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Abstract From the perspective of machine learning,
predicting subcellular localization of multi-location pro-

teins is a multi-label classification problem. Conven-
tional multi-label classifiers typically compare some pat-
tern-matching scores with a fixed decision threshold to

determine the number of subcellular locations in which
a protein will reside. This simple strategy, however, may
easily lead to over-prediction due to a large number
of false positives. To address this problem, this paper

proposes a more powerful multi-label predictor, namely
AD-SVM, which incorporates an adaptive-decision (AD)
scheme into multi-label support vector machine (SVM)

classifiers. Specifically, given a query protein, a term-
frequency based gene ontology vector is constructed
by successively searching the gene ontology annotation

database. Subsequently, the feature vector is classified
by AD-SVM, which extends the binary relevance method
with an adaptive decision scheme that essentially con-
verts the linear SVMs to piecewise linear SVMs. Ex-
perimental results on two stringent benchmark datasets
suggest that AD-SVM impressively outperforms exist-
ing state-of-the-art multi-location predictors. Results
also show that the adaptive-decision scheme can effec-
tively reduce over-prediction while having insignificant
effect on the correctly predicted ones.
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1 Introduction

Conventionally, predicting where a protein resides within
a cell is a single-label classification problem, where each

protein is assumed to be associated with one of the
known subcellular locations only. These approaches are
generally divided into two categories: (1) sequence-based

methods, such as amino-acid composition methods [1,2,
3], sorting-signal methods [4,5,6] and homology-based
methods [7,8] and (2) knowledge-based methods, such
as gene ontology (GO)1 based methods [9,10,11,12,13],

PubMed abstracts based methods [14,15] and Swiss-
Prot keywords [16,17] based methods. The focus on
predicting single-location proteins is probably driven by

the large amount of data available in public databases
such as UniProt, where a majority of proteins are as-
signed to a single location.

However, it is untenable to exclude the multi-location
proteins or assume that multi-location proteins do not
exist, because recent studies [18,19,20,21] show that
there exist multi-location proteins that can simultane-

ously reside at, or move between, two or more different
subcellular locations. Actually, proteins with multiple
locations play important roles in some metabolic pro-
cesses that take place in more than one compartment.
For example, proteins involved in fatty acid β-oxidation
are known to reside in peroxisome and mitochondria,
and antioxidant defense proteins have been found in
cytosol, mitochondria and peroxisome [22]. Another ex-
ample is the glucose transporter GLUT4. This protein is

1 http://www.geneontology.org
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regulated by insulin and is typically stored in the intra-

cellular vesicles of adipocytes. However, it has also been

found to translocate to the plasma membrane in re-

sponse to insulin [23,24]. Thus, predicting where these

proteins locate is a multi-label multi-class classification

problem, where a protein may be associated with more

than one subcellular location.

2 Multi-Label Classification

In the past decades, multi-label classification has re-

ceived significant attention in a wide range of problem

domains, such as music classification [25,26], video seg-

mentation [27], functional genomics prediction [28,29,

30], text categorization [31,32,33,34,35], and seman-

tic annotation of images [36]. In functional genomics

prediction, a gene is likely to associate with many func-

tions. In text categorization, a document describing the

politics may involve other topics, such as sports or ed-

ucation. Similarly, in music classification, a song may

belong to more than one genre.

Multi-label classification is more complicated than

single-label classification because of the large number

of possible combinations of labels. Existing methods

for multi-label classification can be grouped into two

main categories: (1) problem transformation and (2)

algorithm adaptation.

2.1 Problem-Transformation Methods

Problem transformation methods transform a multi-

label learning problem into one or more single-label

classification problems [36] so that traditional single-

label classifiers can be applied without modification.

Typical methods include binary relevance (BR) [37],

ensembles of classifier chains (ECC) [38], label power-

set (LP) [39] and compressive sensing [40].

Binary relevance (BR) is a popular problem-transfor-

mation method. It transforms a multi-label task into

many binary classification tasks, one for each label.

Given a query instance, its predicted label(s) are the

union of the positive-class labels output by these binary

classifiers. BR is effective, but it neglects the correlation

between labels, which may carry useful information for

multi-label classification.

The classifier chain method is a variant of BR but

it can take the correlation between labels into account.

Similar to BR, a set of one-vs-rest binary classifiers are

trained. But unlike BR, the classifiers are linked in a

chain and the feature vectors presented to the i-th clas-

sifier in the chain are augmented with the binary vectors

representing the label(s) of the 1-st class to the (i−1)-th

class. Therefore, label dependence is preserved through

the feature space. Classification performance, however,

depends on the chain order. This order-dependency can

be overcome by ensembles of classifier chains [38].

Label powerset method reduces a multi-label task to

a single-label task by treating each possible multi-label

subset as a new class in the single-label classification

task. This method is simple, but is likely to generate a

large number of classes, many of which are associated

with a few examples only. The compressive sensing ap-

proach is motivated by the fact that when the number

of classes is large, the actual labels are often sparse.

In other words, a typical query instance will belong to

a few classes only, even though the total number of

classes is large. This approach exploits the sparsity of

the output (label) space by means of compressive sens-

ing to obtain a more efficient output coding scheme for

large-scale multi-label learning problems.

2.2 Algorithm-Adaptation Methods

Algorithm adaptation methods extend specific single-

label algorithms to solve multi-label classification prob-

lems. Typical methods include multi-label C4.5 [41],

AdaBoost.MH [33], and hierarchical multi-label deci-

sion trees [28].

The C4.5 algorithm [42] builds decision trees using

the concept of information entropy. At each node of

the tree, C4.5 chooses the feature that most effectively

splits the data into two classes; in other words, the

feature with the highest normalized information gain

(or difference in entropy) is chosen to create a decision

node. The C4.5 algorithm then recurs on the subclasses

obtained by the previous step and the nodes thus ob-

tained are added as the children of the node in the pre-

vious step. The multi-label C4.5 [41] uses the C4.5 algo-

rithm as a baseline classifier and extends the definition

of entropy to include multi-label data by estimating the

number of bits needed to describe the membership or

non-membership of each class. One disadvantage of this

algorithm is that it only learns a set of accurate rules,

not a complete classification. AdaBoost.MH is an ex-

tension of AdaBoost [43] for multi-label classification.

It uses the one-vs-rest approach to convert an M -class

problem into M 2-class AdaBoost problems in which

an additional feature defined by the class labels is aug-

mented to the input space.

In [28], class labels are organized in a hierarchy and

for each class, a binary decision tree is learned in a

hierarchical way. A sample belongs to a class means

that it also belongs to the superclasses of that class.

This parent-children relationship enables the decision

tree to predict multi-label instances.
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Several algorithms based on support vector machines

(SVM) [44] have been proposed to tackle multi-label

classification problems. In [45], a ranking algorithm for

multi-label classification is proposed. It uses the rank-

ing loss [33] as the cost function, which is defined as

the average fraction of pairs of labels that are ordered

incorrectly. Similar to SVMs, it finds the optimal hy-

perplane with the maximum margin of separation. One

major disadvantage of this method is that it does not

output a set of labels. The SVM classifiers in [46] adopt

the BR method by extending the feature vectors of the

original data set with some additional features indicat-

ing the relationship between classes.

2.3 Problem-Transformation vs.

Algorithm-Adaptation

Compared to algorithm adaptation methods, one ad-

vantage of problem transformation methods is that any

algorithm which is not capable of dealing with multi-

label classification problems can be easily extended to

deal with multi-label classification via transformation.

It should be pointed out that the multi-label classifi-

cation methods are different from the multi-class classi-

fication methods, such as error-correcting-output-coding

methods [47] and pairwise comparison methods [48].

There is probably no multi-class method that outper-

forms all others in all circumstances [49], so is the same

case for multi-label methods.

2.4 Applications to Protein Subcellular Localization

Existing state-of-the-art multi-label predictors – includ-

ing Virus-mPLoc [50], Plant-mPLoc [51], iLoc-Virus

[52], iLoc-Plant [53], mGOASVM [54], HybridGO-Loc

[55], R3P-Loc [56], mPLR-Loc [57] and others [58,59,

60,61,62] – use the GO information as the features and

apply different multi-label classifiers to tackle the multi-

label problems. Among these predictors, Virus-mPLoc,

Plant-mPLoc, iLoc-Virus and iLoc-Plant use algorithm

adaptation methods, while mGOASVM, HybridGO-Loc,

R3P-Loc and mPLR-Loc use problem transformation

methods. However, to determine the number of subcel-

lular locations of a query protein, most of the multi-

label classifiers compare the pattern-matching scores

with a fixed decision threshold. This simple strategy

is liable to a large number of false positives and thus

weaken the generalization capabilities of the multi-label

classifiers.

To address this problem, this paper extends our ear-

lier work on adaptive thresholding [63] and proposes an

adaptive-decision based multi-label classifier, namely

AD-SVM, to predict subcellular localization of both

single- and multi-location proteins. Specifically, given

a query protein, a successive-search strategy is used

to search against the gene ontology annotation (GOA)

database with either the accession number (AC) or the

homologous AC of the query protein as the key, so

that each protein will be associated with at least one

GO term. A feature vector is subsequently formulated

with the term-frequency based GO information, which

is then classified by the proposed AD-SVM. AD-SVM

extends binary relavance methods with an adaptive-

decision scheme that essentially converts the linear SVMs

into piecewise linear SVMs, which can effectively reduce

the false positives without affecting the correctly pre-

dicted ones. Experimental results on two benchmark

datasets demonstrate the superiority of AD-SVM over

existing state-of-the-art predictors.

3 Feature Extraction

To extract relevant features, AD-SVM performs two

steps: (1) retrieval of GO terms and (2) construction

of GO vectors.

3.1 Retrieval of GO Terms

A major issue in GO-based predictors is that GO in-

formation is not always available to every protein. AD-

SVM searches the GO information from the GOA database,2

which uses standardized GO vocabularies to systemati-

cally annotate non-redundant proteins from the UniProt

database. For proteins with known accession numbers

(ACs), their respective GO terms are retrieved from the

GOA database using the ACs as the searching keys. For

a protein without an AC, its amino acid (AA) sequence

is presented to BLAST [64] to find its homologs, whose

ACs are then used as keys to search against the GOA

database. Therefore, given a query protein, AD-SVM

can handle two possible cases: (1) the AC is known and

(2) the amino acid (AA) sequence is known.

While the GOA database allows us to associate the

AC of a protein with a set of GO terms, for some novel

proteins, neither their ACs nor the ACs of their top ho-

mologs have any entries in the GOA database; in other

words, the GO vectors constructed in Section 3.2 will

contain all-zero, which are meaningless for classifica-

tion. In such case, AD-SVM uses a successive-search

strategy as follows. The ACs of the homologous pro-

teins, as returned from BLAST search, are successively

used to search against the GOA database until a match

2 http://www.ebi.ac.uk/GOA



4 S. Wan and M. W. Mak

is found. Specifically, for the proteins whose top ho-

mologs do not have any GO terms in the GOA database,

AD-SVM uses the second-top homolog to find the GO

terms; similarly, for the proteins whose top and 2-nd

homologs do not have any GO terms, the third-top ho-

molog was used; and so on until all the query proteins

can correspond to at least one GO term.

With the rapid progress of the GOA database [65], it

is reasonable to assume that the homologs of the query

proteins have at least one GO term [66]. Thus, it is

not necessary to use back-up methods to handle the

situation where no GO terms can be found.

3.2 Construction of GO Vectors

Given a dataset, we used the procedure described in

Section 3.1 to retrieve the GO terms of all of its pro-

teins. Let W denotes a set of distinct GO terms corre-

sponding to a data set. W is constructed in two steps:

(1) identifying all of the GO terms in the dataset and

(2) removing the repetitive GO terms. Suppose W dis-

tinct GO terms are found, i.e., |W|= W ; these GO

terms form a GO Euclidean space with W dimensions.

For each sequence in the dataset, a GO vector is con-

structed by matching its GO terms against W, using

the number of occurrences of individual GO terms in

W as the coordinates.

Similar to our earlier works [54,67], the GO fre-

quency information is used to construct GO feature vec-

tors. Specifically, the GO vector qi of the i-th protein

Qi is defined as:

qi = [bi,1, · · · , bi,j , · · · , bi,T ]T, bi,j =

{
fi,j , GO hit

0 , otherwise

(1)

where fi,j is the number of occurrences of the j-th GO

term (term-frequency) in the i-th protein sequence. De-

tailed information can be found in [54,67].

4 Adaptive-Decision Based Support Vector

Machines

After feature extraction, the term-frequency based GO

vectors are classified by our proposed classifier, AD-

SVM, which is elaborated below.

4.1 Multi-label SVM Scoring

GO vectors, as computed in Eq. 1, are used for training

the multi-label one-vs-rest SVMs. Specifically, for an

M -class problem (here M is the number of subcellular

locations), M independent binary SVMs are trained,

one for each class. Denote the GO vector created by

using the true AC of the i-th query protein as qi,0 and

the GO vector created by using the accession number of

the k-th homolog as qi,k, k = 1, . . . , kmax, where kmax is

the number of homologs retrieved by BLAST with the

default parameter setting. Then, given the i-th query

protein Qi, the score of the m-th SVM is:

sm(Qi) =
∑
r∈Sm

αm,rym,rK(pr,qi,h) + bm, (2)

where

h = min
{
k ∈ {0, . . . , kmax} s.t. ||qi,k||0 6= 0

}
, (3)

and Sm is the set of support vector indexes correspond-

ing to the m-th SVM, ym,r ∈ {−1,+1} are labels such

that ym,r = 1 if Qi belongs to the m-th class, αm,r are

the Lagrange multipliers, K(·, ·) is a kernel function;

here, the linear kernel is used. Note that pr’s in Eq. 2

represents the GO training vectors, which may include

the GO vectors created by using the true AC of the

training sequences or their homologous ACs.

4.2 Adaptive Decision for SVM (AD-SVM)

To predict the subcellular locations of datasets contain-

ing both single-label and multi-label proteins, an adap-

tive decision scheme for multi-label SVM classifiers is

proposed. Unlike the single-label problem where each

protein has one predicted label only, a multi-label pro-

tein could have more than one predicted labels. Thus,

the predicted subcellular location(s) of the i-th query

protein are given by:

If ∃ sm(Qi) > 0,

Ml(Qt) =

M⋃
m=1

(m : sm(Qt) ≥ min{1.0, f(smax(Qt))})

(4)

otherwise,

M(Qi) =
M

arg max
m=1

sm(Qi). (5)

In Eq. 4, f(smax(Qi)) is a function of smax(Qi), where

smax(Qi) = maxM
m=1 sm(Qi). In [63], a linear function

was used, i.e. ,

f(smax(Qi)) = θsmax(Qi), (6)

where θ ∈ [0.0, 1.0] is a parameter. Because f(smax(Qi))

is linear, Eq. 4 and Eq. 5 turn the linear SVMs into
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piecewise linear SVMs. Eq. 4 also suggests that the pre-

dicted labels depend on smax(Qi), a function of the test

instance (or protein). This means that the decision and

the corresponding threshold are adaptive to the test

protein. For ease of reference, we refer to the proposed

predictor as AD-SVM.

4.3 Analysis of AD-SVM

To facilitate discussion, let’s define two terms: over-

prediction and under-prediction. Specifically, over (resp.

under) prediction means that the number of predicted

labels of a query protein is larger (resp. smaller) than

the ground-truth. In this paper, both over- and under-

predictions are considered as incorrect predictions, which

will be reflected in the “overall actual accuracy (OAA)”

to be defined in Section 5.2.

Conventional methods use a fixed threshold to de-

termine the predicted classes. When the threshold is too

small, the prediction results are liable to over-prediction;

on the other hand, when the threshold is too large, the

prediction results are susceptible to under-prediction.

To overcome this problem, the adaptive decision scheme

in the classifier uses the maximum score (smax(Qi))

among the one-vs-rest SVMs in the classifier as a ref-

erence. In particular, smax(Qi) in Eq. 4 adaptively nor-

malizes the scores of all one-vs-rest SVMs so that for

SVMs to be considered as runner-ups, they need to

have a sufficiently large score relative to the winner.

This strategy effectively reduces the chance of over-

prediction. The first condition in Eq. 4 (sm(Qi) > 1)

aims to avoid under-prediction when the winning SVM

has very high confidence (i.e., smax(Qi) � 1) but the

runners-up still have enough confidence (sm(Qi) > 1)

in making a right decision.3 On the other hand, when

the maximum score is small (say 0 < smax(Qi) ≤ 1), θ

in the second term of Eq. 4 can strike a balance between

over-prediction and under-prediction. When all of the

SVMs have very low confidence (say smax(Qi) < 0), the

classifier switches to single-label mode via Eq. 5.

To illustrate how this decision scheme works, an

example is shown in Fig. 1. Suppose there are 4 test

data points (P1, . . . ,P4) which are possibly distributed

into 3 classes: {green, blue, red}. The decision bound-

aries of individual SVMs and the 4 points are shown

in Fig. 1(a). Suppose sm(Pi) is the SVM score of Pi

with respect to the class m, where i = {1, . . . , 4} and

m ∈{green, blue, red}. Fig. 1(a) suggests the following

conditions:

3 SVM scores larger than one means that the test proteins
fall beyond the margin of separation; therefore, the confidence
is fairly high.

sgreen(P1) > 1, sblue(P1) > 1, sred(P1) < 0;

0 < sgreen(P2) < 1, sblue(P2) > 1, sred(P2) < 0;

0 < sgreen(P3) < 1, 0 < sblue(P3) < 1, sred(P3) < 0;

sgreen(P4) < 0, sblue(P4) < 0, sred(P4) < 0.

Note that points whose scores lie between 0 and

1 are susceptible to over-prediction because they are

very close to the decision boundaries of the correspond-

ing SVM. The decision scheme used in Eqs. 4–6 (i.e.,

θ = 0.0) leads to the decision boundaries shown in

Fig. 1(b). Based on these boundaries, P1, P2 and P3

will be assigned to class green ∩ blue , and P4 will

be assigned to the class with the highest SVM score

(using Eq. 5). If θ increases to 0.5, the results shown

in Fig. 1(c) will be obtained. The assignments of P1,

P3 and P4 remain unchanged but P2 will be changed

from class green ∩ blue to class blue. Similarly, when θ

increases to 1.0 (Fig. 1(d)), then the class of P3 will

also be determined by the SVM with the highest score.

This analysis suggests that when θ increases from 0 to

1, the decision criterion becomes more stringent, which

has the effect of shrinking the 2-label regions in Fig. 1,

thus reducing the over-prediction. Provided that θ is

not close to 1, this reduction in over-prediction will

not compromise the decisions made by the high scoring

SVMs.

To further exemplify the strategy of the adaptive de-

cision scheme, a four-class multi-label example demon-

strating how the adaptive decision scheme works is shown

in Fig. 2. In the training phase, four independent binary

SVMs are first trained for the four-class problem, one

for each class. The training GO vectors (not shown)

participate in all of the four binary SVMs. However,

contrary to the multi-class SVM classifier where each

training vector has the positive label only in one binary

SVM and has negative labels in the remaining binary

SVMs, a training vector in the multi-label SVM classi-

fier may have the positive label in more than one binary

SVMs. Here, we only use one query protein to demon-

strate the adaptive scheme. Fig. 2(a) shows the testing

phase of the baseline predictor, i.e. mGOASVM, and

Fig. 2(b)–(d) show the testing phases of the adaptive

decision schemes with θ in Eq. 6 equal to 0, 0.5 and 1,

respectively. As shown in Fig. 2(b), when θ = 0, the

adaptive scheme is the same as the decision scheme in

mGOASVM, with the reference or SVM score thresh-

old equal to 0. In other words, if there is any posi-

tive SVM score, the query protein will be assigned to

the corresponding class. Thus, in this case, the query

protein is assigned to Class 2, Class 3 and Class 4.

When θ = 0.5 (Fig. 2(c)), the reference score becomes

Ref = min{1.0, 0.5 ·smax(Qi)} = min{1.0, 0.5 · (1.6)} =

0.8, namely only those classes whose SVM scores are

larger than 0.8 will be predicted as positive. In this
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3B+ ‐+‐ 2B

‐
P 1B

+‐ 4P
2P

PB
+

1P
3P1B

2B ++ ‐‐
1

3B

(a) (b) θ = 0.0 (c) θ = 0.5 (d) θ = 1.0

Fig. 1 A 3-class example illustrating how the adaptive decision scheme changes the decision boundaries from linear to piecewise
linear and how the resulting SVMs assign label(s) to test points when θ in Eq. 6 changes from 0 to 1. In (a), the solid and
dashed lines respectively represent the decision boundaries and margins of individual SVMs. In (b)–(d), the input space is
divided into three 1-label regions (green, blue and red) and three 2-label regions (green ∩ blue, blue ∩ red, and red ∩ green).

Adaptive Decision (AD)-Scheme 

(-3.3, 0.9, 1.6, 0.5) 

(-1, +1, +1, +1) 

Class 2, Class 3, Class 4 

Ref = 0 

SVM scores: 

SVM decision: 

Prediction: 

(a)

Adaptive Decision (AD)-Scheme 

(b) AD-SVM 
(θ =0) 

(-3.3, 0.9, 1.6, 0.5) 

(-1, +1, +1, +1) 

Class 2, Class 3, Class 4 

SVM scores: 

SVM decision: 

Prediction: 

Ref = min{1.0, 0∙(1.6)}= 0 

(b) θ = 0.0

Adaptive Decision (AD)-Scheme 
(c)AD-SVM 

(θ =0.5) 

(-3.3, 0.9, 1.6, 0.5) 

(-1, +1, +1, -1) 

Class 2, Class 3 

SVM scores: 

SVM decision: 

Prediction: 

Ref = min{1.0, 0.5∙(1.6)}= 0.8 

(c) θ = 0.5

Adaptive Decision (AD)-Scheme 

(d) AD-SVM 
(θ =1.0) (-3.3, 0.9, 1.6, 0.5) 

(-1, -1, +1, -1) 

Class 3 

SVM scores: 

SVM decision: 

Prediction: 

Ref = min{1.0, 1∙(1.6)}= 1.0 

(d) θ = 1.0

Fig. 2 A 4-class example showing how the adaptive decision scheme works when θ in Eq. 6 changes from 0 to 1. (a) The
testing phase of the decision scheme of mGOASVM. (b)–(d) The testing phases of the adaptive decision schemes with θ in
Eq. 6 equal to 0, 0.5 and 1, respectively. Ref: the reference or the SVM score threshold, over which the corresponding class
label(s) are assigned to the query protein.

-0.8 

0.9 

1.3 

0.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

Class 1 Class 2 Class 3 Class 4 

AD-SVM: an Adaptive-Decision  
Multi-Label Predictor 

θ =0.5 

θ =0 

θ = 1.0 

score = 1.0 

Query protein II 

SVM score 

mGOASVM 

(-0.8, 0.9, 1.3, 0.5) 

Fig. 3 An example showing how the adaptive decision
scheme works when θ in Eq. 6 changes from 0 to 1. The or-
dinate represents the SVM score, and the abscissa represents
the classes.

case, the query protein will be predicted to locate in

Class 2 and Class 3. When we increase θ to 1, as shown

in Fig. 2(d), the reference score will become Ref =

min{1.0, 1 ·smax(Qi)} = min{1.0, 1 ·(1.6)} = 1.0. In this

case, only the 3-rd SVM score is larger than 1.0. There-

fore, the query protein will be considered as a single-

location protein and is predicted to locate in Class 3.

This four-class multi-label problem can also be shown

in another way as in Fig. 3. From Fig. 3, we can clearly

see that when θ = 0 (the orange solid line), or the deci-

sion scheme of mGOASVM, there will be three classes

(Classes 2, 3 and 4) passing the criterion; when θ = 0.5

(the yellow solid line), only Class 2 and Class 3 can pass

the criterion; when θ increases to 1, then the criterion

becomes 1.0 (the solid blue line), and only Class 3 will

be the predicted label for the query protein. This sug-

gests that with θ increases, the decision scheme becomes

stringent and the over-predictions will be reduced.

5 Experiments

5.1 Datasets

A virus dataset [50,52] and a plant dataset [53] were

used to evaluate the performance of the proposed pre-

dictors. The virus and the plant datasets were created

from Swiss-Prot 57.9 and 55.3, respectively. The virus

dataset contains 207 viral proteins distributed in 6 lo-

cations. Of the 207 viral proteins, 165 belong to one

subcellular locations, 39 to two locations, 3 to three lo-

cations and none to four or more locations. This means

that about 20% of the proteins in the dataset are lo-

cated in more than one subcellular location. The plant

dataset contains 978 plant proteins distributed in 12

locations. Of the 978 plant proteins, 904 belong to one

subcellular locations, 71 to two locations, 3 to three

locations and none to four or more locations. The se-

quence identity of both datasets was cut off at 25%.

The breakdown of these two datasets are listed in

Figs. 4(a) and 4(b). Fig. 4(a) shows that the major-

ity (68%) of viral proteins in the virus dataset are lo-

cated in host cytoplasm and host nucleus while proteins

located in the rest of the subcellular locations totally
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account for only around one third. This means that

this multi-label dataset is imbalanced across the six

subcellular locations. Similar conclusions can be drawn

from Fig. 4(b), where most of the plant proteins exist

in chloroplast, cytoplasm, nucleus and mitochondrion,

while proteins in other 8 subcellular locations totally

account for less than 30%. This imbalanced property

makes the prediction of these two multi-label datasets

difficult. More detailed statistical properties of these

two datasets are listed in Table 1.

In Table 1, M and N denote the number of ac-

tual (or distinct) subcellular locations and the number

of actual (or distinct) proteins. Besides the commonly

used properties for single-label classification, the fol-

lowing measurements [39] are used as well to explicitly

quantify the multi-label properties of the datasets: la-

bel cardinality (LC), label density (LD), distinct label

set (DLS), proportion of distinct label set (PDLS) and

total locative number (TLN). The detailed definitions

of these measurements can be found in [57].

Among these measurements, LC is used to measure

the degree of multi-labels in a dataset. For a single-label

dataset, LC = 1; for a multi-label dataset, LC > 1. And

the larger the LC, the higher the degree of multi-labels.

LD takes into consideration the number of classes in the

classification problem. For two datasets with the same

LC, the lower the LD, the more difficult the classifi-

cation. DLS represents the number of possible label

combinations in the dataset. The higher the DLS, the

more complicated the composition. PDLS represents

the degree of distinct labels in a dataset. The larger

the PDLS, the more probable the individual label-sets

are different from each other. From Table 1, we no-

tice that although the number of proteins in the virus

dataset (N = 207, TLN = 252) is smaller than that of

the plant dataset (N = 978, TLN = 1055), the former

(LC = 1.2174, LD = 0.2029) is a denser multi-label

dataset than the latter (LC = 1.0787, LD = 0.0899).

5.2 Performance Metrics

Compared to traditional single-label classification, multi-

label classification requires more complicated perfor-

mance metrics to better reflect the multi-label capa-

bilities of classifiers. These measures include Accuracy,

Precision, Recall, F1-score (F1) and Hamming Loss (HL).

The definitions of these five measurements can be found

in [55].

Accuracy, Precision, Recall and F1 indicate the clas-

sification performance. The higher the measures, the

better the prediction performance. Among them, Accu-

racy is the most commonly used criteria. F1-score is the

harmonic mean of Precision and Recall, which allows us

to compare the performance of classification systems by

taking the trade-off between Precision and Recall into

account. The Hamming Loss (HL) [68,69] is different

from other metrics. When all of the proteins are cor-

rectly predicted, HL = 0; whereas, other metrics will

be equal to 1. On the other hand, when the predictions

of all proteins are completely wrong, HL = 1; whereas,

other metrics will be equal to 0. Therefore, the lower

the HL, the better the prediction performance.

Two additional measurements [52,54] are often used

in multi-label subcellular localization prediction. They

are overall locative accuracy (OLA) and overall actual

accuracy (OAA). Specifically, denote L(Qi) andM(Qi)

as the true label set and the predicted label set for the

i-th protein Qi (i = 1, . . . , N), respectively.4, then OLA

is given by:

OLA =
1∑N

i=1|L(Qi)|

N∑
i=1

|M(Qi) ∩ L(Qi)|, (7)

and the overall actual accuracy (OLA) is:

OAA =
1

N

N∑
i=1

∆[M(Qi),L(Qi)] (8)

where

∆[M(Qi),L(Qi)] =

{
1 , if M(Qi) = L(Qi)

0 , otherwise.
(9)

According to Eq. 7, a locative protein is considered

to be correctly predicted if any of the predicted labels

matches any labels in the true label set. On the other

hand, Eq. 8 suggests that an actual protein is consid-

ered to be correctly predicted only if all of the predicted

labels match those in the true label set exactly. For ex-

ample, for a protein coexist in, say, three subcellular

locations, if only two of the three are correctly pre-

dicted, or the predicted result contains a location not

belonging to the three, the prediction is considered to

be incorrect. In other words, when and only when all the

subcellular locations of a query protein are exactly pre-

dicted without any overprediction or underprediction,

can the prediction be considered as correct. Therefore,

OAA is a more stringent measure as compared to OLA.

OAA is also more objective than OLA. This is because

locative accuracy is liable to give biased performance

measure when the predictor tends to over-predict, i.e.,

giving large |M(Qi)| for many Qi. In the extreme case,

if every protein is predicted to have all of the M sub-

cellular locations, according to Eq. 7, the OLA is 100%.

But obviously, the predictions are wrong and meaning-

less. On the contrary, OAA is 0% in this extreme case,

which definitely reflects the real performance.

4 Here, N = 207 for the virus dataset and N = 978 for the
plant dataset.
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Fig. 4 Breakdown of (a) the virus dataset and (b) the plant dataset. The number of proteins shown in each subcellular
location represents the number of ‘locative proteins’ [52,54]. Here, in (a), 207 actual proteins have 252 locative proteins; in
(b), 978 actual proteins have 1055 locative proteins.

Table 1 Statistical properties of the two datasets used in our experiments. M : number of subcellular locations; N : number
of actual proteins; LC: label cardinality; LD: label density; DLS: distinct label set; PDLS: proportion of distinct label set;
and TLN : total locative number.

Dataset M N LC LD DLS PDLS TLN

Virus 6 207 1.2174 0.2029 17 0.0821 252
Plant 12 978 1.0787 0.0899 32 0.0327 1055

Among all the metrics mentioned above, OAA is the

most stringent and objective. This is because if some

(but not all) of the subcellular locations of a query

protein are correctly predict, the numerators of the

other 4 measures are non-zero, whereas the numerator

of OAA in Eq. 8 is 0 (thus contribute nothing to the fre-

quency count). Note that OAA and HL are equivalent

to absolute-true and absolute-false, respectively, used in

[70].

In statistical prediction, leave-one-out cross valida-

tion (LOOCV) is considered to be the most rigorous

and bias-free method [71]. Hence, LOOCV was used to

examine the performance of AD-SVM.

6 Results and Analysis

6.1 Effect of Adaptive Decisions on OAA

Because OAA is the most objective and stringent crite-

ria of all the performance metrics, we first analyze the

effect of the adaptive-decision parameter θ (in Eq. 6) on

OAA using the two benchmark datasets. Fig. 5 shows

the OAA of AD-SVM on the virus dataset and the plant

dataset with respect to the adaptive-decision parame-

ter θ based on leave-one-out cross-validation. As can be

seen, for the virus dataset, as θ increases from 0.0 to

1.0, the overall actual accuracy increases first, reaches
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Fig. 5 OAA of AD-SVM based on leave-one-out cross-
validation (LOOCV) varying with θ using the virus and plant
datasets, respectively. θ = 0 represents the performance of
mGOASVM.

the peak at θ = 0.3 (with an actual accuracy of 93.2%),

and then decreases.

An analysis of the predicted labels {L(Pi); i = 1, . . . , N}
suggests that the increases in OAA is due to the re-

duction in the number of over-prediction, i.e., the num-

ber of cases where |M(Pi)|> |L(Pi)| has been reduced.
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When θ > 0.3, the benefit of reducing the over-prediction

diminishes because the criterion in Eq. 4 becomes so

stringent that some of the proteins were under-predicted,

i.e., the number of cases where |M(Pi)|< |L(Pi)| in-

creases. Note that the performance at θ = 0.0 is equiv-

alent to the performance of mGOASVM, and that the

best OAA (93.2% when θ = 0.3) obtained by the pro-

posed decision scheme is more than 4% (absolute) higher

than mGOASVM (88.9%).

For the plant dataset, when θ increases from 0.0 to

1.0, the overall actual accuracy increases from 87.4%,

and then fluctuates around 88%. If we take the same θ

as that for the virus dataset, i.e., θ = 0.3, the perfor-

mance of AD-SVM is 88.3%, which is still better than

that of mGOASVM at θ = 0.0.

6.2 Effect of Adaptive Decisions on All Performance

Metrics

Then, we extended the analysis from OAA to all of the

performance metrics. Fig. 6(a) shows all of the perfor-

mance metrics of AD-SVM on the virus dataset for dif-

ferent values of θ based on leave-one-out cross-validation

(LOOCV). Note that when θ = 0.0, AD-SVM is equiva-

lent to mGOASVM [54]. As can be seen, as θ increases

from 0.0 to 1.0, the OAA of AD-SVM increases first,

reaches the peak at θ = 0.3, with OAA = 0.932, which

is more than 4% (absolute) higher than mGOASVM

(0.889). The Precision increases until θ = 0.6 and then

remains almost unchanged when θ ≥ 0.6. On the con-

trary, OLA and Recall peak at θ = 0.0, and these mea-

sures drop almost linearly with θ until θ = 1.0. Among

these metrics, no matter how θ changes, OAA is no

higher than other five measurements.

An analysis of the predicted labels {L(Pi); i = 1, . . . , N}
suggests that the increase in OAA is due to the reduc-

tion in the number of over-prediction, i.e., the num-

ber of cases where |M(Pi)|>|L(Pi)|. When θ > 0.3,

the benefit of reducing the over-prediction diminishes

because the criterion in Eq. 4 becomes so stringent

that some of the proteins were under-predicted, i.e.,

the number of cases where |M(Pi)|< |L(Pi)|. When θ

increases from 0.0 to 0.3, the number of cases where

|M(Pi)|> |L(Pi)| decreases while at the same time

|M(Pi) ∩ L(Pi)| remains almost unchanged. In other

words, the denominators of Accuracy and F1-score de-

crease while the numerators for both metrics remain al-

most unchanged, leading to better performance for both

metrics. When θ > 0.3, for the similar reason mentioned

above, the increase in under-prediction outweighs the

benefit of the decrease in over-prediction, causing per-

formance loss. For Precision, when θ > 0.3, the loss due

to the stringent criterion is counteracted by the gain

due to the reduction in |M(Pi)|, the denominator of

Precision. Thus, the Precision increases monotonically

when θ increases from 0 to 1. However, OLA and Re-

call decrease monotonically with respect to θ because

the denominator of these measures is independent of

|M(Pi)| and the number of correctly predicted labels

in the numerator decreases when the decision criterion

is getting stricter.

Fig. 6(b) shows the performance of AD-SVM on the

plant dataset for different values of θ based on LOOCV.

In Fig. 6(a), when θ increases from 0.0 to 1.0, the OAA

of AD-SVM increases from 0.874, and then fluctuates

around 0.880. The OAA (0.887) of AD-SVM peaks at

θ = 0.2. This suggests that the optimal value of θ is

dataset-dependent. Other metrics show similar perfor-

mance trend as those in the virus dataset when θ varies

from 0.0 to 1.0. Similar analysis mentioned above can

be applied to those for the plant dataset.

When comparing Fig. 6(b) with Fig. 6(a), we found

that the performance metrics for the plant dataset is

less sensitive to the change of θ than those for the virus

dataset. But the OAA can be improved at a certain op-

timal value when θ varies from 0 to 1 for both datasets.

6.3 Comparing AD-SVM with State-of-the-art

Predictors

Table 2 and Table 3 compare the performance of AD-

SVM against state-of-the-art predictors on the virus

and plant dataset, respectively. All of the predictors

use the information of GO terms as features. From

the classification perspective, both Virus-mPLoc [50]

and Plant-mPLoc [51] use ensemble OET-KNN (op-

timized evidence-theoretic K-nearest neighbors) classi-

fiers; both iLoc-Virus [52] and iLoc-Plant [53] use multi-

label KNN classifiers; mGOASVM [54] uses a multi-

label SVM classifier; and the proposed AD-SVM uses

a multi-label SVM classifier incorporated with the pro-

posed adaptive decision scheme.

As shown in Table 2, AD-SVM significantly out-

performs Virus-mPLoc and iLoc-Virus. Both the OLA

and OAA of AD-SVM are more than 15% (absolute)

higher than iLoc-Virus. Although the OLA of AD-SVM

is slightly smaller than that of mGOASVM, the OAA of

AD-SVM is more than 4% (absolute) higher than that

of mGOASVM. In terms of Accuracy, Precision, F1 and

HL, AD-SVM performs better than mGOASVM. In

terms of Recall, mGOASVM performs the better. This

is understandable because according to the analysis in

the Section 4.2, the Recall decreases when θ increases.

The results suggest that the multi-label SVM classifiers

using the proposed adaptive decision scheme perform
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Fig. 6 Performance of AD-SVM based on leave-one-out cross-validation (LOOCV) varying with θ on (a) the virus dataset
and (b) the plant dataset, respectively. θ = 0 represents the performance of mGOASVM.

Table 2 Comparing AD-SVM with state-of-the-art multi-label predictors based on leave-one-out cross validation (LOOCV)
using the virus dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

Virus-mPLoc [50] iLoc-Virus [52] mGOASVM [54] AD-SVM
1 Viral capsid 8/8 = 100.0% 8/8 = 100.0% 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 19/33 = 57.6% 25/33 = 75.8% 32/33 = 0.970 32/33 = 0.970
3 Host ER 13/20 = 65.0% 15/20 = 75.0% 17/20 = 0.850 17/20 = 0.850
4 Host cytoplasm 52/87 = 59.8% 64/87 = 73.6% 85/87 = 0.977 83/87 = 0.954
5 Host nucleus 51/84 = 60.7% 70/84 = 83.3% 82/84 = 0.976 82/84 = 0.976
6 Secreted 9/20 = 45.0% 15/20 = 75.0% 20/20 = 1.000 20/20 = 1.000

Overall Actual Accuracy (OAA) – 155/207 =74.8% 184/207 = 0.889 193/207 = 0.932
Overall Locative Accuracy (OLA) 152/252 = 60.3% 197/252 = 78.2% 244/252 = 0.968 242/252 = 0.960

Accuracy – – 0.935 0.953
Precision – – 0.939 0.960

Recall – – 0.973 0.966
F1 – – 0.950 0.960
HL – – 0.026 0.019

better than the state-of-the-art classifiers. The individ-

ual locative accuracies of AD-SVM are also comparable

to mGOASVM.

Similar conclusions can be drawn from Table 3, where

the superiority of AD-SVM over mGOASVM on the

plant dataset seems to be not so obvious compared to

that in Table 2.

7 Conclusions

This paper proposes an adaptive-decision based multi-

label SVM classifier, namely AD-SVM, to predict sub-

cellular localization of both single- and multi-location

proteins. Given a query protein, by using the successive-

search strategy, the GO information is extracted by

using either its AC or its homologous AC as keys to

search against GO annotation database, which is sub-

sequently used to construct term-frequency based GO

vectors. After scoring the GO vectors by the multi-label

SVM classifier, the predicted results are determined by

an adaptive-decision scheme, which can efficiently re-

duce the false positives while imposing little influence

on the correctly predicted ones. Results on two bench-

mark datasets demonstrate that the adaptive threshold

scheme can be readily integrated into multi-label SVM

classifiers.

The advantages of AD-SVM over existing state-of-

the-art predictors can be summarized as follows: (1)

it incorporates an adaptive-decision based scheme to

determine the number of predicted subcellular loca-

tions and thus it can improve the generalization ca-

pabilities of multi-label SVM classifiers; (2) it adopts

a successive-search strategy to retrieve GO information

from the GOA database to guarantee that AD-SVM is

applicable to every query protein; and (3) it uses term-

frequency based GO information to construct feature

vectors which contains richer discriminative informa-

tion than conventional 1-0 value methods.
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Table 3 Comparing AD-SVM with state-of-the-art multi-label predictors based on leave-one-out cross validation (LOOCV)
using the plant dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

Plant-mPLoc [51] iLoc-Plant [53] mGOASVM [54] AD-SVM
1 Cell membrane 24/56 = 42.9% 39/56 = 69.6% 53/56 = 0.946 52/56 = 0.929
2 Cell wall 8/32 = 25.0% 19/32 = 59.4% 27/32 = 0.844 27/32 = 0.844
3 Chloroplast 248/286 = 86.7% 252/286 = 88.1% 272/286 = 0.951 271/286 = 0.948
4 Cytoplasm 72/182 = 39.6% 114/182 = 62.6% 174/182 = 0.956 167/182 = 0.917
5 Endoplasmic reticulum 17/42 = 40.5% 21/42 = 50.0% 38/42 = 0.905 38/42 = 0.905
6 Extracellular 3/22 = 13.6% 2/22 = 9.1% 22/22 = 1.000 22/22 = 1.000
7 Golgi apparatus 6/21 = 28.6% 16/21 = 76.2% 19/21 = 0.905 19/21 = 0.905
8 Mitochondrion 114/150 = 76.0% 112/150 = 74.7% 150/150 = 1.000 149/150 = 0.993
9 Nucleus 136/152 = 89.5% 140/152 = 92.1% 151/152 = 0.993 148/152 = 0.974
10 Peroxisome 14/21 = 66.7% 6/21 = 28.6% 21/21 = 1.000 21/21 = 1.000
11 Plastid 4/39 = 10.3% 7/39 = 17.9% 39/39 = 1.000 36/39 = 0.923
12 Vacuole 26/52 = 50.0% 28/52 = 53.8% 49/52 = 0.942 48/52 = 0.923

Overall Actual Accuracy (OAA) – 666/978 = 68.1% 855/978 = 0.874 867/978 = 0.887
Overall Locative Accuracy (OLA) 672/1055 = 63.7% 756/1055 = 71.7% 1015/1055 =0.962 998/1055 = 0.946

Accuracy – – 0.926 0.928
Precision – – 0.933 0.941

Recall – – 0.968 0.956
F1 – – 0.942 0.942
HL – – 0.013 0.013
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