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A conjugate gradient-Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper.
It is shown that, compared with recently reported Wirtinger flow (WF) and its modified methods, the
proposed CG-WF algorithm is able to dramatically accelerate the convergence rate, while keeping the
dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of
our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and
coded diffraction pattern (CDP) models. © 2016 Optical Society of America
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1. INTRODUCTION

Phase retrieval (PR), which aims to reconstruct an unknown
signal or image from the phaseless measurements, plays an im-
portant role in science and engineering such as astronomy [1],
crystallography [2], microscopy [3], and optics [4, 5]. For exam-
ple, in optical encryption systems, the PR technique is widely
used to reconstruct phase only masks or original images [6, 7].
Recently, intense attentions have also been paid on an active
field called coherent diffractive imaging (CDI) which combines
X-ray diffraction, oversampling, and phase retrieval technique
[8-10].

The most well-known algorithm for phase retrieval would
be the alternating projection method proposed by Gerchberg
and Saxton (GS) [11], which starts from a random initial guess
and projects alternatively between frequency and time domain
to correct the current estimate. Fienup has proposed a hybrid
input-output method (HIO) [12] based on GS algorithm, and is
widely used in various fields to extract phase information from
diffraction intensity by applying certain constraints. Over the
years, various modified GS algorithms have been proposed and
demonstrated to be effective in phase retrieval such as difference
map [13], guided HIO [14], and oversampling smoothness [15].
The major drawback of GS algorithm and its modified methods
would be that it is very difficult to ensure the convergence theo-
retically due to the use of projections onto nonconvex constraint
set [16, 17].

Recently, more works in PR are focused on theoretically con-
vergent algorithms. A PhaseLift algorithm is proposed to con-
vert the non-convex problem into a convex one by using the lift
technique of semi-definite programming (SDP) [18]. It is shown

that PhaseLift can reconstruct the signal with large probability
when the measurements are random Gaussian. However, this
approach requires a lift of matrix and thus highly increases the
computational cost, which can hardly be applied for high dimen-
sional signals such as 2D image. A gradient decent scheme, i.e.,
Wirtinger flow (WF) algorithm, has been reported recently and is
demonstrated to allow exact recovery of the phase from magni-
tude measurements [19]. The WF algorithm is based on spectral
initialization procedure and Wirtinger derivative. An empirical
choice of stepsize is suggested in the WF method, but this heuris-
tic stepsize selection is not an optimal one. In [20], a modified
Wirtinger flow (MWF) method with optimal stepsize is further
proposed to increase the convergence rate of WF method. In this
paper, we propose a conjugate gradient Wirtinger flow (CG-WEF)
algorithm by using Polak-Ribiere-Polyak (PRP) direction instead
of Wirtinger derivative. Also, the process of calculating optimal
stepsize in [20] is modified to decrease the computational cost at
each iteration. We demonstrate the proposed CG-WF method
by various numerical examples using both Gaussian and coded
diffraction pattern (CDP) models. It is shown that compared
with recently reported Wirtinger flow (WF) and its modified
methods, the proposed CG-WF algorithm is able to dramatically
accelerate the convergence rate, while keeping the dominant
computational cost of each iteration unchanged.

2. THEORETICAL ANALYSIS

The phase retrieval problems are related with quadratic equa-
tions of the form

yi = lal'z]%, i=1,2,..,m, @
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where the superscript H denotes the Hermitian operator. z is a
complex vector to be recovered, a; is the ith measurement vector,
and y; is the ith magnitude squared observation of the linear
measurement of any complex vector z. Usually, the following
least-squared equation is used to solve z:

1 & 2 2
min f(z —mz lafz|? —y;) )

A. Wirtinger flow and modified Wirtinger flow methods

The Wirtinger flow (WF) method starts with an initialization zg
via a spectral method, i.e., zg is calculated as the leading eigen-
vector of the positive semidefinite Hermitian matrix }_; y;a;af by
power iteration method [19, 21]. For k =0, 1, 2, ..., WF method
iteratively updates zy 1 through the following equation:

Zppq =z — apdg (3)

where the search direction dy, is calculated as Wirtinger deriva-
tive of the objective function:

m
= Vf(z) Z (lafzyc|> — ;) (a;a]")zy @)

_1
m !
The stepsize aj is empirically chosen as

o = min(1 — e(’k/k(‘),txmgx) (5)
with kg and a4y around 330 and 0.4, respectively. As is stated
in [20], this heuristic stepsize selection rule is not optimal. A
more appropriate stepsize is chosen in modified Wirtinger flow
(MWF) method based on the fact that the objective function
f(zj — agdy) is a quartic function of ay. The minimum value of
f(zy — agdy) occurs at the point satisfying the following optimal
condition [20]:

df(Zk — akdk)/dock =0 (6)
Eq. (6) is a univariate cubic equation of «j given by:
actxi + bczx% +ceap +d. =0 (7)
m m
where the constant coefficients a. = Z |hi|*, be = -3 Z uilhil?,
Z ri|h; \2+2yl,andd =— Z u;r; with b; = aj Aay, u; =

Re(yl ) and r; = |allzy|? —y; 20] The optimal stepsize is
one of the roots in Eq. (7), and a closed form solution of such
cubic equation can be easily found. There are two cases for the
property of the roots in Eq. (7): the first case has only one real
root, which is just the optimal stepsize. The second case has
three real roots, and the optimal stepsize is chosen as the real
root associated with the minimum objective value.

B. Conjugate gradient-Wirtinger flow method

In this paper, we propose a conjugate gradient-Wirtinger flow
(CG-WF) method for solving phase retrieval problem. In CG-WF,
the calculation of initial value is the same as that in WF method.
In the optimization process, instead of Wirtinger derivative,
Polak-Ribiere-Polyak (PRP) direction [22] is used as the direction
of updating z;, 1 in Eq. (3). Specifically, dy in Eq. (3) is replaced
with —vg, where vy is calculated as follows: If k = 0, vg =
—V£(zp). Otherwise,

Vi = I+ Re[lfl - (I — L))/ |l |[*)vis ®

with || - || be Euclidean norm and [, =
calculated by Eq. (4).

The stepsize in CG-WF method is the same as that in MWF
with replacing d; in Eq. (7) by —vi. Whereas, the process of
calculating the optimal size in CG-WF is slightly different with
that in MWE. As is mentioned previously, when there are three
real roots in Eq. (7), MWEF chooses the real root associated with
the minimum objective value. Practically, the computational cost
associated with calculating objective value three times at each
iteration by Eq. (2) is relatively high for large scale problems.
Thus, in the proposed method, we first estimate the sign of the
second derivative of f(z; — aydy), which is equivalent to decide
the sign of

V f(z), which can be

s(o;) = 3a.02 + 2beo; +co, i=1,2,3. 9)

with o; are the three real roots of Eq. (7). Since the optimal step-
size is corresponding to the case when s(0;) is positive, we only
need to calculate the objective function at most twice. The com-
plete implementation procedures of proposed CG-WF method
are as follows:

e Step 1) Initial step, k = 0; Calculate the initial value zj
based on the power iteration method.

¢ Step 2) Determine the search direction: Calculate Wirtinger
derivative V f(zy) according to Eq. (4). Then determine the
Polak-Ribiere-Polyak (PRP) direction vj according to Eq.
(8), and the search direction d;, = —vy.

* Step 3) Determine the search length «a; according to the
roots in Eq. (7). For the case of three roots in Eq. (7), only
real roots that yield a positive sign of s(o;) in Eq. (9) are
eligible.

. Step 4) Update Zjy1 = Zy — ady

* Step 5) If termination condition such as reaching a maxi-
mum iterations is satisfied, stop iteration. Otherwise, let
k =k +1, and go to step 2).

3. NUMERICAL RESULTS

In this section, we present the simulation results to compare
WE MWF and CG-WF methods using both Gaussian and coded
diffraction pattern (CDP) models [19, 23], where both Gaussian
signals (1D and 2D) and natural images are considered. For the
Gaussian model, a; ~ N(0,1/2) +iN(0,1/2). For CDP models,
we collect the data as the form of [19, 23]:

n—1
Yig =Y x[tld(t)e
t=0

with1l <] < Land 0 < g < n —1. The CDP models generate
the information about the spectrum of x[f] modulated by the
code d;[t]. In this paper, we consider the case where d; are i.i.d.
distributed and a total number of L patterns are collected by
changing the code d;. In this section, we are interested in the
behavior of normalized mean square error (NMSE) as a function
of number of iterations. The NMSE is calculated as:

NMSE = ||z* — z||2/||z| 3 (11)

—i2mqt/n |2 (10)

with || - || denotes Frobenius norm. z is the true signal, and z
is the signal recovered at the kth iterations. It should be noted
that z¥ is multiplied by a constant value to get the rid of effect
of constant phase shift. For a fair comparison, we make all the
initial values and collected data the same among three methods
(including the randomly distributed signals).
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Fig. 1. NMSE of recovering 1D Gaussian signal in (a) Gaussian model, (b) CDP model, (c) Gaussian model with 10% noise, and (d)

CDP model with 10% noise.

A. Recovery of 1D signal

We first consider the recovery of 1D Gaussian signals with the
size of 128 x 1 under both Gaussian and CDP models. For the
CDP models, a number of 6 masks are used. Fig. 1(a) and
Fig. 1(b) present NMSEs of recovering 1D Gaussian signals in
Gaussian model and CDP model, respectively, where NMSEs
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Fig. 2. NMSE of recovering 2D Gaussian signal in CDP
model.

are plotted using a base 10 logarithmic scale. It is noted that,
when NMSE reaches 0.01 for Gaussian model, it takes around
30, 100, and more than 150 iterations for CG-WF, MWF, and
WE algorithms, respectively. Similar results can be obtained for
recovering 1D Gaussian signals in CDP model. It is concluded
that the proposed CG-WF method outperforms the recently
reported WF and MWF methods since it accelerates the conver-
gence speed dramatically. It is worthwhile to discuss the reasons
of the results in Fig. 1. In WF and MWF method, a gradient
decent direction is used, which makes the methods easily take
steps in the same direction as earlier steps and zigzag move
to the solution. Whereas, in CG-WF method, through a linear
combination of the Wirtinger derivative and previous search
direction, we are able to avoid this problem and thus move to
the solution with much fewer steps [24].

In the second part of numerical experiments, recovering
signals from noisy received magnitudes are considered. In
these examples, additive white Gaussian noise (AWGN) n is
added to the received magnitude vector y, and is quantified by
(IIn[l/1lyllg) x 100%. Fig. 1(c) and Fig. 1(d) present NMSEs
of recovering 1D Gaussian signals in Gaussian model and CDP
model with 10% Gaussian noise, respectively. It suggests that
the proposed CG-WF converges much faster to noise level than
WEF and MWF method. Specifically, for Gaussian model, it takes
only about 30 iterations for CG-WF method to converge to the
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Fig. 3. Performance of (a) WF, (b) MWF, and (c) CG-WF on a
natural color image after 30 iterations.

noise level, but it takes around 100 and 250 iterations for MWF
and WF methods, respectively.

B. Recovery of 2D signal

In the third part of numerical experiments, we first consider the
recovering of 2D Gaussian signals with the size of 128 x 256
under the CDP model. Fig. 2 presents the NMSE varying with
iteration number for recovering 2D Gaussian signals. Numerical
results show that CG-WF method converges much faster than
WF and MWF methods.

Numerical experiments have also been done on natural color
image to compare the performance of different methods, as are
done in [16], where a Stanford main quad color image with the
size of 320 x 1280 pixels is considered. L = 21 random patterns
are generated to gather the coded diffraction patterns for each
color band, and the diffraction patterns are then used to recover
the original images with WE, MWEF, and CG-WF methods. Fig.
3(a), Fig. 3(b), and Fig. 3(c) show the recovered images after
30 iteration, and NMSEs for WF, MWF, and CG-WF are 1.2,
0.3, and 0.001, respectively. It is seen that the performance of
recovered image by CG-WF is much better than those of WF and
MWFEF methods, and for both WF and MWF methods, they need
more iterations before obtaining a satisfying recovery of natural
images.

4. CONCLUSIONS

In this paper, we have proposed a CG-WF algorithm for phase
retrieval, which significantly improves the convergence rate com-
pared with recently reported WF and MWF methods. Instead of
using Wirtinger derivative as the search direction, Polak-Ribiere-
Polyak (PRP) direction is used. Numerical experiments have
been done on both Gaussian and CDP models to recover both
1D Gaussian signals and 2D natural images. All the results show

that the proposed phase retrieval method converges much faster
than WF and MWF methods. In addition, the proposed CG-WF
method can also be directly applied to other modified Wirtinger
flow methods such as truncated Wirtinger flow (TWF) [25] to
accelerate the convergence speed.
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