
Abstract. Recent years have witnessed the emerging popularity of regression-based face aligners, 

which directly learn mappings between facial appearance and shape-increment manifolds. In this 

paper, we propose a random-forest based, cascaded regression model for face alignment by using 

a novel locally lightweight feature, namely intimacy definition feature (IDF). This feature is more 

discriminative than the pose-indexed feature, more efficient than the histogram of oriented 

gradients (HOG) feature and the scale-invariant feature transform (SIFT) feature, and more 

compact than the local binary feature (LBF). Experimental validation of our algorithm shows that 

our approach achieves state-of-the-art performance when testing on some challenging datasets. 

Compared with the LBF-based algorithm, our method achieves about twice the speed, 20% 

improvement in terms of alignment accuracy and save an order of magnitude on memory 

requirement. 
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1. INTRODUCTION

Face alignment is a process to locate key-points and facial features (like eyebrows, eye corners, 

and mouth corners, see Fig. 1) from a given face image. It is an active research topic in computer 

vision. Face alignment is often used as an early, but crucial, step to other important tasks for face 

analysis, such as emotion and expression recognition [9, 47], face recognition [10], and face 

hallucination [11, 49, 50]. It is also used in many other applications, such as human-computer 

interaction (HCI), video conferencing, gaming and animation, etc., and has received intense 

interest from the computer-vision research community.  
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Fig. 1 Face alignment fitting results by our proposed IDF method with 68 facial points  

(face images from the Helen dataset [21]). 

 

Face alignment assumes that a face bounding box is given, this can be done by any face-

detection algorithm, such as the Viola-Jones [12] face detector, or by manual annotations. Facial 

landmarks that represent face shape can then be estimated by alignment methods. Traditional 

methods, such as the active shape model (ASM) [3] and active appearance model (AAM) [4], are 

statistical models. ASM represents the shape of an object, while AAM represents both texture and 

shape. Constrained local model (CLM) [24, 25, 27, 28, 31] attempts to model shape prior to 

integration with local texture. It assumes that facial local appearance and global face-shape 

patterns lie in a linear subspace spanned by the bases learned from principal component analysis 

(PCA). In [26], a face-shape fitting process is formulated as a non-linear optimization problem by 

minimizing the misalignment error (i.e. the average distance of all the respective landmarks 

normalized by the inter-pupil distance) between the model instance and a given image. The model 

parameters that control the shape and appearance variations of faces are hence learned from the 

optimization. In [26], an extension to the inverse compositional image-alignment algorithm [29] 

was proposed, which decouples shape information from appearance. This method [29] forms a 

computationally efficient AAM framework. A CLM model is usually composed of three main parts: 

a point distribution model (PDM), patch experts which perform matching for local patches around 

landmarks of interest, and a final fitting process. Different fitting strategies have been used in CLM 

variants. Regularized landmark mean shift (RLMS) [28] is a popular strategy, which estimates the 

rigid and non-rigid parameters by minimizing the misalignment error of landmarks, regularized by 

overly complex or unlikely shapes. In [27], a local neural filed (LNF) patch expert was proposed, 

which learns the similarity and long-distance sparsity constraints to derive relationships between 

neighboring pixels and longer distance pixels. This method achieves state-of-the-art performance, 

compared to traditional CLM-based methods. In [32], the authors proposed an exemplar-based 



graph matching (EGM) framework for face alignment, in which the response mappings of all the 

facial landmarks are fitted by selecting from a pool of training exemplar poses. 

However, these CLM models have limited expressive power to capture all possible complex 

and subtle face features, due to variations in expression, illumination, pose, etc. Furthermore, due 

to the intensive computation for the inverse of the Hessian matrix and the Jacobian matrix [6, 27, 

28, 29, 32], it is very hard to improve the speed of those CLM-like algorithms exponentially. 

Recently, deep-learning-based models have been emerging as hot research topics and 

successfully applied to numerous computer-vision tasks such as generic object detection and 

classification [33, 34, 35], handwritten digit recognition [38], RGB-D object recognition [39], 

image super-resolution [41, 42, 43], visual tracking [44], face alignment [36, 37, 40, 46] and so on. 

In [40], face-landmark detection was improved through multi-task learning by designing a task-

constrained deep model, with task-wise early stopping criterion to increase the learning 

convergence rate. In [37], deep neural network was exploited to learn feature-to-pose mapping 

functions by combining a cascaded framework for regressing pose-indexed features. To solve the 

inefficiency issue that appeared in the above-mentioned methods, an eight-learnable-layer deep 

convolutional neural network (DCNN), was proposed in [46], with rectified linear unit (ReLU) 

rather than the tanh activation function being used. This can achieve a speed five times faster in 

training convergence without decreasing its accuracy. To better initialize facial poses, in [36], a 

global exemplar-based deep auto-encoder network (GEDAN) was proposed to increase the 

capability of handling large pose variations by incorporating several exemplars at the top layer in 

a non-linear fashion. Although these brute-force-style deep-learning approaches have achieved 

promising performance in terms of fitting accuracy, their heavy computation is a big obstacle to 

real-world applications, in particular, when hardware resources are limited or a graphics processing 

unit (GPU) is unavailable, such as mobile devices. 

Therefore, a face-alignment algorithm, which is accurate, real-time, and small in size, is 

indispensable for the real-world industries, such as in the smart mobile phone applications. In the 

past few years, a new family of face-alignment algorithms, which directly learns regressors from 

facial appearance to the shape increments, has been emerging [1, 5, 6, 8, 13]. These regression-

based methods are gaining popularity, due to their excellent performance and high efficiency in 

the face-alignment task. Pose-indexed features [1, 8, 13, 48], in which pose index provides some 

clue to the hierarchical structure of the shape, is an explored paradigm to boost fitting efficiency, 
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due to its simple pixel-intensity comparison. In [6], the handcrafted scale-invariant feature 

transform (SIFT) feature is used for accurate fitting. Inspired by the pioneering works in [1, 5, 6, 

8, 13, 48], in this paper, we propose a novel, discriminative and efficient feature, which can be 

incorporated into regression-based face-alignment frameworks to further boost their performance. 

The remainder of this paper is organized as follows. In Section 2, we will review random-forest 

and random-forest-based cascaded face-alignment approaches. In Section 3, a feature derived from 

the pose-index feature, named intimacy definition feature (IDF), will be presented. Then, our 

proposed IDF-based cascaded random-forest face-alignment algorithm will be described and 

analyzed. Section 4 will evaluate our proposed method and compare it with recent fast local binary 

feature (LBF)-based methods. Section 5 will discuss how to cluster the training samples into 

subspaces for selecting representative shapes to form initial samples. Experiment results and 

parameter settings will be presented in Section 6, and conclusions and future work are given in 

Section 7. 

 

2. RANDOM FORESTS FOR FACE LANDMARK ALIGNMENT 

The landmark localization algorithm is important for face recognition and other related 

applications, which require extraction of local descriptors at some specified feature points or 

landmarks in a face. For face alignment, a number of points or landmarks, e.g., 17 or 68, are 

selected and searched from a face image. An example of the landmarks is shown in Fig. 1, in which 

68 facial points are located around the eyes, nose, lips, and face contours. These feature points, 

which carry the most significant information about a face, are useful for discriminative and 

generative analysis. Based on these feature points, a model can then be learned from numbers of 

landmark-labeled face images, used for facial-shape estimation for unseen face images. 

Recently, there have been roughly three categories of face-alignment approaches followed by 

researchers. They are variants of active shape model (ASM) [3] and active appearance model 

(AAM) [4] with parametric models of appearance, deep-learning-based models [36, 37, 40, 46], 

and regression-based models, which directly learn a mapping from facial pixel appearance to shape 

increment [1, 5, 6, 8, 13].  

The regression-based face-alignment approach tackles the face fitting problem by estimating 

mapping functions between the appearance and the shape-increment manifolds. Random forests 

are employed on regression-based algorithms in order to reduce the regressors’ search complexity. 



In our algorithm, we adopt the cascaded shape-regression paradigm that was first proposed by 

Dollar et al. [8] is an extension of the work of LBF [1]. Different from other methods, this approach 

progressively refines the initial shape in several stages directly from appearance, without learning 

any parametric shape or appearance models. To illustrate our proposed methods clearly, we firstly 

give a brief review of the main principles of random forest and cascaded-shape regression in this 

section. 

 

2.1 Random Forests 

Random forests [14] (RFs) have emerged recently as a very useful machine learning tool in many 

computer-vision tasks, including object detection [16], data clustering [17], image super-resolution 

[18, 19], etc. This method is relatively simple, and has many merits which include: (i) efficiency 

in both training and prediction stages, (ii) inherent unsupervised classification capability for multi-

class problems, (iii) suitability for parallel processing for all the trees, and (iv) good performance 

on high-dimensional data for classification, regression and clustering tasks. 

 

 

Fig. 2 An overview of random-forest-based clustering. 

 

A random forest is an ensemble of 𝒯  binary decision trees 𝒯𝑡(𝑥): 𝑉 → ℝ𝐾 , where 𝑡 =

{1, … , 𝑇} and T is the number of the trees, 𝑉ℝM is the M-dimensional feature space, and ℝK =

[0, 1]𝐾 represents the space of class probability distributions over the label space 𝑌 =  {1, . . . , K}, 

as shown in Fig. 2. 

In the inference stage, each decision tree returns a class probability 𝑝𝑡(𝑦|𝒗) for a given enquiry 

sample 𝒗ℝM, and the final class label 𝑦∗ is then obtained via averaging: 



 

 𝑦∗ = arg max
𝑦

1

𝒯
∑ 𝑝𝑡(𝑦|𝒗)𝒯

𝑡=1 . (1) 

 

A splitting function 𝑠(𝒗; Θ)  is typically parameterized by two values: (i) a feature dimension 

Θ𝑖{1, . . . , M}, and (ii) a threshold Θ𝑡ℝ. The splitting function is defined as follows: 

 

 𝑠(𝒗; Θ) = {
0,    if 𝒗(Θ𝑖) < Θ𝑡,

1, otherwise,
 (2) 

 

where the outcome defines to which child node the sample 𝒗 is routed, and 0 and 1 are the two 

labels belonging to the left and right child nodes respectively. Each node chooses the best splitting 

function Θ∗ out of a randomly sampled set {Θ𝑖} by optimizing the following function: 

 

 𝐼 =
|𝐿|

|𝐿|+|𝑅|
𝐻(𝐿) +

|𝑅|

|𝐿|+|𝑅|
𝐻(𝑅), (3) 

 

where 𝐿  and 𝑅  are the sets of samples that are routed to the left and the right child nodes 

respectively, and |𝑆| represents the number of samples in the set 𝑆. During the training of a random 

forest (RF), each decision tree is provided with a random subset of the training data (i.e. bagging), 

and is trained independently of other trees. Training a decision tree involves recursively splitting 

each node, such that the training data in the newly created child nodes are clustered conforming to 

their class labels. Each tree is grown until a stopping criterion is reached (e.g. the number of 

samples in a node is less than a threshold or the tree depth reaches a maximum value), and the 

class probability distributions are estimated in the leaf-nodes. 𝐻(𝑆) is the local score for a set of 

samples (S is either L or R), which normally is calculated using entropy as in (4), but it can be 

replaced by variance [1] or the Gini index [14]. 

 

 𝐻(𝑆) = − ∑ [𝑝(𝑘|𝑆) ∗ log (𝑝(𝑘|𝑆))]
𝐾

𝑘=1
  (4) 

 

where 𝐾 is the number of classes, and 𝑝(𝑘|𝑆) is the probability for class k, which is estimated from 

the clustered set 𝑆. 



 

2.2 Cascaded Regression-based Model 

Many face alignment methods work under a cascaded framework [1, 5, 6, 8], where an ensemble 

of N regressors operates in a stage-by-stage manner, which are referred to as stage regressors. This 

approach was first explored in [8]. At the inference stage, the input to a regressor (𝑅𝑡) at stage t is 

a tuple (𝐼, 𝑆𝑡−1), where 𝐼 is an image and 𝑆𝑡−1 is the shape estimate from the previous stage (the 

initial shape 𝑆0
 is typically the mean shape of the training set). The regressor extracts features with 

respect to the current shape estimate, and regresses a vector of shape increment as follows: 

 

 𝑆𝑡 = 𝑆𝑡−1 + 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)), (5) 

 

where 𝜙𝑡(𝐼, 𝑆𝑡−1) is referred to the feature extraction function, such as the pose-indexed features, 

i.e. they depend on the current shape estimate. The cascade progressively infers the shape in a 

coarse-to-fine manner  the early regressors handle large variations in shape, while the later ones 

ensure small refinements. After each stage, the shape estimate resembles the true shape closer. 

In our algorithm, the feature extraction function 𝜙𝑡(𝐼, 𝑆𝑡−1) is to generate the local IDF values 

derived from the pose-indexed feature. There is an observation, proved by intensive experimental 

results, that the shape increments have close correlation with the local features of the landmarks 

which define the face shape. Thus, given the features and the target shape increments  {∆𝑆𝑡 = 𝑆 −

𝑆𝑡−1}, we can learn the linear projection matrix 𝑅𝑡. Most cascaded regression models [1, 5, 6, 8, 

13] share a similar workflow, as shown in Fig. 5. 

 

3. INTIMACY DEFINITION FEATURE BASED CASCADED REGRESSION MODEL 

In this section, we will first introduce a novel feature, which is efficient for local pattern 

representation and matching, based on measuring the degree of intimacy (DoI) between two 

members (leaf-nodes) in a binary family tree. 

 

3.1 Efficient Metric on Intimacy Definition Feature 

To explain the features, we use a family member structure to illustrate the binary tree in the 

random-forests scheme, as shown in Fig 3. In this structure, each leaf-node represents a family 



member, and the relationship between two members is measured by their DoI values, which can 

be computed by their respective intimacy definition feature (IDF) values. In Fig. 3, the DoI value 

between David and Daniel should be stronger than that between David and Denis. This is because 

David and Daniel have the same father, while David and Denis do not have the same father but 

they share the same grandfather only. The way to let the computer learn the DoI value, between 

any two members in the same generation or level in the hierarchical family tree, is to digitize the 

DoI values by setting values to nodes and defining a distance metric between any two nodes. 

 

 

Fig. 3 A family tree with the degree of intimacy (DoI) values of family members in the 4th 

generation. 

 

As we can see in the family tree in Fig. 3, two persons, who share more adjacent predecessor, 

should be more intimate than those who share relatively distant predecessor, as described in the 

previous example. However, how can a computer know this intimacy, based on this logic 

comparison operation? In this paper, we propose a simple, yet efficient, method to compare the 

DoI values between two family members in the same generation, particularly in the leaf-nodes. 

We firstly assign two persons in the same generation (same level in the full binary tree) with two 

small values which indicate they are very close. For example, we set 1 and 2 as the respective path 

values to the two offspring nodes (e.g. David is the younger brother so his path_value is 1, while 

Daniel is the older brother so his path_value is 2) in the full binary family tree. Then, we assign a 

relatively larger value, e.g. 10, to the generation value k for each generation level. Each node 

(except the root node) can then be encoded by summing up all the corresponding level weights 

along the path from the root to the node of a member concerned, where a level weight of a node is 

computed by multiplying the value of the node and its corresponding generation value k. We name 

this as the intimacy definition feature (IDF) value of the node (family member), which can be 



calculated as follows: 

 

 𝐼𝐷𝐹 = ∑ 𝑝𝑎𝑡ℎ_𝑣𝑎𝑙𝑢𝑒𝑙 ∗ 𝑘𝑙𝐿

𝑙=1
, (6) 

 

where L is the total number of levels in the family tree. Therefore, the IDF value of David can be 

encoded as: 111 (1×102+1×101+1×100), and Daniel with IDF value: 112 (1×102+1×101+2×100). 

We can also encode Denis as IDF value: 121 (1×102+2×101+1×100). The intimacy distance 

between David and Daniel is 1 (1 = abs(111112)), and the distance between David and Denis is 

10 (10 = abs(111121)). The distances show that the intimacy between David and Daniel should 

be greater than that between David and Denis. Based on the proposed IDF, we can compute the 

DoI value between any two members in a family tree by their IDT values. Through the family tree, 

as constructed in Fig. 3, the family members (nodes) can be replaced by visual features, which are 

then encoded by IDF values. Consequently, the similarity between two family members (nodes) 

can be measured by computing their DoI values. 

In our study, we found that this simple, yet efficient, feature computed by traveling a tree in a 

random forest can achieve promising performance, in terms of both accuracy and speed, as shown 

in Section 4. When using the encoded feature values for linear regression on the leaf-nodes for 

prediction, for more reliable and better performance, the feature is normalized as follows: 

 

 𝑛𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐼𝐷𝐹 =
(𝐼𝐷𝐹−𝐼𝐷𝐹𝑚𝑖𝑛)

(𝐼𝐷𝐹𝑚𝑎𝑥−𝐼𝐷𝐹𝑚𝑖𝑛)
, (7) 

 

where 𝐼𝐷𝐹𝑚𝑖𝑛 and 𝐼𝐷𝐹𝑚𝑎𝑥 are the minimum and maximum IDF values, respectively, in the same 

level under consideration. Using our example, the range of the IDF values in the binary tree is 

[100, 222], i.e., 𝐼𝐷𝐹𝑚𝑖𝑛 = 100 and 𝐼𝐷𝐹𝑚𝑎𝑥= 222. Then, the normalized IDF value for David (111) 

can be calculated as: (111100)/(222100) = 0.090164. 

 

3.2 Derive IDF Feature from Pose-indexed Feature in Random Forest 

A pose-indexed feature is the value of two pixels’ intensity difference. For every landmark point, 

those two pixels used to compute the pose-indexed value are chosen with two randomness in the 

random forest splitting rule, which means that they are randomly sampled from the candidate pixel 



set (e.g. 500) and the threshold is also randomly selected. The positions of the pixel pair and the 

threshold to be used are decided, based on maximizing the information gain obtained when 

splitting all the samples in a node into its left and right nodes. 

As with the LBF [1] feature, this locally learned pose-indexed features is not used, because it 

is not sufficiently discriminative, and does not explicitly encode the path of a sample along a tree. 

Instead, we encode the path of a sample along a tree ended at a leaf-node, using our proposed IDF 

values. As described in Fig. 3, each IDF value, encoded in a leaf-node, is a floating-point number, 

which can achieve high dimensionality reduction, compared to the sparse but high-dimensional 

binary LBF [1] vector features. 

For each stage, the whole feature vector, 𝜙𝑡(𝐼, 𝑆𝑡−1), is a concatenation of a set of independent 

local features, which can be used in the mapping functions: 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)). All the IDF features 

are concatenated to form a global feature mapping function 𝜙𝑡  for learning a global linear 

projection, i.e. the regressor 𝑅𝑡 , in the next step. All the pixel pairs are sampled from the 

neighborhood area which are centered at landmark points. The idea of our pose-indexed feature is 

described in Fig. 4.  

 

 

Fig. 4 The process of IDF-based feature vector extraction 

 

In both the training and inference stages, the neighborhood size for each landmark can be 

reduced step by step, when moving from one cascade to another cascade. Therefore, the cascaded 

shape regression can operate from coarse to fine progressively. 

 

3.3 IDF Feature with Regression-based Model 

Our proposed algorithm extends from the LBF-based method in [1], which improves the 

supervised descent method (SDM) [6, 51] used in linear regression. The insight of SDM is to 



directly learn shape increments from appearance changes, which can be viewed to estimate the 

conditional likelihood function 𝑝(𝑦|𝑥), where 𝑦 and 𝑥 are the shape increment and appearance, 

respectively. Meanwhile, SDM employs a complicated non-linear operator for feature extraction 

(e.g. the HOG feature or SIFT feature [6, 51]), which slows down its speed when handling more 

faces in some challenging scenarios. From a theoretical perspective, SDM can be regarded as an 

extension of the Lucas & Kanade (LK) algorithm [45]. The LK algorithm, which holds an 

assumption that a linear relationship can be estimated from pixel appearance to geometric 

displacement, is worked as a classic optical flow algorithm, for tackling image and object-

alignment problems. 

In [1], random forests were used for training, by minimizing the alignment error for the 

respective landmarks with LBF, rather than the pose-indexed feature in the leaf-nodes. LBF is a 

local feature, which is coded as a sparse binary array, by placing the value ‘1’ for leaf-nodes, where 

samples fall into them eventually while traversing a tree in random forests, and the value ‘0’ 

otherwise. Each landmark is coded individually, and the local features are concatenated to form a 

global feature vector, which is then learned by using ridge regression (i.e., linear regression with 

L2 regularization). In our proposed algorithm, IDF replaces LBF in the cascaded alignment 

framework, as depicted in Fig. 5. The success of LBF in [1] is due to its feature-learning step, 

where features are explicitly learned for the given specific task. Due to the sparse nature of the 

LBF feature vector, the inference phase can be reduced to traversing the forest, and performing 

simple table look-ups and additions. The authors in [1] claimed that the LBF method can achieve 

an impressive speed of approximately 3,000 fps, (with tailored setting on some parameters), in its 

fast version. 

  



 

 

Fig. 5 An overview of the workflow for IDF-based cascaded regression face alignment. 

 

However, LBF has a high dimensionality. Assume that the number of landmarks (or forests) 

for a face is l, the number of trees of a forest is t, and the depth of a tree is d. The dimensionality 

of LBF will then be lt2(d1). For a normal setting of l = 68, t = 10, and d = 7, the feature dimension 

is 68102(71) = 43,520, which is relatively high. Usually, with more and deeper trees, the 

alignment errors will become smaller. However, the high dimensionality of LBF restricts it from 

using deeper trees. Although the feature is sparse, its high dimensionality imposes a high burden 

on the computation of linear regression and the storage requirement. An intuitive way to solve the 

problem is to employ PCA to reduce the dimensionality. However, LBF is a binary, sparse feature, 

and carries labelling information, which makes PCA not applicable. To avoid the computational 

complexity, the LBF-based approach should limit the tree depth to a relatively small value, e.g. 5, 

which means that there are, at most, 16 leaf-nodes in each tree. Consequently, this heavily restricts 

its capability for classification and regression. 

Compared to the pixel-based pose-indexed feature [13], LBF is more discriminative because 

it explicitly encodes the full path, from the root to the leaf-node of each sample. Although LBF is 

discriminative, it is hard to greatly improve its performance because of its high dimensionality 

when using deeper trees. To improve the performance, an intuitive way is to replace LBF with 

another more compact and efficient index feature, which can also encode the path of a sample 

along a tree. However, the performance is very poor, because index values are similar to labels, 

which make the results inclined to be over-fitting. A simple analysis in Fig. 3 can help describe the 

http://www.baidu.com/link?url=SUGUedVo-48pv21Wu2ytzCGdWC0jrFxNQBWqAig3wfz8IlpVsABWfcs1CmbnfHQeAuzPIPP6-zHzIEoazek8SzzhtHv-Xbl0hD7akmK9xYojW4qx0RK3SB5CtevKzf5m
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problem of using an index feature. Suppose that we simply set the indices for David, Daniel, and 

Denis at 1, 2, and 3, respectively, as shown in Fig. 3. With these values, we can find that the DoI 

value between David and Daniel is the same as that between Daniel and Denis. However, from 

Fig. 3, intuitively we know the intimacy between David and Daniel should be closer than between 

Daniel and Denis. 

Our algorithm is based on extracting the IDF value at each facial landmark by rooting down a 

full family tree. With the IDF values, leaf-nodes can be compared based on their DoI values. The 

main contribution of this paper is that the efficient IDF feature is proposed to replace the LBF 

feature. This can greatly reduce the feature dimensionality, while a promising performance can 

still be achieved. Therefore, our algorithm runs much faster and requires less memory than that 

using LBF. For example, for the setting: l = 68, t = 10, and d = 7, the feature dimensionality of IDF 

is 68101 = 680, rather than 43,520 (=681064) for LBF. In other words, the dimensionality is 

reduced by 64 times. 

4. VALIDATION RESULTS AND COMPARISON TO THE LBF FEATURE 

To validate the effectiveness, efficiency, and less memory requirement of our proposed IDF-based 

face-alignment method, we conducted intensity experiments on some public datasets, and 

compared the performances of our method with LBF [1]. 

 

 

Fig. 6 A comparison of the alignment errors of the IDF vs LBF algorithms on the LFPW dataset 

[20], with tree depth = 7, number of training samples = 500, and number of testing samples = 

300. 
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To demonstrate the effectiveness of IDF for face alignment, we set tree depth, maximum 

number of stages, and number of landmarks at 7, and 68, respectively, and measure the respective 

alignment errors using the LBF and the IDF feature. Fig. 6 shows the alignment errors in the 

training and testing stages, based on the LFPW dataset [20], with different numbers of trees. From 

the results, we can see that our proposed IDF algorithm can achieve, on average, an error of around 

0.10, when the number of trees is more than 10, while the minimum error achieved by the LBF-

based algorithm is 0.12. Therefore, our algorithm can achieve an improvement of about 20%, in 

terms of alignment error, when compared to the LBF-based algorithm.  

 

Table-1 Alignment errors at different stages, with different number of trees, based on the LBF 

algorithm. (LFPW dataset [20], number of training samples = 300, number of testing samples = 

100) 

 Number of Trees 

Stage 5 10 20 30 40 50 60 70 80 Avg. 

1 0.1765 0.1714 0.1630 0.1583 0.1583 0.1583 0.1533 0.1495 0.1485 0.1597 

2 0.1411 0.1341 0.1410 0.1315 0.1326 0.1315 0.1397 0.1387 0.1390 0.1352 

3 0.1386 0.1382 0.1390 0.1295 0.1293 0.1292 0.1252 0.1251 0.1276 0.1312 

4 0.1385 0.1381 0.1389 0.1287 0.1287 0.1287 0.1240 0.1226 0.1232 0.1301 

5 0.1384 0.1380 0.1388 0.1285 0.1285 0.1285 0.1235 0.1217 0.1209 0.1296 

6 0.1384 0.1380 0.1388 0.1284 0.1284 0.1284 0.1234 0.1212 0.1198 0.1294 

7 0.1384 0.1380 0.1388 0.1283 0.1283 0.1283 0.1233 0.1209 0.1193 0.1293 

 
 

Table-2 Alignment errors at different stages, with different number of trees, based on the IDF 
algorithm. (LFPW dataset [20], number of training samples = 300, number of testing samples = 

100) 
 

 Number of Trees 

Stage 5 10 20 30 40 50 60 70 80 Avg. 

1 0.1924 0.1915 0.1873 0.1937 0.1886 0.1914 0.1826 0.1810 0.1856 0.1882 

2 0.1636 0.1583 0.1472 0.1462 0.1412 0.1360 0.1312 0.1318 0.1326 0.1431 

3 0.1540 0.1412 0.1294 0.1283 0.1206 0.1266 0.1112 0.1129 0.1136 0.1254 

4 0.1445 0.1309 0.1188 0.1192 0.1119 0.1091 0.1041 0.1059 0.1073 0.1168 

5 0.1380 0.1249 0.1136 0.1142 0.1076 0.1057 0.1010 0.1032 0.1049 0.1126 

6 0.1334 0.1200 0.1114 0.1104 0.1051 0.1039 0.0990 0.1015 0.1034 0.1098 

7 0.1291 0.1180 0.1093 0.1089 0.1036 0.1024 0.0974 0.1005 0.1025 0.1080 



 

Another factor we should consider is the number of trees required to achieve a specific 

alignment error. From Fig. 6, we can see that using about 10 trees in our algorithm can achieve 

even smaller errors than that of LBF using more than 70 trees. As shown in Table 1 and Table 2, 

although LBF performs better in the first 3 stages, IDF can always achieve better performance at 

later stages, since its alignment error converges at a steeper rate than LBF. In other words, IDF 

converges faster in the coarse-to-fine search, because it has a higher discriminative power than 

LBF. 

Fig. 7(a) illustrates the alignment errors of the LBF and IDF methods, with different numbers 

of stages (with 300 samples for training and 100 samples for testing). We can see that the curve 

for IDF is much steeper than that for LBF, which means that the IDF feature is more discriminative 

than LBF and achieves a higher convergence rate at later stages. An explanation for this is that the 

IDF value is represented as a floating-point number, which has a stronger representation than a 

LBF binary value. Fig. 7(b) shows the alignment errors of IDF, with more stages. We can see that 

the alignment error reduces when the number of stages increases. To obtain a balance between 

computational complexity and fitting accuracy, using 7 stages is a compromise. Therefore, in the 

rest of this paper, our algorithm uses 7 stages in all experiments. 

 

 
(a)                               (b) 

Fig. 7 Alignment errors with different numbers of stages: (a) LBF vs IDF, up to 7 stages, and (b) 

IDF only, up to 15 stages (tree depth = 7, LFPW dataset [20], number of training sample = 300, 

number of testing samples =100).  

 

Having analyzed the LBF algorithm, we found that there are two costs: (1) feature cost, and 

(2) regression cost, in the inference stage. The feature extraction and linear regression take up 

about 20% and 80% of the total computation, respectively. Since our proposed IDF is derived from 
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the pose-indexed feature as LBF does, which means IDF, same as LBF, requires the same order of 

computation. As IDF has its dimensionality an order of magnitude lower than that of LBF, the 

computational complexity for linear regression (the LibLinear package is used for both IDF and 

LBF) is greatly reduced, when compared to the LBF-based algorithms. As shown in Fig. 8, the 

number of frames processed per second, based on IDF, is about 2 times faster than LBF, with the 

same setting. 

 

 

Fig. 8 The speed in terms of number of frames per second for the IDF vs LBF algorithms (tree 

depth = 7, Helen dataset [21]). 

 

 

Fig. 9 Memory requirements (MB) of IDF vs LBF with different numbers of trees (tree depth: 7, 

Helen dataset [21]) at the inference stage. 
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When the tree depth increases, the feature dimensionality of LBF increases exponentially, 

while the IDF-based algorithm increases linearly. In addition to computational efficiency, memory 

requirement is also an important issue for real applications, such as mobile devices, where memory 

capacity is limited, which will set a practical barrier to the algorithms with big-size models. 

Because of the lower dimensionality, the IDF scheme employs less weights on the regression step. 

As experimental results show in Fig. 9, obviously our proposed IDF feature can save an order of 

magnitude on memory requirement at the inference stage. 

 

5. TRAINING WITH INITIAL SHAPES FROM SIMILAR SAMPLES SPANNED SUBSPACES 

Sensitivity to the initial shape is a limitation of regression-based models. This means that using a 

mean face as the initial shape will likely result in unsatisfactory performance on unseen profile 

faces. In [5], a conditional regression forest was proposed for face alignment, in which annotated 

samples are used to train a classifier to detect the face pose with discriminative features inside and 

outside the face-bounding boxes. Based on the annotated face poses, a few cascade regression 

forest models are trained, instead of a single model only. In the inference stage, when the face pose 

has been detected using the pose detector, the probability of the head pose is estimated from the 

query face image, and the corresponding trees are selected for later face alignment. In [5], a face 

dataset with different poses and with 10 landmark points was created. The dataset can be labelled 

manually, as it was in [5], so that the learning will be more precise. However, there is an overlooked 

issue that the tedium of labeling pose faces manually will cause mistakes in the labeling results, as 

well as being imprecise. For example, it is ambiguous whether human eyes can discriminate 

between a face with a pose with a 45-degree angle from another face with a 30-degree angle or a 

60-degree angle. 

In [2], a pose detector, which uses two efficient and effective features, namely the histogram 

of oriented gradients (HOG) [22] and local binary patterns (LBP) [23], for searching example face 

images with a similar pose and texture appearance to the query face, is employed for estimating 

initial shapes, based on the k nearest neighbors selected from training samples. The local 

appearance of feature points can be accurately approximated with locality constraints. Therefore, 

with the searched training faces, which have similar poses and textures to a query face, a more 

accurate initial shape model can be constructed in the inference stage. In [2], although k nearest 

http://www.baidu.com/link?url=3EucRRnX1Ojf6CCLhx253UpXynMXXsN2sCsj_RQsNPd4W1lJHF83NuddQ97WjsxZjLkpaj0VM1-edTYZHQ_pz1W5uD6bZM92sOUIBUHlYHe


neighbors to the query face are searched with locality constraints, a relatively narrow subspace 

may be produced, based on the k training samples. What’s more, this method will spoil the 

generalization capability of the learned model, and requires an additional stage for shape 

initialization. 

To further improve the performance, we refine the face initialization by using the k-means 

clustering algorithm. Different from the above-mentioned two methods [2, 5], our algorithm does 

not use any pose detector or search for similar faces from a large database. In our training strategy, 

the initial faces are selected based on the target face to span a sample subspace. As using random 

initial faces in the training phase can improve the generalization capability of the alignment method, 

this means that the trajectory of face alignment through all regression stages, can be learnt from 

training samples. Intuitively, for a face with a large pose, the shape trajectory of a left-pose face 

cannot be learnt from a right-pose face. Therefore, initial shapes should be constraint in the 

subspace spanned by similar shapes, which can help to learn the pose information implicitly.  

In our algorithm, we propose a more efficient scheme for the training process. We consider 68 

landmark points in face images, and we evaluate our algorithm using some standard public datasets, 

such as the LFPW dataset [20] (811 training + 224 testing images taken under unconstrained 

conditions , i.e., in the wild, with large variations in pose, expression, illumination, and with partial 

occlusions) and the Helen dataset [21] (2000 training + 330 testing images, which exhibit a large 

variation in appearance, such as pose, expression, ethnicity, age and gender, as well as the general 

imaging and environmental conditions).

 

Fig. 10 Clustering 7 groups of face images with different poses through the k-means clustering 

algorithm. 

 

We use the k-means algorithm to cluster the training samples into a number of groups, as shown 

in Fig. 10. Then, for each target face image, instead of using blind initial faces from the whole 

training dataset, we choose initial faces only from the cluster with a similar pose to the target face 

at the training stage. Therefore, the model is learned with the pose information from the spanned 
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pose space of selected neighboring examples, which can represent the target faces well. 

Experimental results in Fig. 11 show that the "IDF + Clustering" training scheme can further 

improve the alignment error, when compared to the non-clustering scheme. 

 

 

Fig. 11 Alignment errors of the IDF algorithm, with and without using clustering and PCA (tree 

depth: 7, stages: 5, Helen dataset [21]). 

 

Table-3 Feature dimensions of IDF, with and without using PCA (PCA* means IDF+PCA, 

keeping 97% of variance ). 

 

 Number of Trees 

 10 20 30 40 50 60 70 80 90 100 

IDF 680 1360 2040 2720 3400 4080 4760 5440 6120 6800 

PCA* N/A N/A N/A N/A 768 806 837 852 879 888 

 

 

The higher the feature dimension, the larger the number of linear-regression weights is required 

for the regression model. This results in more computations and memory in the inference stage, 

because all the weights of the models for the cascaded stages are required to be loaded into memory. 

Another advantage of using IDF is that, compared to LBF, it can apply PCA to reduce its feature 

dimensionality, because IDF is represented by floating-point numbers. From Table 3, we can see 

that, when the dimension becomes higher, retaining eigenvectors with 97% of variance can reduce 

the feature dimension by 80%~90%, and a comparable or even better performance can be achieved. 
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Balancing the overhead cost of PCA computation and the relaxation on linear regression after 

dimension reduction, theoretically, an optimal and faster solution can be found when the feature 

dimension of IDF increases. However, it is hard to apply PCA to the LBF binary boolean-like 

values. Therefore, IDF with a higher dimensionality can be adopted to achieve both efficiency and 

accuracy, which is impossible for the LBF feature. Fig. 5 shows the whole workflow of the 

proposed algorithm, and the training and fitting stages are described in Algorithm 1 and 

Algorithm 2, respectively. 

 

Algorithm 1 IDF Training Stage: 

Input: Training data (𝐼𝑖, 𝑆𝑖, 𝑆̅𝑖) for 𝑖=1, …, N, where 𝐼𝑖 represents a face image, 𝑆𝑖 is 

the corresponding shape, 𝑆̅𝑖  is the initial shape for 𝑆𝑖 , and N is the number of 

training samples. 

Output: Regressors:  𝑅 = (𝑅1, … , 𝑅𝑇), T: stage number. 

1: Using k-means to cluster shapes in 𝑆 = {𝑆𝑖}  into K clusters 𝐶 = (𝐶1, … , 𝐶𝐾) , 

randomly sample initial shapes for each target shape from its belonging cluster 𝑆̅𝑖 ∈

𝐶𝑖 as the source shapes 

2: for 𝑡 =1 to T do 

3:     for all 𝑖 ∈ (1 … 𝑁) do  

4:       ∆𝑆𝑡
𝑖 = 𝑆𝑡

𝑖 − 𝑆𝑡̅
𝑖        ⇒ Calculate the shape increment: ∆𝑆𝑡

𝑖 

5:       𝑓𝑡
𝑖 = 𝜙𝑡(𝐼𝑖, 𝑆𝑡−1

𝑖 )      ⇒ IDF features derived from pose-indexed features 

6:     end for 

7:    𝑅𝑡 = arg min𝑅 ∑ |𝑅(𝑓𝑡
𝑖) − ∆𝑆𝑡

𝑖|𝑖       ⇒ train linear regressor 𝑅𝑡 

8:     for all 𝑖 ∈ (1 … 𝑁) do 

9:       𝑆𝑡̅
𝑖 = 𝑆𝑡̅

𝑖 + 𝑅(𝑓𝑡
𝑖)      ⇒ update current shape 

10:    end for 

11: end for 

 

  



 

Algorithm 2 IDF Fitting Stage: 

Input: Testing face image 𝐼 , the initial (mean) shape 𝑆0  obtained from training 

samples, trained regressors: 𝑅 = (𝑅1, … , 𝑅𝑇), T: stage count. 

Output: Estimated pose 𝑆𝑇 

1: for t=1 to T do 

2:  𝑓𝑡 = 𝜙𝑡(𝐼, 𝑆𝑡−1) ⇒ IDF features derived from operation: 𝜙𝑡(𝐼, 𝑆𝑡−1) 

3: ∆𝑆 = 𝑅𝑡(𝜙𝑡(𝐼, 𝑆𝑡−1)) ⇒ apply linear regressor 𝑅𝑡   

4: 𝑆𝑡 = 𝑆𝑡−1 + ∆𝑆 ⇒ update pose 

5: end for 

 

6. EXPERIMENTAL RESULTS AND PARAMETER SETTINGS 

By analyzing the encoding process of IDF, it is found that the IDF value of each node in a random 

forest is affected by two parameters: the difference value d between two brother nodes and the 

magnitude value k for each generation level. However, since the final encoded values of all the 

nodes are relative values, one of these two parameters can be fixed and another one used for fine-

tuning. In our experiments, we fix the value of d to 1, and plot the alignment error curves for 

different values of k. 

 

Fig. 12 Alignment errors for different magnitude values of k. 

 

As shown in Fig. 12, the alignment errors become the lowest, when the magnitude value k is 

in the range from 10 to 30 (for the tree depth set at 7). This means when the magnitude value k is 

within this range, the encoded values keep the discriminative capability. Therefore, for our 
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proposed IDF feature, the optimal setting is as follows: tree depth: 7, maximum number of 

stages: 7, number of trees in a forest: 11, number of initialization faces: 50, number of shape 

clusters: 7, and magnitude value k: 10. The trained model, based on our proposed IDF feature 

and framework, can achieve a comparable alignment quality to state-of-the-art methods [1, 6, 

13, 15]. Meanwhile, our algorithm can run at a speed of more than 1,000 frames per second 

(FPS) on a desktop computer (Intel Core i7 4790 CPU @3.6GHz, 16GB RAM) with C++ code 

after thread parallelization on 8-core CPUs.  

 

 

Fig. 13 Comparison of LBF [1], CLNF[27] and IDF, with performance on accuracy and 

InterOccular distance criterion on 10 facial landmark points in the Helen dataset. 

 

The performance of the IDF method, LBF [1], and CLNF [27], in terms of accuracy and 

the inter-ocular distance criterion, for different facial landmarks (with 10 facial landmark 

points) are shown in Fig. 13. The results demonstrate that our proposed IDF-based method is 

comparable to or, in many cases, outperforms recent state-of-the-art methods. Fig. 13 also 

shows that, based on these two criteria, locating the facial landmarks around the mouth region 

is the most challenging for all the methods. This is because the landmarks around the mouth 

region suffer from significant variations caused by facial-expression changes. For the 

landmarks in the mouth region, our proposed IDF-based method achieves better performances 

than the same regression-based method with LBF and is comparable to the classic CLM-based 

method, and the CLNF [27] method. 
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Fig. 14 Fitting results of different methods, with 68 landmarks, on the Helen dataset: (a) LBF [1], 

(b) One-Milli-Second [15], (c) CLNF[27], and (d) IDF. 

 

Fig. 14 demonstrates some visual results of the IDF-based approach, and shows that IDF can 

locate landmarks accurately on faces with different poses and expressions, with occlusion, as well 

as faces with accessories (glasses). Our proposed method achieves promising performance, 

compared to the state-of-the-art algorithms [1, 15, 27].  

For the linear regression setting, the LibLinear package [7] was used for both LBF and IDF, 

and the linear regression type was set at L2R_L2LOSS_SVR, i.e. L2-regularized L2-loss support 

vector regression (primal), in which the Newton method with trust-region step control is employed 

to achieve faster convergence [30]. 
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7.  CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a novel, simple, but effective, and discriminative feature, and 

explored the random-forest-based cascaded regression model for face alignment. The proposed 

feature, intimacy definition feature (IDF), is constructed with a full binary family tree by 

computing the degree of intimacy (DoI) of any two members in the same tree level. The DoI values 

can encode the path from the root to a leaf-node with a floating-point value. 

The contributions of the paper are threefold. Firstly, compared to local binary feature (LBF), 

which produces a sparse binary vector from each tree, IDF yields a scalar value. IDF helps the 

regression-based model achieve state-of-the-art performance, in terms of alignment accuracy, 

computational efficiency, and memory requirement. Secondly, we have addressed the fact that 

regression-based approaches are sensitive to shape initialization. Rather than using a few blind 

initializations, we choose initial shapes from their similar samples, which form a subspace. With 

this initialization strategy, the cascaded regression approach is capable of learning a more accurate 

alignment trajectory, and further improving the generalization capability of the trained forests. 

Finally, since IDF is a generic random-forest-based feature, which can be applied to other 

computer-vision tasks, the IDF feature will enrich research based on random forests. 

Presently, real-time face alignment is still a challenging task. Although lots of researchers have 

put efforts into this research area and numerous algorithms have been proposed, a highly robust 

and efficient algorithm is still on the way. Limited by the capacity of pixel-based features, the 

derived IDF feature is susceptible to image noise, compared to manually crafted features, e.g. the 

SIFT feature, so further investigation is necessary to tackle these problems for faces with noise, 

large poses and occlusion. 
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