential GO terms contribute to the
final predictions. For example, for the protein D3JTC1, only
3 out of 6 GO terms are useful for determining the subcellular
localization. Interestingly, even if two proteins are predicted
to the same subcellular location, the essential GO terms for
the two proteins are not necessarily the same. For example,
for C5C7X8 and P0DOB6, although both of them are correctly
predicted to locate in cytoplasm, their essential GO terms are
different.

Fig. 6 demonstrates how researchers can use Gram-LocEN
to interpret the prediction results of query proteins. Fig. 6(a)
shows an screenshot of location-specific scores produced by
Eq. 7 in descending order using the query protein D3JTC1
(Table 3) as input. Also, the columns “Weight” and “Term-
Freq” represent non-zero elements of β̃m in Eq. 6 and qs

t in
Eq. 5, and the column “Feature Score” represents the product of
Weight and Term-Freq. The higher the feature score, the more
contribution is the corresponding GO term to the prediction res-
ult. Since only one score is positive, the subcellular location is
determined by the positive score(s), which corresponds to ex-
tracellular. The scores and weights for the essential GO terms
in extracellular are also shown in Fig. 6(a).6 As can be seen,

6The scores and weights for the essential GO terms for all of the 4 sub-
cellular locations can be seen by inputing the query protein sequence to our

only 3 (See Table 3) essential GO terms contribute to the scores
corresponding to extracellular. Fig. 6(b) shows the case for
a Gram-negative bacterial protein (O07838). Similarly, there
is only one positive score, suggesting that the query protein is
located in a single location, namely cell inner membrane.

7. Conclusions

This paper proposes a multi-label elastic-net based classifier,
namely Gram-LocEN, for predicting and interpreting subcellu-
lar localization of both single- and multi-location proteins of
Gram-positive and Gram-negative bacteria. By using one-vs-
rest EN classifiers, 162 and 245 out of more than 8,000 GO
terms are selected for Gram-positive and Gram-negative bac-
teria, respectively. Based on these selected essential GO terms,
the prediction results can be easily interpreted. The contribu-
tions of this paper can be summarized as follows: (1) Gram-
LocEN performs impressively better than existing state-of-the-
art predcitors for both Gram-positive and Gram-negative bac-
terial proteins; (2) with the essential GO terms, the predictions
made by Gram-LocEN are interpretable; (3) experimental res-
ults are consistent with biological annotations, i.e., the key GO
terms play greater roles in determining subcellular localization
of proteins; and (4) Besides cellular component GO terms, GO
terms from the categories of biological processes and molecular
functions also contribute to the prediction.
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Term-freq: the frequency of occurrence of an essential GO term.
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