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Abstract

Imbalanced datasets are commonly encountered in real-world classification prob-

lems. Many machine learning algorithms are originally designed for well-balanced

datasets, therefore re-sampling has become an important step to pre-process im-

balanced data. This aims to balance the datasets by increasing the samples of the

smaller class or decreasing the samples of the larger class, which are known as

over-sampling and under-sampling, respectively. In this paper, a sampling strat-

egy that is based on both over-sampling and under-sampling is proposed, in which

the new samples of the smaller class are created based on fuzzy logic. Improve-

ment of the datasets is done by the evolutionary computational method of Cross-

generational elitist selection, Heterogeneous recombination and Cataclysmic mu-
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tation (CHC) that under-samples both the minority and majority samples. Con-

sequently, a hybrid preprocessing method is proposed to re-sample imbalanced

datasets. The evaluation is done by applying the Support Vector Machine (SVM),

C4.5 decision tree and nearest neighbor rule to train a classification model from

the re-sampled training sets. From the experimental results, it can be seen that our

proposed method improves both the F −measure and AUC. The over-sampling

rate and complexity of the classification model are also compared. Our proposed

method is found to be superior to all other methods under comparison and it is

more robust in different classifiers.

1. Introduction

The classification of imbalanced datasets has recently been a popular topic

[22] and [27]. Most machine learning tools, such as neural networks and support

vector machines (SVMs), were originally designed for well-balanced datasets.

Therefore, if the dataset is imbalanced, the performance of the classifier can be

poor. The reason for this is apparent. For example, considering a dataset with

99% of data from class A and only 1% of data from class B, then the accuracy is

99% if the classifier ignores the data from class B and labels the whole dataset as

class A. It is already very hard to achieve an accuracy above 99% by using most of

the learning algorithms. However, the minority class of datasets is usually more

important and meaningful. For example, in a medical problem, there are much
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fewer samples of people with a particular disease than those of healthy people. If

a classifier is needed to label whether some people are infected or not, then the

minority class (i.e. people with a particular disease) is the class of interest.

Problems with imbalanced datasets can easily be found in the real world, such

as intrusion detection [9], speech recognition [26], identification of power distri-

bution fault causes [41], and bioinformatics problems [16]. There are two main

approaches to solve problems caused by imbalanced datasets: the first is the data

level approach and the second is the algorithm level approach. The data level ap-

proaches [3], [8], [18], and [28] include balancing the class distribution by over-

sampling the minority class or under-sampling the majority class. The algorithm

level approaches improve the existing machine learning methods by adjusting the

probabilistic estimate [38], modifying the cost per class [32], adding some penalty

constants [25], or learning from one class instead of two classes [35] and [30].

Many experiments show that re-sampling is a good data level approach to

handle imbalanced data; see, for example, [12], [15], and [42]. Moreover, it is

more flexible because it does not depend on the chosen classifier. Therefore, we

will focus on re-sampling in this paper. There are three main types of strategies

for re-sampling data. The first is over-sampling, which can be done randomly or

by the Synthetic Minority Over-sampling Technique (SMOTE) [8]. The second is

under-sampling, which includes Tomek links [37] and the Neighborhood Cleaning

Rule (NCL) [24]. The last is the hybrid method, which combines the two previous
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methods (over-sampling and under-sampling methods).

The importance of designing sampling strategies has been discussed in [31],

which may affect the successful learning of different classes. Hybrid re-sampling

methods are reported to have the advantage of treating datasets with a high imbal-

anced ratio, see [3] and [6]. Although some hybrid methods have been proposed

to reduce the over-generalization problem from over-sampling methods, most of

these methods are based on SMOTE and the results may be limited by the syn-

thetic samples of SMOTE, see [3], [34], and [40] . Therefore, a hybrid re-sampling

method is proposed in this paper. Fuzzy logic, which is a useful tool to treat imbal-

anced datasets [12], is used to over-sample the minority class samples instead of

SMOTE. A fuzzy rule base is formed based on the samples of the minority class.

A rule is then selected randomly with reference to the effectiveness of each rule.

The selected rule is used as the criteria to generate a new sample of the minority

class. These steps will repeat until the majority class and minority class are the

same size.

A large over-sampled training dataset will increase the complexity of the clas-

sification model and decrease the efficiency of the learning algorithm. It will

also easily cause over-generalization, especially for some noisy datasets. This

happens because the decision boundary could become narrow or the overlapping

area between the majority class and minority class could become large after over-

sampling. Therefore, an evolutionary algorithm (EA) is applied to both the syn-
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thetic samples and majority samples to under-sample the dataset. The chosen

EA is the Cross-generational elitist selection, Heterogeneous recombination and

Cataclysmic mutation (CHC) algorithm [11], which is able to select the most rep-

resentative instances among the many algorithms studied in [5].

We will carry out experiments to compare our proposed method with three

SMOTE-extended over-sampling methods, four hybrid re-sampling methods, and

one under-sampling method, which are: SMOTE, Safe-Level-SMOTE [4], Adap-

tive Synthetic Sampling [21], SMOTE+Tomek Links [3], SMOTE+Rough Set

[34], SMOTE+CHC (sCHC) [40], agglomerative hierarchical clustering [10], and

EUSCHC [14]. A total of 44 imbalanced datasets from the UCI Repository [2]

are used in the experiments. The SVM [7], C4.5 decision tree [33], and nearest

neighbor rule (1NN) are used as tools to reach a classification model for each re-

sampled dataset and evaluate each re-sampling method. The evaluation measures

are based on the F − measure and the area under the receiver operating char-

acteristic curve (AUC). Although there are many hybrid pre-processing methods,

only some of them are similar to our method, and consider and focus on the data

size. In this paper, CHC is used to reduce the data size and achieve a good per-

formance. Additionally, the proposed method enhances the performance in the

over-sampling stage by taking advantage of the fuzzy rule base.

The rest of this paper is organized as follows. In Section 2, some preprocessing

methods and CHC are reviewed. Section 3 presents the details of the proposed

5



re-sampling strategy and the evaluation method. To show the effectiveness of

our proposed approach, the comparisons with other methods and the results are

discussed in Section 4. We will draw a conclusion in Section 5.

2. Previous Work

This section describes some previous works that have used re-sampling meth-

ods, which will then be compared with our proposed method in the experiments.

The concepts of the CHC will also be discussed.

2.1. Re-sampling Methods

As discussed in the previous section, there are three main strategies for re-

sampling data, which will be described in more detail in the following subsections.

2.1.1. Over-sampling Methods

Some instances are produced for the minority class to balance the class distri-

bution. The simplest is a non-heuristic method (random over-sampling) that repli-

cates samples of the original minority class to generate the new instances. This

method easily causes over-fitting because the new instances copy exactly from

the original minority class. SMOTE [8] is a well-known method that creates the

new instances by interpolating several minority samples that join together. This

method makes use of each minority class sample and inserts synthetic samples

along the line segments, joining any/all of the k minority class nearest neighbors
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to over-sample the minority class. An example is shown in Fig. 1. Five nearest

neighbors are used, where xi is a selected sample of minority class, xi1 to xi5

are the five nearest neighbors of xi, and s1 to s5 are the synthetic samples cre-

ated by interpolation. If the degree of over-sampling required is 300%, then three

synthetic examples are selected randomly from s1 to s5.

Figure 1: Example of SMOTE with five nearest neighbors.

Because the synthetic samples provide a less specific and larger decision re-

gion, the over-fitting problem can be reduced. However, this method may intro-

duce more minority synthetic samples in the area of majority class, where the

minority class is very sparse with respect to the majority class. This causes the

problem of over-generalization, which means that the decision boundary is very

narrow or there is a large overlapping area between the majority class and mi-

nority class. Therefore, some methods have been developed based on SMOTE

to overcome this limitation, such as Borderline-SMOTE (sBorder) [19], Adaptive

Synthetic Sampling (ADASYN) [21], Safe-Level-SMOTE (sSafe) [4], and SPI-
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DERS [29].

2.1.2. Under-sampling Methods

Some instances of majority class are eliminated to balance the class distri-

bution. The simplest is random under-sampling (RUS), which aims to balance

the datasets by randomly removing samples of the majority class. However, this

method may easily remove some useful data. The other representative methods

include: (i) condensed nearest neighbor rule (CNN) [20], which eliminates the

majority class samples that are distant from the decision border; (ii) Tomek links

(TL) [37], which edits out noisy and borderline majority class samples; (iii) one-

sided selection (OSS) [23], which is an integrated method of TL and CNN; and,

(iv) the neighborhood cleaning rule (NCL) [24], which is based on the Wilson’s

Edited Nearest Neighbor Rule (ENN) [39] to remove the majority class samples

that lead to misclassification.

2.1.3. Hybrid Methods

Although both over-sampling and under-sampling can balance the class dis-

tribution, they do have drawbacks, such as over-generalization and the removal

of useful data. Therefore, some hybrid methods have been developed to com-

bine SMOTE and under-sampling as a data cleaning method to reduce the prob-

lem. Example hybrid methods include SMOTE+Tomek links (sTL), which uses

TL to remove samples of both classes to increase the area of decision border,
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and SMOTE+ENN (sENN) [3], which uses ENN to remove the samples that are

misclassified by their nearest neighbors. Rough set theory (sRST) [34] and evo-

lutionary algorithm (sCHC) [40] have also been applied on SMOTE to select the

samples and increase the accuracy of the classification.

Most of these hybrid methods make use of SMOTE to perform over-sampling.

Clustering techniques have also been developed to perform under-sampling and

over-sampling, such as agglomerative hierarchical clustering (AHC) [10].

2.2. CHC [11]

CHC is a kind of EA that combines a selection strategy with a highly disruptive

recombination operator. To avoid premature convergence and maintain diversity,

incest prevention and cataclysmic mutation are introduced. The CHC process can

be described as follows. First, a population set of chromosomes P is created. Each

chromosome pi = (pi1, pi2, . . . , pin) is an n-dimensional vector, which is a set of

genes, where pij is the jth gene value (j = 1, 2, . . . , n) of the ith chromosome in

the population (i = 1, 2, . . . , m), m is the population size, and n is the number of

genes. Second, the chromosomes are evaluated by a defined fitness function. The

form of the fitness function depends on the application. Third, an intermediate

population set of chromosomes C, which is of the same size as P , is generated by

copying all of the members of P in a random order.

A uniform crossover (HUX) operator is then applied on C to form C ′. HUX
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exchanges half of the genes randomly between the chromosomes one by one to

form C ′. CHC also uses an additional method for incest prevention. Before apply-

ing HUX to the chromosomes, the Hamming distance between them is calculated.

If half of that distance is larger than a difference threshold d, then HUX is applied;

otherwise these two chromosomes are deleted from C. Therefore, the size of C ′

may be smaller than that of P or C. The initial threshold d is set at n/4. After C ′

has formed, it is evaluated by the fitness function and an elitist selection is taken.

Only the best chromosomes from both P and C ′ are selected to form the offspring

population in the next generation. If the offspring population is the same as P ,

then the difference threshold d is decreased by one.

CHC is different from the traditional genetic algorithm because mutation is

not performed at the recombination stage. CHC performs partial reinitialization

(divergence) when the search becomes trapped (i.e., the difference threshold d be-

comes zero and no new offspring population is formed for several generations).

The population is reinitialized, based on the best chromosome, by changing the el-

ements’ values randomly with a user-defined divergence rate Drate. For example,

if Drate equals to 0.35, the values of 35% elements will be changed randomly. The

search is then resumed with a new difference threshold d = Drate ∗(1−Drate)∗n.

This process is called cataclysmic mutation.

CHC has shown the ability to select the most representative instances among

the other algorithms studied in [5]. Therefore, it is chosen to improve the outcome
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of over-sampling in this paper.

3. Methodology

In this section, the proposed hybrid preprocessing method and the evaluation

methods used in this paper are discussed. The proposed method has two stages.

The minority samples of the training sets are first over-sampled based on fuzzy

logic to form a fuzzy rule base (FRB). To improve the performance, CHC is then

implemented to reduce both the synthetic samples and majority samples.

3.1. Fuzzy Rule Base (FRB)

In this paper, let the positive class be the minority class and only λ training

samples (Xα) of positive class are considered, where Xα = (xα1, . . . , xαγ) is an

γ-dimensional vector, α = 1, 2, . . . , λ and xαβ is the βth attribute value (β =

1, 2, . . . , γ) of the αth training sample. The θth fuzzy if-then rule is written as

follows:

Rule θ : IF z1 is Aθ
1 AND . . . AND zγ is Aθ

γ

THEN class = positive with wθ (1)

where Aθ
β is a fuzzy term of the θth rule corresponding to the attribute zβ, β =

(1, 2, . . . , γ) and z = (z1, z2, . . . , zγ) is a γ-dimensional attribute vector, and wθ

is the rule weight. The regular triangular membership functions are used for the

fuzzy terms. In this paper, the fuzzy terms Aθ
β are derived based on the samples
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of positive class. The minimum and maximum values of each attribute are first

found. The fuzzy terms are the triangular membership functions within the range

of each attribute. The fuzzy terms also depend on the number of labels. Because

regular triangular membership functions are used, the fuzzy terms are distributed

evenly within the range of each attribute.

The fuzzy rules are generated based on the samples of positive class. For

each sample, the label with the highest membership value is selected to form the

corresponding rule for each attribute. The maximum number of rules depends on

the number of labels and attributes.

The rule weight wθ is used to reflect the degree of matching of each fuzzy rule

over all the positive samples, so that the importance of each rule can be evaluated.

First, the fuzzy value of each sample is calculated. The fuzzy value of Xα for the

θth fuzzy rule is then defined as follows:

µAθ(Xα) = T (µAθ
1

(xα1), . . . , µAθ
γ
(xαγ)), (2)

where the product T-norm is used. The rule weight (wθ) is calculated by adding

all the fuzzy values of samples.

wθ =

λ∑

α=1

(µAθ(Xα)). (3)

After the rule base of the positive class is generated, the rules are randomly

drawn based on the rule weight. The rule that has a higher rule weight will have a
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higher probability to be chosen. Then, a new sample is generated within the area

of the selected rule. These processes are repeated until the number of positive

samples is the same as that of the negative samples.

To illustrate this idea more clearly, Fig. 2 shows the distribution of two classes

with two attributes as an example of the formulation of fuzzy rules. The x-axis

and y-axis govern the values of the two different attributes and regular triangu-

lar membership functions with five labels are used. The circle dots correspond

to the negative class and the square dots correspond to the positive class. The

dashed lines show the minimum or maximum value of the corresponding attribute

of the positive samples. Because only the attribute vectors of the positive class

are considered to generate fuzzy rules, a total of 10 rules can be formed in this

example:
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Rule 1: IF z1 is A1
1 = L1 1 AND z2 is A1

2 = L2 4. THEN class = positive with 0.897

Rule 2: IF z1 is A2
1 = L1 2 AND z2 is A2

2 = L2 3. THEN class = positive with 1.147

Rule 3: IF z1 is A3
1 = L1 2 AND z2 is A3

2 = L2 4. THEN class = positive with 1.508

Rule 4: IF z1 is A4
1 = L1 3 AND z2 is A4

2 = L2 3. THEN class = positive with 1.230

Rule 5: IF z1 is A5
1 = L1 3 AND z2 is A5

2 = L2 4. THEN class = positive with 2.344

Rule 6: IF z1 is A6
1 = L1 3 AND z2 is A6

2 = L2 5. THEN class = positive with 1.607

Rule 7: IF z1 is A7
1 = L1 4 AND z2 is A7

2 = L2 1. THEN class = positive with 0.727

Rule 8: IF z1 is A8
1 = L1 4 AND z2 is A8

2 = L2 4. THEN class = positive with 1.319

Rule 9: IF z1 is A9
1 = L1 4 AND z2 is A9

2 = L2 5. THEN class = positive with 1.731

Rule 10: IF z1 is A10
1 = L1 5 AND z2 is A10

2 = L2 4. THEN class = positive with 1.399

where z1 and z2 represent Attribute 1 and Attribute 2 for the x-axis and y-axis,

respectively, in Fig. 2, L1 i is the i-th label of z1 attribute, L2 i is the i-th label

of z2 attribute. Rule 5 has the highest rule weight and rule 7 has the lowest rule

weight in this example.

To generate the synthetic samples, one rule out of these 10 rules is chosen with

the probability of selection depending on the rule weight. This rule then sets the

criteria of the highest and lowest value of each attribute. The new sample is gen-

erated randomly within these criteria. This process is repeated until the number of
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the positive class is the same as that of the negative class. Fig. 3 shows the sam-

ples’ distribution after over-sampling. The triangle dots represent the synthetic

samples. It is found that the spread of the synthetic samples is similar to that of

the original positive samples (shown as the square dots). The synthetic samples in

Fig. 3 are dense in the area of rule 5.

Figure 2: Example of the distribution of imbalanced dataset. The y-axis represents the values of

z2 and x-axis represents the value of z1.

3.2. Setting the CHC

After over-sampling, the number of minority samples is the same as that of ma-

jority samples and CHC is then applied. The representation of each chromosome
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Figure 3: Distribution of the samples after over-sampling. The y-axis represents the values of z2

and x-axis represents the value of z1.

and the definition of fitness function need to be addressed before the algorithm is

employed. Fig. 4 shows the block diagram of the process of FRB+CHC.

3.2.1. Chromosome Representation

CHC is used to reduce the synthetic samples and also the majority class sam-

ples. Therefore, the chromosomes are used to represent subsets of these samples.

This can be carried out by a binary representation. Each chromosome is an n-

dimensional vector. In this section, n is the number of synthetic samples plus ma-

jority class samples. Each vector element shows whether or not the corresponding

sample exists in the subset of the training set. Therefore, there are two possible
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Figure 4: Block diagram of FRB+CHC.

values for each element: 0 and 1. If the value is 1, then the corresponding sample

is included in the subset of the training set. If the value is 0, then the sample does

not exist in the subset.

3.2.2. Fitness Function

In this study, the k-NN classifier is used as the evaluation method of CHC

to obtain the subset with the highest classification rate. Normally, accuracy (i.e.

the ratio of correctly classified samples to total number of samples) would be

used as the measure of classification rate. However, this may cause difficulty for

the imbalanced datasets during testing because the correct classification rate of

the majority samples may affect the accuracy more significantly than that of the

minority samples. Therefore, some other measures are used in this paper. These

measures are commonly employed to analyze problems with imbalanced datasets.

First, precision and recall are introduced [17]. Their definitions are given as
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follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP is the number of true positives, FP is the number of false positives and

FN is the number of false negatives. A high value of precision indicates that the

predicted positive samples are most likely to be relevant. A high value of recall

indicates that most of the positive samples can be predicted correctly.

A popular evaluation metric for imbalanced problems is F − measure [17],

which is a function of precision and recall. In principle, F −measure represents

a harmonic mean between precision and recall. A high value of F − measure

means both the precision and recall values are high and do not differ very much.

This is an important measure for imbalanced datasets because a high value can

imply that the method classifies the positive samples correctly at a high rate with

little misclassified negative samples. This is defined as follows:

F −measure =
2 ∗ Precision ∗Recall

P recision+Recall
(6)

The area under the receiver operating characteristic curve (AUC) is also com-

monly used to measure the performance of classification. The AUC measure [13]

is the probability of correctly identifying a random sample, and it can be defined
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as follows:

AUC =
1 +Recall − FPrate

2
(7)

where Recall is defined in (5) and FPrate = FP
FP+TN

, TN is the number of true

negatives. FPrate defines the percentage of true negatives cases misclassified as

positives. A high value of AUC implies small values of FN and FP , which

indicates that the corresponding classifier is effective.

Because both F −measure and AUC are important measures on imbalanced

datasets, a multi-objective fitness function is used here. The chromosome with

both higher values of F − measure and AUC obviously has a higher rank. If a

chromosome X has a higher value of F −measure (FX > FY ) and a lower value

of AUC (AX < AY ) than that of chromosome Y , then the difference between

the chromosomes’ F − measure (|FX − FY |) and the difference between the

chromosomes’ AUC (|AX −AY |) will be compared. If |FX −FY | > |AX −AY |,

then chromosome X will be regarded as the better option; otherwise chromosome

Y will be regarded as the better option. This setting is also applied in sCHC for

the comparison in Section 4.

3.3. Evaluation

3.3.1. F −measure and AUC measures

To show the performance of our proposed method, F − measure in (6) and

AUC in (7) are used. The main drawback of over-sampling or hybrid sampling
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methods is that the number of training samples are increased greatly. This may

increase the complexity of the learning model. Therefore, the over-sampling rates

of different methods are also compared. Define:

Rateover =
(Nsampled −Noriginal)

Noriginal

∗ 100% (8)

where Nsampled is the number of samples in the re-sampled training set and Noriginal

is the number of samples in the original training set. The over-sampling rate in

(8) shows the increase rate of the number of the training samples. When a SVM is

used to form the classification mode, the increase rate of the support vectors can

be used to evaluate the complexity of the learning model. This rate is calculated

based on the support vectors generated.

RateSV =
(SVsampled − SVoriginal)

SVoriginal

(9)

where SVsampled is the number of support vectors trained by the re-sampled train-

ing set and SVoriginal is the number of support vectors trained by the original

training set. It should be noted that the CHC fitness evaluation for data size reduc-

tion (by k-NN) and the training of the classification model based on the resampled

data (by SVM) are two separate processes. K-NN is used in the fitness evaluation

because it is simple and has minimal computation effort. SVM is a commonly

used method to obtain the classification model.
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4. Experimental Study

In this section, we will present the experiments that are carried out to compare

our proposed method with other hybrid sampling methods and the CHC under-

sampling method. The datasets that we have used can be found in UCI Repository

[2].

The experiments involve several different kinds of hybrid methods, including

SMOTE, ADASYN, sTL, sSafe, sRST, sCHC, AHC and our proposed method,

which is named Fuzzy Rule Base+CHC (FRB+CHC). CHC, which is used as an

under-sampling method in [14] (EUSCHC), is also compared in the experiment.

To measure the performance of the preprocessing methods, the same learning tool

should be applied among all the experiments. In this study, three different tools

are used, which are the SVM, 1 Nearest Neighbor (1NN), and C4.5 decision tree.

The programs of all testing methods and the learning tools are based on KEEL,

which is open source software that is available via the Web [1]. F − measure

and AUC are used as measures to analyze the results. The average values of

these measures for each method will be calculated. Because the expansion of re-

sampled training datasets may increase the computational time and complexity of

the classification model, the over-sampling rate and the number of support vectors

formed from SVM will also be compared.
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4.1. Datasets

To study these methods on different datasets, 44 datasets with different imbal-

ance ratio (IR) are chosen. IR is the ratio of the number of majority class to the

number of minority class. Table 1 shows the details of the selected datasets, where

the number of samples (Nsamp.), the number of attributes (Nattr.), the distribution

of the minority and majority classes, and IR for each dataset can be found.

Table 1: Details of the Selected Imbalanced Datasets.

Dataset Nsamp. Nattr. Min., Maj.(%) IR

ecoli034vs5 200 7 (10, 90) 9

yeast2vs4 514 8 (9.92, 90.08) 9.08

ecoli067vs35 222 7 (9.91, 90.09) 9.09

ecoli0234vs5 202 7 (9.9, 90.1) 9.1

glass015vs2 172 9 (9.88, 90.12) 9.12

yeast0359vs78 506 8 (9.88, 90.12) 9.12

yeast0256vs3789 1004 8 (9.86, 90.14) 9.14

yeast02579vs368 1004 8 (9.86, 90.14) 9.14

ecoli046vs5 203 6 (9.85, 90.15) 9.15

ecoli01vs235 244 7 (9.83, 90.17) 9.17

ecoli0267vs35 224 7 (9.82, 90.18) 9.18

glass04vs5 92 9 (9.78, 90.22) 9.22

ecoli0346vs5 205 7 (9.76, 90.24) 9.25

ecoli0347vs56 257 7 (9.73, 90.27) 9.28

yeast05679vs4 528 8 (9.66, 90.34) 9.35

vowel0 988 13 (9.01, 90.99) 9.98

ecoli067vs5 220 6 (9.09, 90.91) 10
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Dataset Nsamp. Nattr. Min., Maj.(%) IR

glass016vs2 192 9 (8.85, 91.15) 10.29

ecoli0147vs2356 336 7 (8.63, 91.37) 10.59

led7digit02456789vs1 443 7 (8.35, 91.65) 10.97

ecoli01vs5 240 6 (8.33, 91.67) 11

glass06vs5 108 9 (8.33, 91.67) 11

glass0146vs2 205 9 (8.29, 91.71) 11.06

glass2 214 9 (7.94, 92.06) 11.59

ecoli0147vs56 332 6 (7.53, 92.47) 12.28

cleveland0vs4 177 13 (7.34, 92.66) 12.62

ecoli0146vs5 280 6 (7.14, 92.86) 13

shuttlec0vsc4 1829 9 (6.72, 93.28) 13.87

yeast1vs7 459 7 (6.53, 93.47) 14.3

glass4 214 9 (6.07, 93.93) 15.47

ecoli4 336 7 (5.95, 94.05) 15.8

page blocks13vs4 472 10 (5.93, 94.07) 15.86

abalone918 731 8 (5.65, 94.25) 16.4

glass016vs5 184 9 (4.89, 95.11) 19.44

shuttlec2vsc4 129 9 (4.65, 95.35) 20.5

yeast1458vs7 693 8 (4.33, 95.67) 22.1

glass5 214 9 (4.2, 95.8) 22.78

yeast2vs8 482 8 (4.15, 95.85) 23.1

yeast4 1484 8 (3.43, 96.57) 28.1

yeast1289vs7 947 8 (3.16, 96.84) 30.57

yeast5 1484 8 (2.96, 97.04) 32.73

ecoli0137vs26 281 7 (2.49, 97.51) 39.14

yeast6 1484 8 (2.36, 97.64) 41.4
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Dataset Nsamp. Nattr. Min., Maj.(%) IR

abalone19 4174 8 (0.77, 99.23) 129.44

4.2. Setup of the Experiment

For over-sampling, the rules of the minority samples are associated with reg-

ular triangular membership functions with five fuzzy terms. For CHC, the values

of the parameters are:

• Population size: 50.

• Divergence rate: 0.35.

• Threshold decreasing rate: 0.001.

• k of k-NN classifier used as evaluation: 1.

• Number of evaluations: 5,000.

In this paper, SVM, 1NN, and C4.5 are used to weigh the influence of each

preprocessing method. For SVM, a radial basis function (RBF) is used as the

kernel because a non-linear classification model is needed and RBF is a commonly

used kernel to handle this problem. The RBF is defined as follows:

RBF = exp(−
1

σ
‖xi − x‖2) (10)

where σ > 0 is the parameter to determine the width of the radial basis function,

which controls the flexibility of the classifier. When σ decreases, the flexibility of
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the resulting classifier in fitting the training data increases, and this might easily

lead to over-fitting. The value of σ is set as 0.01. The tradeoff between training

error and margin of SVM is set as 100. These values are chosen through exper-

iments. For C4.5, the confidence level is set as 0.25, the minimum number of

item-sets per leaf is set to 2, and pruning is used as well to obtain the final tree.

For 1NN, the Euclidean distance metric is used.

A five-fold cross validation model is used to compare the classification results

from different preprocessing methods. Each dataset are first divided into five parts

randomly. Four of them are combined to form a training set and the remaining

subset forms a testing set. The process is then repeated five times, so that each

subset is used once as a testing set. All of the methods involve some random

parameters, so five experiments are carried out for each five-fold cross validation

model and the average value are calculated as the results; that is, in total, 25

experiments were done.

4.3. Results

4.3.1. F −measure and AUC measures

Tables 2 and 3 show the SVM results on F − measure and AUC for each

re-sampling method on the 44 datasets respectively. The results of the original

datasets are shown in the second column and the best value for each dataset are

highlighted in bold. The last row shows the average value of each sampling
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method for the datasets. The performance of the FRB over-sampling method

are also included (in the rightmost column) for comparison with FRB+CHC. It

can be seen that the average values of F − measure and AUC in both FRB

and FRB+CHC are higher than other methods. The performance of sCHC and

FRB+CHC are similar. This shows that CHC has good performance as a data

cleaning method after over-sampling, especially for the results in F −measure.

The AUC values of SMOTE, sTL, sSafe, sRST and sCHC are similar since they

all use SMOTE to perform over-sampling. ADASYN gets the lowest average val-

ues of F−measure, which means the precision is low and the difference between

precision and recall is large.

In this experiment, the performance of FRB and FRB+CHC is very similar,

which shows the advantages of FRB over the other hybrid or over-sampling meth-

ods. However, the data size will be very large if only FRB is used as the pre-

processing method. FRB+CHC can reduce the data size without a large effect to

the performance. Therefore, only FRB+CHC will be considered in the following

section.

Table 4 shows the average rankings by means of F−measure and AUC using

Friedman’s method [36]. The highest value of each dataset is ranked as 1. If a

certain method obtains the ranking 3, 6, 2, and 1 on four datasets, then the average

ranking is (3+6+2+1)/4 = 3. Therefore, a lower average ranking indicates that

the corresponding method is better among the other methods. FRB+CHC obtains
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the best ranking by AUC and sCHC obtains the best ranking by F − measure.

Note that the highest average values of AUC or F − measure do not imply the

best ranking results because the ranking shows the comparison results among all

of the methods of each dataset. For example, EUSCHC has the lowest AUC

average values but its ranking is better than ADASYN. Given that EUSCHC is

an under-sampling method, it easily ignores some useful samples of the majority

class.
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Table 2: SVM: Average F −measure of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB

ecoli034vs5 0 0.5629 0.2667 0.5901 0.5578 0.5007 0.5054 0.6591 0.3111 0.5829 0.6337

yeast2vs4 0.6384 0.6824 0.5446 0.6683 0.6824 0.6787 0.6996 0.7418 0.6937 0.7015 0.6971

ecoli067vs35 0.0000 0.4540 0.3975 0.5122 0.4609 0.4447 0.5108 0.4758 0.3692 0.4308 0.6171

ecoli0234vs5 0.0000 0.5176 0.2917 0.5240 0.5012 0.4734 0.5577 0.6682 0.2667 0.6142 0.6462

glass015vs2 0.0000 0.3094 0.3181 0.3103 0.3301 0.3419 0.2137 0.1015 0.2850 0.2049 0.2275

yeast0359vs78 0.3481 0.3541 0.2965 0.3379 0.3580 0.3529 0.4117 0.3481 0.3666 0.3470 0.3481

yeast0256vs3789 0.1782 0.5282 0.4391 0.5206 0.5286 0.5325 0.5624 0.6033 0.5263 0.5899 0.2589

yeast02579vs368 0.8152 0.7199 0.5213 0.7179 0.7189 0.7201 0.7437 0.7487 0.7264 0.7747 0.85

ecoli046vs5 0.0000 0.3901 0.2000 0.3958 0.4084 0.4214 0.3827 0.6786 0.0667 0.5225 0.6584

ecoli01vs235 0.0000 0.4325 0.1648 0.4396 0.4352 0.4264 0.4844 0.5691 0.1385 0.4224 0.5536

ecoli0267vs35 0.0000 0.3158 0.2269 0.3257 0.2902 0.3253 0.3856 0.4035 0.1469 0.4592 0.5337

glass04vs5 1.0000 0.8793 0.8679 0.8747 0.9228 0.9209 0.9933 0.7854 1.0000 0.9631 0.9655

ecoli0346vs5 0.0000 0.5446 0.3636 0.6397 0.5741 0.5642 0.5985 0.7382 0.3404 0.6766 0.6768

ecoli0347vs56 0.0000 0.5743 0.4743 0.5628 0.5576 0.5104 0.5913 0.6669 0.1846 0.5176 0.5913

yeast05679vs4 0.0000 0.4327 0.4265 0.4282 0.4333 0.4250 0.5066 0.4996 0.4189 0.4786 0.5355

vowel0 1.0000 0.9936 0.9796 0.9905 0.9890 0.9816 0.9833 0.9396 1.0000 0.9060 0.9387

ecoli067vs5 0.0000 0.3260 0.2973 0.3463 0.3444 0.3225 0.3787 0.6848 0.2308 0.6173 0.6873

glass016vs2 0.0000 0.3196 0.3203 0.2686 0.3048 0.2963 0.2102 0.1395 0.3404 0.2001 0.2857

ecoli0147vs2356 0.0000 0.4230 0.3014 0.4960 0.4354 0.4435 0.5021 0.2230 0.0500 0.4043 0.5074

led7digit02456789vs1 0.7748 0.5707 0.6197 0.5226 0.5766 0.5156 0.7308 0.5691 0.5961 0.6746 0.7224

ecoli01vs5 0.0000 0.4138 0.2588 0.4482 0.4103 0.4946 0.4392 0.4140 0.2069 0.6843 0.7811

glass06vs5 1.0000 0.9057 0.9655 0.8953 0.8857 0.9083 0.9866 0.8654 1.0000 0.9783 0.9474

glass0146vs2 0.0000 0.2463 0.2512 0.2247 0.2473 0.2814 0.2823 0.1747 0.2931 0.2597 0.2768

glass2 0.0000 0.2477 0.2362 0.2329 0.2478 0.2988 0.2484 0.1131 0.3233 0.2019 0.26
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Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB

ecoli0147vs56 0.0000 0.5757 0.4148 0.6288 0.6022 0.5103 0.5164 0.6148 0.0571 0.6762 0.7609

cleveland0vs4 0.0000 0.1539 0.1556 0.1560 0.1263 0.1600 0.0923 0.2621 0.0000 0.1687 0.2030

ecoli0146vs5 0.0000 0.4280 0.1920 0.4112 0.4356 0.4422 0.3762 0.6993 0.3000 0.7456 0.7758

shuttlec0vsc4 0.9490 0.9740 0.8937 0.9749 0.9740 0.9817 0.9724 0.9707 0.9675 0.7964 0.8763

yeast1vs7 0.0000 0.2926 0.2870 0.2865 0.2939 0.2738 0.3120 0.0000 0.2861 0.3161 0.3381

glass4 0.8560 0.6633 0.6565 0.6590 0.6613 0.6463 0.8190 0.7164 0.8471 0.7273 0.7197

ecoli4 0.7500 0.6352 0.5082 0.6354 0.6389 0.6491 0.7931 0.7372 0.7109 0.7356 0.6617

page blocks13vs4 0.2270 0.2033 0.1907 0.2010 0.2034 0.1894 0.3563 0.0832 0.2270 0.1816 0.1907

abalone918 0.0444 0.4522 0.4172 0.4206 0.4474 0.4570 0.5221 0.2643 0.5303 0.5732 0.5561

glass016vs5 0.6650 0.5674 0.6592 0.5601 0.5668 0.6551 0.7548 0.4688 0.7273 0.7694 0.6857

shuttlec2vsc4 0.4 0.7152 0.7152 0.7152 0.7152 0.7288 0.6103 0.1593 0.4 0.6126 0.7395

yeast1458vs7 0 0.1318 0.1261 0.1260 0.1323 0.1344 0.1585 0 0.1398 0.1557 0.1187

glass5 0.7 0.5937 0.4551 0.5495 0.5932 0.4838 0.6583 0.3542 0.7 0.7533 0.8

yeast2vs8 0.6967 0.5972 0.2079 0.5905 0.5989 0.5984 0.7068 0.6967 0.6570 0.6967 0.6967

yeast4 0 0.2703 0.2464 0.2648 0.2715 0.2711 0.3076 0.0308 0.2714 0.3533 0.3398

yeast1289vs7 0 0.1395 0.1363 0.1357 0.1397 0.1308 0.1851 0 0.1488 0.1967 0.1776

yeast5 0 0.4843 0.4611 0.4742 0.4818 0.4751 0.5146 0.5802 0.5012 0.4476 0.4415

ecoli0137vs26 0 0.3976 0.2400 0.4681 0.4292 0.3636 0.4306 0.3158 0.1 0.3465 0.3826

yeast6 0 0.2698 0.2014 0.2606 0.2705 0.2670 0.3577 0 0.2756 0.3288 0.2759

abalone19 0 0.0408 0.0406 0.0403 0.0409 0.0486 0.0437 0 0.0411 0.0482 0.0445

Mean 0.2510 0.4711 0.3917 0.4734 0.4733 0.4693 0.5090 0.4492 0.4039 0.5179 0.5451

2
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Table 3: SVM: Average AUC of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB

ecoli034vs5 0.4972 0.7069 0.5889 0.7236 0.7047 0.6799 0.6747 0.8111 0.5972 0.8217 0.8472

yeast2vs4 0.7362 0.8924 0.8788 0.8900 0.8931 0.8892 0.8656 0.8804 0.8885 0.8757 0.8424

ecoli067vs35 0.5000 0.6860 0.6625 0.7063 0.6790 0.6700 0.6943 0.6675 0.6200 0.7860 0.8325

ecoli0234vs5 0.4972 0.6978 0.6140 0.7081 0.6943 0.6820 0.7181 0.8014 0.5917 0.8289 0.8112

glass015vs2 0.5000 0.7152 0.7352 0.7284 0.7376 0.7496 0.5905 0.4911 0.6484 0.5530 0.575

yeast0359vs78 0.6067 0.7344 0.6936 0.7281 0.7391 0.7334 0.7289 0.6067 0.7371 0.6062 0.6067

yeast0256vs3789 0.5486 0.7960 0.7734 0.7972 0.7965 0.7993 0.8038 0.8064 0.7918 0.7691 0.5761

yeast02579vs368 0.8695 0.9057 0.8610 0.9085 0.9035 0.9071 0.9041 0.9135 0.9052 0.9125 0.9078

ecoli046vs5 0.4973 0.6496 0.5614 0.6488 0.6574 0.6696 0.6395 0.7461 0.5195 0.7880 0.8427

ecoli01vs235 0.4955 0.6606 0.5377 0.6628 0.6598 0.6616 0.6758 0.7423 0.5405 0.7866 0.8659

ecoli0267vs35 0.5000 0.6073 0.5826 0.6093 0.6020 0.6113 0.6405 0.7035 0.5450 0.8176 0.8483

glass04vs5 1.0000 0.9754 0.9754 0.9728 0.9842 0.9830 0.9988 0.9570 1.0000 0.9732 0.9938

ecoli0346vs5 0.4973 0.6974 0.6115 0.7421 0.7124 0.7127 0.7170 0.7878 0.6169 0.8459 0.8656

ecoli0347vs56 0.5000 0.7569 0.7028 0.7594 0.7444 0.7294 0.7511 0.8071 0.5579 0.7888 0.8310

yeast05679vs4 0.5000 0.7869 0.7902 0.7862 0.7861 0.7797 0.7934 0.7860 0.7754 0.7899 0.7786

vowel0 1.0000 0.9993 0.9978 0.9990 0.9988 0.9981 0.9982 0.9933 1.0000 0.9892 0.9933

ecoli067vs5 0.5000 0.6103 0.6100 0.6155 0.6175 0.6106 0.6245 0.8000 0.5725 0.8125 0.845

glass016vs2 0.5000 0.7529 0.7529 0.7106 0.7464 0.7322 0.6239 0.5733 0.7517 0.6114 0.6552

ecoli0147vs2356 0.4984 0.6509 0.6154 0.6920 0.6580 0.6629 0.6891 0.6504 0.5102 0.8054 0.8441

led7digit02456789vs1 0.8788 0.8819 0.8867 0.8799 0.8856 0.8650 0.8946 0.9055 0.8600 0.8844 0.8921

ecoli01vs5 0.4977 0.6602 0.5864 0.6786 0.6566 0.6875 0.6659 0.7091 0.5727 0.8159 0.8432

glass06vs5 1.0000 0.9774 0.9950 0.9574 0.9629 0.9436 0.9895 0.9397 1.0000 0.9840 0.95

glass0146vs2 0.5000 0.6823 0.6849 0.6594 0.6821 0.7142 0.6717 0.5519 0.7153 0.6336 0.6808

glass2 0.5000 0.7132 0.6981 0.6938 0.7127 0.7607 0.6648 0.5248 0.7868 0.6078 0.6875

3
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Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB

ecoli0147vs56 0.5000 0.7160 0.6352 0.7460 0.7335 0.7053 0.6905 0.7722 0.5167 0.8578 0.9171

cleveland0vs4 0.4969 0.5622 0.5575 0.5526 0.5321 0.5421 0.5210 0.5991 0.4811 0.5857 0.6034

ecoli0146vs5 0.4981 0.6440 0.5654 0.6394 0.6467 0.6558 0.6260 0.7731 0.5962 0.8371 0.8442

shuttlec0vsc4 0.9515 0.9747 0.9872 0.9755 0.9747 0.9845 0.9731 0.9715 0.9749 0.9812 0.9897

yeast1vs7 0.5000 0.7583 0.7744 0.7632 0.7602 0.7500 0.6777 0.5000 0.7261 0.6932 0.7579

glass4 0.9092 0.9148 0.9176 0.9113 0.9143 0.9163 0.9333 0.9251 0.9350 0.9230 0.8942

ecoli4 0.8000 0.9101 0.9149 0.9143 0.9171 0.9426 0.9244 0.9528 0.9279 0.9368 0.9231

page blocks13vs4 0.5700 0.7528 0.7320 0.7493 0.7531 0.7298 0.6847 0.5609 0.5689 0.7141 0.732

abalone918 0.5125 0.8961 0.8860 0.8863 0.8939 0.8916 0.8745 0.5792 0.9144 0.8597 0.83

glass016vs5 0.8443 0.8856 0.9186 0.8791 0.8853 0.9221 0.8979 0.8071 0.8943 0.9186 0.8886

shuttlec2vsc4 0.7 0.9548 0.9548 0.9548 0.9548 0.9590 0.9440 0.6957 0.7 0.9493 0.9632

yeast1458vs7 0.5 0.6427 0.6373 0.6396 0.6444 0.6539 0.6638 0.5 0.6546 0.5958 0.5954

glass5 0.8451 0.8760 0.8256 0.8807 0.8845 0.8515 0.8515 0.8768 0.8451 0.8967 0.8927

yeast2vs8 0.7739 0.7628 0.7242 0.7614 0.7633 0.7770 0.7852 0.7739 0.8381 0.7739 0.7739

yeast4 0.5 0.8156 0.8102 0.8227 0.8160 0.8124 0.8177 0.5093 0.8127 0.7991 0.7663

yeast1289vs7 0.5 0.7141 0.7145 0.7133 0.7109 0.6968 0.7201 0.5 0.7202 0.6990 0.7453

yeast5 0.5 0.9668 0.9635 0.9655 0.9665 0.9655 0.9683 0.7976 0.9691 0.9621 0.9611

ecoli0137vs26 0.5 0.7118 0.5927 0.7390 0.7413 0.6909 0.7294 0.6427 0.5463 0.6655 0.6945

yeast6 0.5 0.8742 0.8597 0.8716 0.8744 0.8736 0.8735 0.5 0.8761 0.8880 0.8880

abalone19 0.5 0.7177 0.7170 0.7163 0.7180 0.7715 0.7166 0.5 0.6881 0.7016 0.7063

Mean 0.6141 0.7784 0.7519 0.7805 0.7795 0.7801 0.7703 0.7248 0.7339 0.8020 0.8133
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Table 4: Friedman Rankings of AUC and F −measure.

Preprocessing Method AUC F-measure

Original 8.841 7.568

SMOTE 4.636 5.341

ADASYN 6.159 7.341

sTL 4.864 5.636

sSafe 4.624 4.932

sRST 4.659 5.318

sCHC 4.886 3.477

EUSCHC 6 5.659

AHC 5.773 5.5

FRB+CHC 4.455 3.886

Although the hybrid sampling methods can get better results, their main draw-

back is that the size of the training set is greatly expanded. If the IR of the dataset

is large, then the size of the re-sampled training set can be nearly double that of

the original. This drawback may increase the computational time and complexity

of the learning model. Table 5 shows the over-sampling rates of different methods

on each dataset and the mean rate of each method. A negative value means that the

size of re-sampled training set is smaller than that of the original. A value greater

than 100% means that the size of re-sampled training set is more than two times

that of the original set. Both sCHC and FRB+CHC shrink most of the dataset

while the over-sampling rates of the other methods are similar. This shows that

both sCHC and FRB+CHC can use less training samples to achieve high perfor-
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mance. Table 6 shows the details of the re-sampled training sets after applying

FRB+CHC. It reveals the decrease rate of the majority class, the increase rate of

the minority class, and the updated IR. The IR values of the re-sampled training

sets are not always equal to 1 because CHC makes use of a fitness function to

select a subset of samples. The range of IR is between 0.9 and 1.5.

Table 7 shows the increase rate of the number of support vectors used to form

the classification model. The number of support vectors can reflect the complexity

of the classification model formed by SVM. When the number of support vectors

is smaller, the classification model is more easily applied. Some negative values

can be found because the number of support vectors for the re-sampled dataset is

less than that of the original dataset. Both sCHC and FRB+CHC have the smallest

increase rate of the number of support vectors, on average. The average number

of support vectors are only increased by around 0.776 times and 0.948 times of

the original datasets, while most of the other methods have increased by over two

times.

The results of sCHC and FRB+CHC are similar. To show the differences

between these two methods, Fig. 5 reveals the average AUC results obtained from

the training and testing sets (sorted by the nonlinearity of the 1NN classifier). The

x-axis shows the selected 44 datasets, the solid lines in the figures represent the

average AUC results for the testing set, and the dashed lines represent the average

AUC results for the training set. FRB+CHC shows the advantage on relaxing the
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Table 5: Over-sampling Rate (%) of Training Sets among Different Sampling Methods.

Dataset SMOTE ADASYN sTL sSafe sRST sCHC AHC FRB+CHC
ecoli0347vs56 80.53 80 77.63 80.53 100.77 -5.60 80 -3.06

yeast2vs4 80.16 80.16 76.85 80.16 80.16 -3.13 80.16 -3.90
ecoli067vs35 80.18 80.18 77.14 80.18 94.13 -5.19 80.18 -4.16
ecoli0234vs5 80.20 80.20 77.10 80.20 89.36 -4.46 80.20 -5.50
glass015vs2 80.23 80.23 70.79 80.23 80.23 -2.06 80.23 -2.28

yeast0359vs78 80.24 80.24 71.49 80.24 80.34 -4.90 80.24 -2.14
yeast0256vs3789 80.28 80.28 74.25 80.28 80.73 -5.70 80.28 -0.92
yeast02579vs368 80.28 80.28 76.97 80.28 80.28 -3.46 80.28 -2.52

ecoli046vs5 80.30 80.30 77.09 80.30 112.06 -3.99 80.30 -2.72
ecoli0147vs2356 84.01 80.33 80.02 84.01 119.57 -4.05 80.33 -1.50

ecoli0267vs35 80.36 80.36 76.56 80.36 94.65 -4.03 80.36 -2.62
glass04vs5 80.44 80.44 77.18 80.44 96.76 -4.40 80.44 -2.91
ecoli034vs5 80.20 80.49 77.72 80.20 86.63 -4.43 80.49 -2.73

ecoli0346vs5 80.39 80.54 78.18 80.39 87.98 -3.54 80.54 -3.12
yeast05679vs4 80.68 80.68 74.48 80.68 80.68 -5.71 80.68 -2.48

vowel0 81.78 81.78 81.78 81.78 84.56 -4.82 81.78 -4.29
ecoli067vs5 81.82 81.82 75.68 81.82 87.27 -4.78 81.82 -1.68
glass016vs2 82.29 82.29 73.18 82.29 82.29 -0.78 82.29 -2.11

ecoli0137vs26 90.48 82.74 87.65 90.48 169.85 -1.33 82.74 0.28
led7digit02456789vs1 83.30 83.30 78.39 83.30 94.02 -3.93 83.30 -7.90

ecoli0147vs56 83.97 83.33 79.91 83.97 137.03 -3.39 83.33 -1.73
glass06vs5 83.34 83.34 80.79 83.34 91.22 -2.71 83.34 -1.67

glass0146vs2 83.41 83.41 74.63 83.41 83.41 -0.94 83.41 -1.40
glass2 84.11 84.11 75.93 84.11 84.11 -2.07 84.11 -0.42

ecoli0146vs5 89.30 84.94 86.00 89.30 139.65 -3.34 84.94 -2.73
cleveland0vs4 84.97 84.97 80.35 84.97 205.49 -3.27 84.97 -1.13

ecoli01vs5 92.75 85.71 90.61 92.75 186.47 -3.58 85.71 -1.22
shuttlec0vsc4 86.55 86.55 86.50 86.55 136.58 -3.32 86.55 -3.17
yeast1458vs7 91.81 86.93 87.16 91.81 91.81 -1.13 86.93 -2.51

glass4 87.85 87.85 83.65 87.85 112.84 -2.68 87.85 -0.95
ecoli4 88.10 88.10 86.46 88.10 88.39 -1.59 88.10 -1.40

page blocks13vs4 88.14 88.14 86.60 88.14 157.10 -2.88 88.14 -0.86
abalone918 88.58 88.58 83.38 88.58 88.58 -1.72 88.58 -1.44
glass016vs5 90.22 90.22 88.45 90.22 94.57 -2.84 90.22 -1.03

shuttlec2vsc4 90.70 90.70 89.92 90.70 113.19 -3.86 90.70 -3.43
yeast1289vs7 92.32 91.34 88.44 92.32 92.32 -2.50 91.34 -2.35

glass5 91.59 91.59 89.37 91.59 92.76 -1.58 91.59 0.12
yeast2vs8 91.70 91.70 89.83 91.70 98.44 -1.86 91.70 -0.46

yeast4 93.13 93.13 90.09 93.13 93.13 -1.69 93.13 -1.16
yeast1vs7 89.62 93.66 85.04 89.62 89.62 -3.39 93.66 -3.31

yeast5 94.07 94.07 92.62 94.07 94.07 -1.66 94.07 -2.09
ecoli01vs235 82.59 95.02 78.95 82.59 106.04 -4.04 95.02 -0.59

yeast6 95.28 95.28 93.36 95.28 95.28 -2.54 95.28 -1.88
abalone19 98.47 98.47 97.32 98.47 98.47 1.04 98.47 -0.31

Mean 85.70 85.40 81.94 85.70 103.47 -3.13 85.40 -2.17
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Table 6: The Details of the Re-sampled Datasets After FRB+CHC.

Dataset

Decrease Rate of

Majority Class

Increase Rate of

Minority Class

Updated IR

ecoli034vs5 0.474 3.700 1.010
yeast2vs4 0.469 3.865 0.995

ecoli067vs35 0.500 4.224 0.874
ecoli0234vs5 0.488 3.463 1.048
glass015vs2 0.405 2.989 1.369

yeast0359vs78 0.418 3.995 1.064
yeast0256vs3789 0.452 4.005 1.002
yeast02579vs368 0.456 3.841 1.028

ecoli046vs5 0.469 3.900 1.001
ecoli01vs235 0.445 3.939 1.030

ecoli0267vs35 0.500 3.756 0.969
glass04vs5 0.464 4.325 0.934

ecoli0346vs5 0.476 4.188 0.935
ecoli0347vs56 0.452 3.940 1.032
yeast05679vs4 0.441 3.938 1.064

vowel0 0.514 4.619 0.863
ecoli067vs5 0.461 4.025 1.076
glass016vs2 0.393 3.635 1.357

ecoli0147vs2356 0.424 4.651 1.084
led7digit02456789vs1 0.499 4.603 0.983

ecoli01vs5 0.470 4.975 0.978
glass06vs5 0.482 5.339 0.910

glass0146vs2 0.392 4.568 1.212
glass2 0.449 4.826 1.101

ecoli0147vs56 0.475 5.510 0.992
cleveland0vs4 0.442 6.049 0.984
ecoli0146vs5 0.470 5.550 1.053
shuttlec0vsc4 0.507 6.530 0.908

yeast1vs7 0.420 5.525 1.277
glass4 0.489 6.651 1.038
ecoli4 0.463 7.300 1.024

page blocks13vs4 0.480 7.236 1.003
abalone918 0.478 7.658 0.994
glass016vs5 0.486 9.296 0.974

shuttlec2vsc4 0.514 9.900 0.936
yeast1458vs7 0.391 7.908 1.513

glass5 0.478 10.321 1.052
yeast2vs8 0.452 10.500 1.105

yeast4 0.468 12.397 1.117
yeast1289vs7 0.418 11.967 1.373

yeast5 0.480 14.768 1.081
ecoli0137vs26 0.467 19.633 1.023

yeast6 0.451 17.693 1.217
abalone19 0.487 61.247 1.067
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Table 7: The Increase Rate of Number of Support Vectors of the Classification Model formed by

SVM.

Dataset SMOTE ADASYN sTL sSafe sRST sCHC AHC FRB+CHC
ecoli0347vs56 0.245 0.529 0.418 0.143 0.476 -0.117 0.178 0.026

yeast2vs4 2.662 4.354 2.507 2.981 2.698 1.180 2.377 1.000
ecoli067vs35 0.252 0.506 0.468 0.249 0.465 -0.103 0.215 0.021
ecoli0234vs5 0.272 0.538 0.472 0.122 0.473 -0.097 0.197 0.011
glass015vs2 3.731 3.687 3.193 3.996 3.583 1.705 3.310 1.279

yeast0359vs78 1.384 1.676 1.149 1.434 1.418 0.251 1.361 0.093
yeast0256vs3789 3.555 5.151 3.240 3.669 3.577 1.414 3.416 0.990
yeast02579vs368 2.142 5.240 1.919 2.251 2.188 0.783 1.990 0.521

ecoli046vs5 0.263 0.477 0.460 0.125 0.490 -0.100 0.177 0.031
ecoli0147vs2356 0.229 0.566 0.435 0.170 0.494 -0.103 0.186 0.053

ecoli0267vs35 0.279 0.521 0.490 0.234 0.467 -0.092 0.209 0.040
glass04vs5 1.839 1.477 1.467 4.104 1.242 -0.043 0.122 0.306
ecoli034vs5 0.269 0.526 0.456 0.135 0.477 -0.108 0.163 0.029

ecoli0346vs5 0.286 0.424 0.488 0.140 0.497 -0.094 0.150 0.031
yeast05679vs4 3.500 4.147 3.113 3.561 3.575 1.401 3.474 1.469

vowel0 1.116 1.333 0.752 2.311 0.972 -0.027 0.448 1.631
ecoli067vs5 0.227 0.440 0.391 0.212 0.438 -0.109 0.144 0.055
glass016vs2 3.868 3.927 3.296 4.209 3.660 1.840 3.291 1.530

ecoli0137vs26 0.175 0.404 0.338 0.089 0.439 -0.191 0.160 -0.146
led7digit02456789vs1 3.332 3.322 2.864 4.139 2.838 0.360 2.608 0.563

ecoli0147vs56 0.218 0.487 0.391 0.121 0.522 -0.145 0.147 0.031
glass06vs5 1.494 1.272 1.124 2.924 1.204 0.021 0.077 0.250

glass0146vs2 3.967 4.008 3.396 4.271 3.725 1.915 3.391 1.643
glass2 3.820 3.893 3.221 4.036 3.671 1.881 3.444 1.712

ecoli0146vs5 0.189 0.379 0.361 0.105 0.394 -0.155 0.137 0.014
cleveland0vs4 0.540 0.741 0.712 0.247 0.505 -0.077 0.326 0.008

ecoli01vs5 0.148 0.494 0.309 0.082 0.417 -0.128 0.149 0.032
shuttlec0vsc4 0.221 2.557 0.264 0.001 0.450 -0.109 0.103 1.326
yeast1458vs7 3.121 6.093 2.947 3.233 3.100 1.064 5.311 0.966

glass4 1.968 1.873 0.836 4.223 1.852 0.084 0.675 0.344
ecoli4 2.173 2.998 2.020 2.668 2.394 0.772 1.796 1.012

page blocks13vs4 0.836 1.042 0.863 0.057 1.198 0.017 0.523 0.110
abalone918 8.586 9.046 8.058 10.025 8.077 3.752 6.750 4.309
glass016vs5 2.084 1.760 1.440 3.498 1.846 0.226 0.492 0.512

shuttlec2vsc4 0.616 1.428 1.388 0.153 1.310 0.282 0.229 0.422
yeast1289vs7 4.846 2.993 4.611 5.170 5.087 1.802 2.825 1.491

glass5 2.307 2.169 1.884 4.623 2.151 0.249 0.524 0.574
yeast2vs8 4.905 8.609 4.920 5.282 5.169 2.101 4.436 1.184

yeast4 3.133 3.547 2.902 3.379 3.173 0.883 2.966 0.919
yeast1vs7 5.196 4.672 4.870 5.523 5.382 2.673 4.088 2.422

yeast5 3.178 3.458 2.617 3.676 3.265 1.578 2.930 2.007
ecoli01vs235 0.286 0.268 0.463 0.153 0.484 -0.096 0.085 0.041

yeast6 6.825 9.553 6.376 7.216 6.900 2.278 6.479 2.632
abalone19 13.156 13.209 12.829 14.221 12.973 5.535 10.986 8.226

Mean 2.351 2.859 2.198 2.708 2.403 0.776 1.887 0.948
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over-fitting problem because the performance of training set and testing set are

similar.

Fig. 6 and 7 show an example of the distribution of the positive samples and

negative samples after the re-sampling of FRB+CHC and sCHC, respectively. The

circle dots correspond to the samples of the majority class. The square dots corre-

spond to the samples of the original minority class. The triangle dots correspond

to the synthetic samples. Fig. 7 show that the synthetic samples are generated

densely around some of the original minority samples. In contrast, the synthetic

samples in Fig. 6 are more evenly distributed in the area of the original minority

samples. Therefore, sCHC runs into the over-fitting problem more easily.

Figs. 8 and 9 show the overall results in terms of F −measure and AUC for

different classifiers, respectively. Only a small difference of the results for 1NN

among all the preprocessing methods is revealed. FRB+CHC obtains the highest

value of AUC for both C4.5 and 1NN. An improvement by FRB+CHC in terms

of F −measure is shown. In addition, a robust behavior of FRB+CHC is shown

when the results of the three classifiers only have a small difference. Most of the

preprocessing methods can perform better than the original datasets in terms of

the average values of F −measure and AUC. This confirms that preprocessing

is an important step to deal with imbalanced datasets.
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(a) AUC results with FRB+CHC

(b) AUC results with sCHC

Figure 5: Average AUC results obtained from training and testing sets.
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Figure 6: Distribution of the samples after the implementation of FRB+CHC.

Figure 7: Distribution of the samples after the implementation of sCHC.
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Figure 8: Average F −measure for different classifiers.

Figure 9: Average AUC for different classifiers.
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5. Conclusion

A hybrid re-sampling method developed that is based on both over-sampling

and under-sampling has been proposed. The new synthetic samples of the minor-

ity class are generated based on fuzzy logic. To minimize the size of datasets,

CHC has been employed over the new samples and the majority of samples as a

cleaning method to the over-sampled training set.

The proposed sampling method (FRB+CHC) is compared to SMOTE, ADASYN,

sTL, sSafe, sRST, sCHC, EUSCHC, and AHC on 44 datasets. To evaluate the per-

formance of these nine sampling methods, the same SVM classifier has been used

to obtain the experimental results. It is shown that FRB and FRB+CHC outper-

forms the other sampling methods on both F −measure and AUC. FRB shows

its advantage as an over-sampling method. If data size is not a consideration, then

FRB is a better choice of pre-processing method.

FRB+CHC obtains the best ranking by means of AUC. FRB+CHC and sCHC

have similar performance in F − measure, which indicates that CHC is a good

choice of data cleaning method. The AUC results of SMOTE, sTL, sSafe, sRST,

and sCHC are similar because they all use SMOTE to perform over-sampling.

To show the advantages of the proposed method, the over-sampling rate and the

number of support vectors formed from SVM for different methods are also com-

pared. In addition, the C4.5 and 1NN classifiers are used and FRB+CHC shows a
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robust behavior among different classifiers. FRB+CHC achieves good results un-

der these criteria, which reflects that FRB+CHC achieves a good balance between

accuracy and over-sampling rate. It also has a low impact on the complexity of the

learning model. The major reason for this is that CHC only selects the samples

to increase the performance of the datasets but does not consider the locations of

the samples. Therefore, the most representative samples are selected to form the

training sets.
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