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Abstract: We review applications of machine learning (ML) in various aspects of optical 
communications including optical performance monitoring, fiber nonlinearity compensation, and 
software-defined networking. The future role of ML in optical communications is also discussed. 
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1. Introduction
Machine learning (ML) is being hailed as a new direction of innovation to address many emerging challenges in 
optical communications. ML-based algorithms have shown the capacity to deliver exceptional performance in 
scenarios where the underlying physics and mathematics of the problem are too difficult to be described explicitly 
and the numerical procedures involved require significant computational time/resources [1]. Recent applications of 
ML in different aspects of optical communications such as network planning and performance prediction, 
nonlinearity compensation, data centers optimization, intelligent testing/measurement equipment realization etc., 
demonstrate quite promising results. Moreover, several groundbreaking developments in deep learning technology 
over the past few years further motivate the researchers to explore the true potential of this emerging field in future 
optical networks. In this paper, we discuss some key applications of ML in fiber-optic networks and highlight their 
advantages over conventional approaches.  

2. ML applications in optical communications and networks
Figure 1 shows some significant research works related to the use of ML techniques in fiber-optic communications. 
A brief discussion on these works is given below. 

Fig. 1. Some key applications of machine learning in fiber-optic communications. 

(i) Optical performance monitoring (OPM): The network architectures in optical communication systems are
gradually becoming more complex, dynamic and transparent. Efficient management and reliable operation of such
complex fiber-optic networks necessitate incessant and real-time information about different channel impairments
ubiquitously across the network, also referred to as OPM [2]. OPM is also considered a key enabling technology for
elastic optical networks (EONs). Through OPM, EONs may become aware of actual network conditions and can
adaptively adjust different transceiver and network elements parameters such as data rates, modulation formats,
forward error correction (FEC) codes, spectrum assignment etc. for the optimization of transmission performance
[3]. Unfortunately, conventional OPM techniques have shown limited success in simultaneous and independent
monitoring of multiple transmission impairments since the effects of different impairments are often physically
inseparable [4]. To remove this bottleneck, ML techniques are proposed as an alternative for realizing low-cost
multi-impairment monitoring in optical networks and have already shown tremendous potential. Some important
ML-based techniques for OPM include artificial neural networks (ANNs) [5,6], deep neural networks (DNNs) [7,8],
support vector machine (SVM) [9], principal component analysis (PCA) [10,11], and kernel-based methods [12].
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(ii) Fiber nonlinearity compensation: ML techniques have also been employed for tackling fiber nonlinear 
distortions in optical networks. These techniques learn the properties of different nonlinear impairments from the 
observed data and then construct probabilistic models of these impairments which can subsequently be utilized for 
either quantifying the amount of distortions introduced or for the actual mitigation of these impairments. In [13], we 
proposed the use of an extreme learning machine (ELM) for the compensation of fiber nonlinearity in coherent 
optical communication systems. This technique shows comparable performance to conventional digital back-
propagation (DBP) method but requires much lower computational complexity. Similarly, Jiang et al. [14] proposed 
stochastic back-propagation (SBP) which outperforms DBP in situations where nonlinear phase noise (NLPN) is the 
dominant impairment. Other noticeable ML-based approaches for mitigating fiber nonlinearities include the use of 
expectation maximization (EM) algorithm [15], M-ary SVMs [16], and higher-order statistical equalizer [17].  
(iii) Network failure prediction: Traditional optical network protection algorithms protect a network in a passive 
manner i.e. they are unable to forecast the risks and tend to reduce the damages only after a failure occurs. This 
approach may result in loss of immense amount of data during network recovery process once a failure happens. 
Therefore, reliable operation of an optical network demands an early warning and proactive protection mechanism 
incorporated into the network. Recently, a few ML-based algorithms have been developed for advance failure 
prediction in networks. Wang et al. [18] used a combination of double exponential smoothing (DES) and SVM for 
predicting network equipment failure. Their approach constantly monitors various physical parameters (e.g. power 
consumption, module internal temperature etc.) of network equipments and then employs DES algorithm to forecast 
future values of these parameters in the short-term. Next, an SVM-based classifier is used to learn the relationship 
between forecasted states of various equipments and the occurrence of failure events. This method is shown to 
predict equipment/network failures with an average accuracy of 95%. Another interesting work in this context is 
presented in [19] whereby proactive detection of fiber damages is performed by tracking the state-of-polarization 
speed in a coherent receiver. This approach uses a naive Bayes classifier to successfully recognize the nature of 
mechanical stresses applied on an optical fiber and can accurately predict fiber breaks before they actually occur. 
(iv) Software-defined networking (SDN): ML algorithms are also employed for enabling various functionalities in 
SDNs. Morales et al. [20] used big data analytics in conjunction with ANNs for robust and adaptive network traffic 
modeling. Based on predicted traffic volume and direction, the virtual network topology (VNT) is then adaptively 
reconfigured for ensuring required grade of service. In comparison with static VNT design approaches, this method 
decreases the required number of transponders to be installed at the routers by 842%, thus reducing energy 
consumption and costs. Similarly, Alvizu et al. [21] used ML to predict tidal traffic variations in a software-defined 
mobile metro-core network (SD-MCN). In their work, ANNs are used to forecast traffic at different spatial locations 
in an optical network and the predicted traffic demands are then exploited to optimize online routing and wavelength  

 
(a) 

                      
                                                                                (b)                                                                                                           (c)        
Fig. 2. (a) Field trial demonstration of ML-assisted optical network planning framework in SDNs. (b) ANN model with link/signal parameters as 
inputs and estimated OSNRs as outputs. (c) True versus estimated OSNRs using the ANN model. 
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assignments using matheuristics. Due to load-adaptive network operation and dynamic optical routing performed in 
this approach, energy savings of ~31% are observed as compared to traditional static methods used in MCNs. 

In [22], we demonstrated a ML-assisted optical network planning framework in SDNs as shown in Fig. 2 (a). In 
this work, network configuration as well as real-time information about different link/signal parameters is stored in a 
network-scale monitoring database. Next, an ANN-based model is trained using this information to learn the 
relationship between various link/signal parameters and the corresponding known OSNR values for those links, as 
depicted in Fig. 2 (b). After training, the ANN-based model is able to predict the performance (in terms of OSNR) of 
various unestablished paths in the network, as shown in Fig. 2 (c), for optimum network planning. We demonstrated 
that ML-based performance prediction mechanism can be used to adaptively adjust the spectral efficiency and 
maximize the SDN capacity by employing a probabilistic-shaping (PS) based bandwidth-variable transmitter (BVT). 

3. Future role of ML in optical communications 
As discussed above, ML algorithms can help solve several diverse problems in optical communication systems. 
However, it should be noted that many of these issues can be appropriately addressed using conventional DSP-based 
approaches. Therefore, an important question which needs to be answered is that is there an absolute need for ML-
based tools in current/future optical networks? We believe that there are indeed certain scenarios in existing fiber-
optic networks in general and future SDNs in particular whereby the role of ML seems mandatory. These cases may 
include: (i) Systems which exhibit complex dynamic behaviors and whereby analytical models are either hard to 
derive or the numerical solutions available require very high computational complexity. (ii) As optical networks 
grow bigger, faster and software-defined, the cross-layer optimization in these networks demands big data analytics, 
thereby making conventional signal processing tools inadequate for such tasks. ML can play a decisive role in such 
scenarios since it can inherently learn and uncover hidden patterns and unknown correlations in big data which can 
be extremely beneficial in solving complex network optimization problems. 
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