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Abstract

In this paper, the performance of metro networks is studied from a network science perspective. We review the
structural efficiency of metro networks on the basis of a passenger’s intuitive routing strategy that optimizes the
number of transfers and the distance travelled. A new node centrality measure, called node occupying probability,
is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed
under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are
compared in terms of the node occupying probability and a few other performance parameters. Simulation results
show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the
most robust under random attack and target attack, respectively.
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1. Introduction

Rapid transit systems, often called metro or subway systems, are transportation systems carrying the largest
volume of commuters in major cities, and their reliability, efficiency, safety, level of comfort, convenience and
accessibility are often perceived by travellers and local commuters as indicators of the quality of public transportation
of the cities [1]. Major cities, due to increasing traffic demands and ever-extending city coverage, are continuously5

expanding their metro networks, resulting in complex subway systems that possess high station densities and
intricate inter-station couplings [2]. Design and scheduling of metro systems to optimize performance have become
important considerations in the development of public transportation systems. Moreover, the study of networks,
under the notion of complex networks, has recently become popular due to the intriguing discovery of a number
of universal properties in various physical and man-made networks [3, 4] as well as promising applications that10

have been developed in various practical fields such as communications, power systems, finance, disease control,
etc. [5, 6, 7, 8, 9, 10]. Results from complex networks research are highly relevant to the study of transportation
systems, especially in the provision of appropriate analytical tools for characterizing the structure of metro systems
which are practical forms of networks and for understanding the operations of a complex system such as metro
networks [11, 12]. Furthermore, the huge investment in this transportation infrastructure and the impact to the15

public certainly justify a more thorough investigation of the factors affecting performance, thus allowing a more
informed planning and design for future development.

The cross-disciplinary study of subway systems from a perspective of complex networks is still relatively rare. The
earliest work reported by Latora and Marchiori [13] showed that the Boston subway network exhibited a small-world
property and introduced the concept of network efficiency to give useful insights into the general characteristics20

of real transportation networks. In the work of Derrible and Kennedy [14], most metros were found to exhibit
scale-free and small-world structure. Also Angeloudis and Fisk [2] studied 20 subway networks using a ‘toy’ model
and showed that these networks, with high connectivity and low maximum vertex degrees, provide robustness to
random attacks. In the work of Lee et al. [15], the statistical properties of the Metropolitan Seoul subway network
were analyzed, taking the passenger flow as the weight of the edge and arriving at a power-law weight distribution.25
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Furthermore, Yang et al. [5] combined node degree and betweenness to assess the node importance, and showed
that a scale-free transit network exhibited a relatively high fault tolerance to random failure but a relatively low
degree of connection reliability against malicious attack. Previous works mainly apply network theory to metro
systems without considering their inherent characteristics to evaluate the network topological performance. Thus,
some results may not be consistent with practice. Metro networks have properties that distinguish them from other30

networks. For instance, metro networks are composed of one-dimensional lines of stations (nodes) and transfer
points where different lines overlap to facilitate switching between lines.

Of practical relevance in the study of metro systems are transportation efficiency and fault tolerance. Trans-
portation efficiency is a parameter determined by the system’s inherent structural property that allows passengers
to move from one station to another with minimum effort. Fault tolerance of a metro system is an indicator of the35

ability of the system to maintain its essential function when some parts of the system fail to operate normally due
to component failures or intentional malicious attacks.

Network efficiency, denoted by E, was introduced by Latora [13] for evaluating the topological transportation
efficiency of a metro system. In Latora’s definition, E is simply inversely proportional to the sum of all shortest
paths (SP). This definition is, however, not fully consistent with the subway operation, where passengers do not40

necessarily choose an SP if it involves an extra number of transfers. Also, segments of some lines overlap, affecting
the computation of transportation efficiency. Moreover, there has been considerable amount of prior study in
evaluating the robustness or fault tolerance of a complex network [14, 16, 17, 18, 19, 20]. The node centrality has
been evaluated by using the notation of degree centrality, betweenness centrality, closeness centrality, eigenvector
centrality, and so on. In general, each method can reveal a particular aspect of node centrality and may be suitable45

for one application [21]. In assessing the robustness of a metro system suffering from random failure and malicious
attack, some nodes are removed either randomly or based on node centrality. When considering the station centrality
of the whole system, moreover, the traffic properties must be taken into consideration in order to describe station
centrality more precisely. The effects of variations of some parameters, such as average degree, average shortest
path and efficiency, on the network performance are studied.50

In this paper, we assume a more realistic passenger’s routing strategy for establishing the possible routes taken
by passengers from one station to another. Based on this routing strategy, we re-define network efficiency taking
overlapping stations into consideration. We also propose a centrality measure, called node occupying probability
(NOP), for evaluating realistically the level of utilization of stations. Then, the network robustness is studied by
detailed simulations. Two indices, namely disabled route ratio (DRR) and cost adjustment (CA), are defined for55

assessing the influence of failed nodes on traffic performance. Six metro networks are studied. Simulation results
show that the New York network has better topological efficiency, the Tokyo and the Hong Kong systems are the
most robust under random failure and target attack, respectively.

The remainder of this paper is organized as follows. In the next section, based on a simple yet realistic passenger’s
routing strategy, called passenger intuitive logic (PIL), network efficiency is re-defined. In Section 3, the robustness60

of metro network is studied. In Section 4, the metro systems in a few major cities are analyzed. Finally, we
summarize our main findings in Section 5.

2. Topological efficiency of metro systems

2.1. Topological properties

A complex network with N nodes can be represented as a graph G = (V,E), where V = {v1, v2, ..., vN} denotes65

the set of nodes, and E = {e1, e2, ..., ek} denotes the set of links. A graph G can be fully described by an adjacency
matrix A, which is an N ×N matrix whose entry aij(i, j = 1, ..., N) equals to 1 if there exists a link between nodes
i and j, and zero otherwise. In this paper, a node is a subway station. If two stations are directly connected by a
track, they are connected by a link.

2.2. Passenger’s routing algorithm70

The route taken by a passenger moving from one station to another affects the analysis of network performance.
In particular, the topological efficiency of the network is dependent upon the choice of routes by passengers. In
deriving a realistic passenger’s routing strategy, we make the following assumptions:

Assumption 1: Passengers do not have full knowledge of the metro system. They do not know the exact time
taken to travel from a starting point to the destination including the time for necessary transfers. In other words,75

a passenger determines his route according to what he perceives as the “best” route.
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Assumption 2: Passengers are cost-minimizing decision makers. They will choose the routes that they perceive
as incurring the minimum cost.

Assumption 3: The impact of in-vehicle congestion is negligible, i.e., trains are not supposed to stop in the
middle of their journey between stations.80

In network transportation, a number of routing algorithms have been studied, such as the shortest path algo-
rithm, the minimized degree algorithm, the traffic awareness algorithm [22], the efficient routing algorithm [23], the
local routing algorithm [24], the next nearest neighbor strategy [25], the hybrid routing algorithm [26], and the local
routing strategy [27]. These routing algorithms are mainly applied in communication networks, in which routes are85

decided by the system manager aiming to reduce congestion and improve the data transmission efficiency [28]. In
road traffic, however, the choice of the route is the core part of traffic assignment [29]. Optimal design of any given
system assumes the adoption of one routing strategy by passengers which defines the way a route is chosen between
an origin-destination (OD) pair under a specific criterion, such as the C-Logit [30], path size logit [31], generalized
nested logit [32], and cross nested logit [33]. All these strategies assume that the “perceived” travel cost of a route90

Cm
ij for a passenger is expressed as a random variable consisting of a deterministic component cmij and an additive

random error term εmij . Here, cmij is the travel time including in-vehicle time and transfer overhead, and εmij is the
perception error. The probability of a given path to be chosen can be represented as the probability that Cm

ij is
lower than all other routes’ perceived cost, i.e.,

pnij = P (Cn
ij ≤ Cm

ij ,m 6= n) (1)

Most existing routing algorithms are used mainly for road traffic analysis, and are primarily focused on drivers’95

route choice and are not fully consistent with rail traffic [34]. In reality, passengers do not get perfect knowledge
of in-vehicle time and transfer overhead, and the information passengers can obtain directly from the map is the
number of stations they need to travel and the number of times they need to switch from one line to another.
Passengers have varying levels of perception of the route length (station number) and transfer overhead. Further-
more, subway networks have a special structure and operational mode. First, a subway network consists primarily100

of one-dimensional lines along which no traffic congestion is expected. Also, routing is performed in a distributive
manner, i.e., passengers choose their own routes.

2.3. Passengers’ intuitive routing

In our analysis, we use a simple and yet realistic routing algorithm, called passenger intuitive logic (PIL).
Passengers’ intuitions include minimizing the number of stations they need to travel through as well as the amount105

of transfer overhead. Thus, passengers would intuitively take a combined shortest path (SP) and minimum transfer
path (MTP) approach. Here, SP corresponds to a minimum number of stations and hence minimum in-train time,
but it may incur extra transfer overhead. On the other hand, MTP corresponds to the route that has the least
number of transfer times, but it may not guarantee the shortest in-train time. Thus, a routing strategy based on
passengers’ intuition (PIL) can be conceived and represented by the following steps:110

Step 1: Obtain SP sk1
ij {k1 = 1, 2, · · · ,m1} and MTP series mk2

ij {k2 = 1, 2, · · · ,m2} between stations i and j (the
OD pair), where m1 and m2 are the number of SP and MTP connecting the OD pair, respectively.

Step 2: Let Ls denote the length of SP and Lm denote the length of MTP. Thus, ε = Lm − Ls is the length
difference between the two routes. Also, let Cs denote the minimum transfer count of SP, and Cm denote the
transfer count of MTP. Then, γ = Cs − Cm is the transfer count difference. Here, two assumptions are made. (1)115

When ε ≥ λ, passengers will not take MTP into consideration, where λ is the route length divergence threshold.
(2) When γ ≥ ξ, passengers will not take SP into consideration, where ξ is the route transfer count divergence
threshold. In this paper, λ = 7 and ξ = 3. Intuitively, more passengers prefer the path with fewer transfer counts.
Thus, the choice of the type of routing path can be determined by the following empirical probabilities:

PMTP =

(
1− ε2

λ2

) 1
2

(
1− (γ − ξ)2

ξ2

)
where ε ∈ [0, λ], γ ∈ [0, ξ]; and PSP = 1− PMTP (2)

where PMTP is the probability of taking a minimum transfer path, and PSP is the probability of taking a shortest120

path. We can see from this empirical equation that PMTP increases with the increase of γ and decrease of ε, as
illustrated in Fig. 1. If SP is chosen, go to step 3 for determining the specific path. Otherwise, go to step 4.
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Figure 1: Intuitive routing decision probability PMTP (probability of choosing the route with a minimum transfer count) versus transfer
count difference γ and path length difference ε, with route transfer count divergence threshold ξ = 3 and route length divergence
threshold λ = 7.

Step 3: Choose one route from sk1
ij with the following probability:

f(xi) =

{
1

nmin
where Rxi

= nmin

0 otherwise
(3)

where Rxi
denotes the number of transfer times of path xi and nmin denotes the number of paths with minimum

transfer time.125

Step 4: Choose one route randomly from mk2
ij .

2.4. Metro topological efficiency

Efficiency E, introduced by Latora and Marchiori [13], is a measure of effectiveness of information exchange over
the network. Denoted as εij , the efficiency of transfer from nodes i to j is taken as being inversely proportional to
the shortest path length dij , i.e.,130

εij =
1

dij
∀i, j (4)

and the network efficiency E is defined as

E(G) =
1

N(N − 1)

∑
i6=j

εij =
1

N(N − 1)

∑
i 6=j

1

dij
(5)

This network efficiency measures how fast a piece of information can be transported through a network. However,
it is not fully consistent with the metro system in two aspects. First, as analyzed before, passengers do not only
focus on the shortest path but also the minimum transfer overhead. Second, when segments of some lines overlap,
the transportation efficiency will be altered. To overcome these inconsistencies, we propose a new measure, namely,135

metro topological efficiency (MTE). Specifically, if node u and its neighbor node v are connected by multiple edges,
we scale the link connecting the two nodes by a factor wuv

wuv =
1

n
(6)

where n is the number of edges connecting the stations. These scaled links are used to compute the “scaled” shortest
path length rij Then, MTE is defined as

MTE =
1

N(N − 1)

∑
i 6=j

1

rij
(7)

where rij is the length of the scaled path selected by PIL.140
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3. Metro system robustness analysis

3.1. Station centrality evaluation
A fundamental problem in network science is to evaluate the relative importance of the role a node plays in

a network, and this helps understand the structural characteristic of the network. A number of measures have
been proposed for this purpose, such as degree centrality [35], betweenness centrality [36], closeness centrality,145

node occupying probability [37] and so on. Degree centrality describes a node’s importance in a local scale, while
betweenness and closeness can reflect a node’s importance in a global scale. However, they are all based on the
shortest path routing, which ignores the inherent characteristics of subway networks. Here, we propose a parameter
called node occupying probability (NOP), denoted as I(i), to describe the importance of subway station i:

I(i) =

∑
u⊂S

∑
w⊂S

ρuw(i)

N(N − 1)
u 6= w (8)

where S is the set of nodes, N is the total number of nodes, and ρuw(i) = 1 if the path from nodes u to v passes150

through node i under PIL; otherwise ρuw(i) = 0. NOP can directly reflect how busy a station is and the value of it
is proportional to the number of routes that pass through this station, thus indicating the influence of this station
to the network traffic.

3.2. Robustness Assessment
The subway network is an important infrastructure in any modern city, and its resilience is crucial for maintaining155

the essential transportation function in the events of component failures and malicious attacks. There have been a
number of network robustness studies over the past few years [14, 16, 17, 18, 19, 20]. The structural robustness is
especially relevant to establishing the reliability of the network [38], as well as in other applications [39, 40]. The
relationship between topological structure and robustness is thus important in implementing safety management
and planning.160

3.2.1. Attack model

Subway accidents may be caused by natural malfunctionings or intentional malicious attacks [41]. Because of
the uncertainly of these causes, we classify failures into two categories, namely, random failure (RF) and target
attack (TA). For implementing RFs, we randomly select some nodes and delete them from the network. Moreover,
for implementing TAs, and for comparison purposes, we delete nodes that have the highest NOP and compare the165

results with deleting nodes that have the highest betweenness.

3.2.2. Performance indicators

In previous studies of network robustness, several indicators were used to evaluate the network performance in
the events of failures, e.g., degree variation, characteristic path variation, clustering coefficient variation, network
efficiency variation, and so on. Our purpose in this study, however, is to unfold the relationship between the170

network topological structure and the subway network transportation performance. One aspect is the impact of
attacks on the subway performance leading to the removal of all routes connecting an OD pair and the removal of
the lowest-cost route. Thus, we use two parameters to evaluate the subway robustness, namely, disabled route ratio
(DRR) and cost adjustment (CA). DRR is defined as the ratio of the number of disabled routes when some nodes
are removed from the network to the total number of possible routes, i.e.,175

DRR =
Nd

N(N − 1)
(9)

where Nd is the number of disconnected OD pairs. Also, CA is defined as the total cost adjustment, i.e.,

CA =

∑
cfij∑
cij

(10)

where cfij is the cost of the route between nodes i and j after some nodes are attacked (deleted), and cij is the cost
of the route between nodes i and j before the attack. All pairs of nodes i and j are considered as long as there
is still at least one route between nodes i and j after the removal of some nodes. Thus, CA effectively reveals the
extent of added cost when some nodes are removed. Also, we will analyze the critical fraction of removed vertices180

f for dysfunctioning the whole network under RA and TA. In this paper, a network is said to be collapsed or
dysfunctioned if over 90% of OD pairs are disconnected.
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Table 1: Basic data of metro system scale (as of 2016)

City Number of stations Number of lines

Beijing 285 17
London 361 13
Paris 293 15
Hong Kong 86 10
Tokyo 207 13
New York 365 23
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Figure 2: Path length distribution

4. Simulation results

The metro systems in Beijing, London, Paris, Hong Kong, Tokyo and New York are studied in this paper. Basic
information of these metro systems are listed in Table 1. All data are obtained from the respective official websites.185

4.1. Topological efficiency evaluation

We first simulate each metro system to conduct exhaustive search of all paths between any two nodes. For
each system, we perform simulations for 100 realizations of PIL routing. The average path length and the average
transfer count are listed in Table 2. We see that the Tokyo metro has the minimum average path length and lowest190

average transfer count. Figure 2 shows the average path length distribution of each network, from which we observe
that the path length basically follows a Gaussian distribution, i.e., f(x) = a exp (−x−b

c )2, and the value of the three
parameters are also shown in Table 2. We should emphasize that the curves shown in Fig. 2 may deceptively look
like a Poisson type distribution due to the absence of physical data in the negative x-axis.

The values of MTE, based on weighted edges and PIL routing as explained in Section 2.4, are computed. Table195

3 lists the values of MTE for the metro networks under study. As expected, these metro systems have topological
efficiency of below 1, i.e., less efficient that the fully connected network. This is obvious because the number

of existing edges for every network are far fewer than the theoretical maximum number Qt = N(N−1)
2 . Using

MTE, we can compare the topological efficiencies of different metro systems thereby identifying the topological
structure that would better support traffic flow in the network. In this respect, the New York metro system is200

found to be more topologically efficient than the others. We should emphasize that topological efficiency does
not provide a comprehensive assessment of efficiency which would necessitate consideration of multiple operational
factors including dynamic load demands, in-train congestion time, transfer time, and allocation of resource such as
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Table 2: Statistics and distribution parameters fitting f(x) = a exp (−x−b
c

)2

City Average path length Average transfer count a b c

Beijing 15.60 1.68 4.881 14.22 12.17
London 14.11 1.89 5.903 13.24 9.825
Paris 12.45 1.85 6.736 11.84 8.652
Hong Kong 11.03 1.77 6.496 10.34 9.486
Tokyo 10.74 1.62 7.121 9.514 8.313
New York 11.56 2.59 6.642 10.17 8.934

Table 3: Metro topological efficiency (MTE) of metro networks

City Beijing London Paris Hong Kong Tokyo New York

MTE 0.0976 0.1175 0.1177 0.1519 0.1490 0.1906

frequency of train departure and carrying capacity. In this preliminary attempt of application-oriented study, we
focus on network topology and its relevant parameters for practical assessment.205

4.2. Robustness assessment

We now focus on the node centrality of each metro network. Figure 3 shows that NOP is related to the degree
D of the node. Nodes with a higher degree tend to have a higher mean value of NOP. We list the top 10 stations
in Table 5 according to their values of NOP and betweenness. We observe that the station centrality is different
using the two kinds of centrality measure. We will see that NOP is more suited for metro networks.210

Table 4: Critical number Nc and fraction f of removed nodes (leading to 90% of OD pairs disconnected) under random attack (RA)
and target attack (TA)

City Beijing London Paris Hong Kong Tokyo New York
Nc f Nc f Nc f Nc f Nc f Nc f

RA 63 22.11% 78 21.61% 74 25.26% 25 29.08% 66 31.88% 105 28.77%

TA based
on NOP

20 7.02% 25 6.93% 19 6.48% 16 18.60% 16 7.73% 42 11.51%

TA based
on betweenness

22 7.72% 25 6.93 % 20 6.83% 18 20.93% 18 8.0% 48 13.15%

To evaluate the network robustness, we remove vertices from the network 1) randomly; 2) in order of descending
NOP; 3) in order of descending betweenness. Figures 4 and 5 show DRR and CA versus the number of attacks under
RA and TA, respectively. Table 4 lists the critical fraction of removal under all three methods of attack. We see that
in all cases, DRR increases with the number of nodes removed (attacked) rapidly at the beginning and saturates
before the network collapses. Furthermore, there is a critical removal point where CA reaches its maximum value.215

We also observe that the metro networks are more robust under RA, and that TA based on the order of descending
NOP can disrupt the metro network more rapidly than TA based on order of descending betweenness. Overall, the
Tokyo metro network is most robust under RA (the critical removal fraction being 31.88% of N). Nevertheless, the
Hong Kong metro is most robust against TA than the others (the critical removal fraction being 18.60% of N).

Our key message here is that the choice of appropriate measure for assessment of metro networks is crucial in220

evaluating a metro system’s robustness. In particular, NOP is found to be more practical and highly indicative of
the importance of a metro station, and its use in formulating attacks is expected to result in more severe damages
to the system. Thus, evaluating robustness against removal of higher NOP nodes would more truly reflect the
system’s ability in maintaining its performance under possible intentional attacks.
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Figure 3: Node occupying probability (NOP) versus node degree

5. Conclusion225

In this paper, the topological properties of metro networks are studied. Based on a realistic passenger’s routing
algorithm, the concept of network efficiency is re-defined for better consistency with metro systems. A new node
centrality measure based on the utilization of the node is proposed to assess the node centrality. This new centrality
measure provides more realistic assessment of centrality. The metro network robustness is studied under random
attack and target attack. Performance of the network under attack is assessed in terms of disabled route ratio230

and cost adjustment. Comparison is made among a few selected metro systems (i.e., Beijing, London, Paris, Hong
Kong, Tokyo and New York). It is shown that the New York metro network has better topological efficiency,
the Tokyo and Hong Kong metro networks are most robust under random and target attacks, respectively. All
networks under study possess better robustness under random attacks than target attacks. The method proposed
in this paper can be used to provide a handy analytical basis on which to plan and design metro networks. For235

developed metro networks, the concept of node occupying probability is useful in assessing the relative importance
of stations as well as vulnerability of the network under possible attack. Our work here aims to assess the topological
efficiency of real metro networks. Moreover, finding better structure for metro networks requires consideration of
multiple operational factors including dynamic load demands, in-train congestion time, transfer time, and allocation
of resource such as frequency of train departure and carrying capacity. These dynamic operational factors will be240

considered in our future work.

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant 61322307. Also with
Hong Kong Polytechnic University when this work was performed.

References245

[1] S. Su, T. Tang, C. Roberts, A cooperative train control model for energy saving, IEEE Transactions on
Intelligent Transportation Systems 16 (2015) 622–631.

8



Table 5: Top 10 robust stations under target attacks (removal of nodes) according to order of descending NOP and betweenness

Rank
Beijing London Paris

NOP Betweenness NOP Betweenness NOP Betweenness

1 Jintailu Xizhimen Waterloo Bank Chatelet Chatelet

2 Xizhimen Chegongzhuang
King’s Cross
St. Pancras

Waterloo Madeleine Madeleine

3 Dawanglu Chaoyangmen Green Park Green Park Concorde
Gare

De Lyon

4 Hujialou Jintailu Bank
King’s Cross
St. Pancras

Gare
De Lyon

Pyramides

5 Liuliqiao Shaoyaoju Westminster Westminster Saint Lazare Concorde

6 Junshibowuguan Dawanglu Baker Street Euston Republique Invalides

7 Zhichunlu Wangjingxi Euston Stratford
Montparnasse
Bienvenue

Saint
Lazare

8 Jiaomenxi Baishiqiaonan Stratford Barker Street Invalides
La Motto

Picquet Grenelle

9 Songjiazhuang Junshibowuguan Finchley Road Finchley Road
La Motto

Picquet Grenelle
Montparnasse
Bienvenue

10 Chegonzhuang Zhichunlu Bond Street
Willesden
Junction

Pyramides Republique

Rank
Hong Kong Tokyo New York

NOP Betweenness NOP Betweenness NOP Betweenness

1 Kowloon Tong Kowloon Tong Kasuga Kasuga 125th Street Seventh Avenue

2 Prince Edward Tai Wai Otemachi Otemachi Seventh Avenue 125th Street

3 Tai Wai Prince Edward Shinjuku Iidabashi
Atlantic Avenue
Barclays Center

Atlantic Avenue
barclays Center

4 Mei Foo Lok Fu Iidabashi Shinjuku Queens Plaza Queens Plaza

5 Mongkok Mei Foo Ichigaya Ichigaya
59th Street

Columbus Circle
59th Street

Columbus Circle

6 Lok Fu Wong Tai Sin Hibiya
Shinjuku

San Chome
36th Street DeKalb Avenue

7 Shamshuipo Mongkok Kudanshita Hibiya DeKalb Avenue
Jackson Heights
Roosevelt Avenue

8 Cheungshawan Mongkok East Nipponbashi Kudanshita
Jackson Heights
Roosevelt Avenue

36th Street

9 Wong Tai Sin Diamond Hill
Shinjuku

San Chome
Akebonobashi Prospect Avenue Prospect Avenue

10 Yaumatei Hung Hom Monzen Nakacho Monzen Nakacho 86th Street Elmhurst Avenue

[2] P. Angeloudis, D. Fisk, Large subway systems as complex networks, Physica A: Statistical Mechanics and its
Applications 367 (2006) 553–558.

[3] D. J. Watts, S. H. Strogatz, Collective dynamics of small-worldnetworks, Nature 393 (1998) 440–442.250

[4] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.

[5] J. Yang, C. Yao, W. Ma, G. Chen, A study of the spreading scheme for viral marketing based on a complex
network model, Physica A: Statistical Mechanics and its Applications 389 (2010) 859–870.

[6] M. Small, D. M. Walker, C. K. Tse, Scale-free distribution of avian influenza outbreaks, Physical Review
Letters 99 (2007) 188702.255

[7] C. K. Tse, J. Liu, F. C. M. Lau, A network perspective of the stock market, Journal of Empirical Finance 17
(2010) 659–667.

9



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (Beijing)

 

 

Disabled Route Ratio

Cost Adjustment

(a) Beijing

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (London)

 

 

Disabled Route Ratio

Cost Adjustment

(b) London

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (Paris)

 

 

Disabled Route Ratio

Cost Adjustment

(c) Paris

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (Hong Kong)

 

 

Disabled Route Ratio

Cost Adjustment

(d) Hong Kong

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (Tokyo)

 

 

Disabled Route Ratio

Cost Adjustment

(e) Tokyo

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

RA (New York)

 

 

Disabled Route Ratio

Cost Adjustment

(f) New York

Figure 4: DRR and CA versus the attack node number under random attack (RA)

[8] J. Wu, C. K. Tse, F. C. M. Lau, I. W. H. Ho, Analysis of communication network performance from a complex
network perspective, IEEE Transactions on Circuits and Systems I: Regular Papers 60 (2013) 3303–3316.

[9] D. He, R. Lui, L. Wang, C. K. Tse, L. Yang, L. Stone, Global spatio-temporal patterns of influenza in the260

post-pandemic era, Scientific Report 5 (2015) 11013.

[10] X. Zhang, C. K. Tse, Assessment of robustness of power systems from a network perspective, IEEE Journal of
Emerging and Selected Topics in Circuits and Systems 5 (2015) 456–464.

[11] Y. Bar-Yam, S. R. McKay, W. Christian, Dynamics of complex systems (studies in nonlinearity), Computers
in Physics 12 (1998) 335–336.265

[12] A.-L. Barabási, The network takeover, Nature Physics 8 (2011) 14.

[13] V. Latora, M. Marchiori, Is the Boston subway a small-world network?, Physica A: Statistical Mechanics and
its Applications 314 (2002) 109–113.

[14] S. Derrible, C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics
and its Applications 389 (2010) 3678–3691.270

[15] K. Lee, W.-S. Jung, J. S. Park, M. Choi, Statistical analysis of the metropolitan Seoul subway system: Network
structure and passenger flows, Physica A: Statistical Mechanics and its Applications 387 (2008) 6231–6234.

[16] Y. Yang, Y. Liu, M. Zhou, F. Li, C. Sun, Robustness assessment of urban rail transit based on complex network
theory: a case study of the Beijing subway, Safety Science 79 (2015) 149–162.

[17] M. J. Alenazi, J. P. Sterbenz, Evaluation and comparison of several graph robustness metrics to improve275

network resilience, in: 2015 7th IEEE International Workshop on Reliable Networks Design and Modeling
(RNDM), 2015, pp. 7–13.

10



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on NOP (Beijing)

 

Disabled Route Ratio

Cost Adjustment

(a) Beijing

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on NOP (London)

 

 

Disabled Route Ratio

Cost Adjustment

(b) London

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on NOP (Paris)

 

 

Disabled Route Ratio

Cost Adjustment

(c) Paris

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Attack number

C
A

 \
 D

R
R

TA based on NOP (Hong Kong)

 

Disabled Route Ratio

Cost Adjustment

(d) Hong Kong

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

Attack number

C
A

 \
 D

R
R

TA based on NOP (Tokyo)

 

 

Disabled Route Ratio

Cost Adjustment

(e) Tokyo

0 100 200 300 400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Attack number

C
A

 \
 D

R
R

TA based on NOP (New York)

 

 

Disabled Route Ratio

Cost Adjustment

(f) New York

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on betweenness (Beijing)

 

Disabled Route Ratio

Cost Adjustment

(g) Beijing

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on betweenness (London)

 

 

Disabled Route Ratio

Cost Adjustment

(h) London

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on betweenness (Paris)

 

 

Disabled Route Ratio

Cost Adjustment

(i) Paris

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Attack number

C
A

 \
 D

R
R

TA based on betweenness (Hong Kong)

 

Disabled Route Ratio

Cost Adjustment

(j) Hong Kong

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

Attack number

C
A

 \
 D

R
R

TA based on betweenness (Tokyo)

 

 

Disabled Route Ratio

Cost Adjustment

(k) Tokyo

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Attack number

C
A

 \
 D

R
R

TA based on betweenness (New York)

 

 

Disabled Route Ratio

Cost Adjustment

(l) New York
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