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Abstract

In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the
network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach
called supernode graph structuring for modeling the bus transport network.A static demand estimation procedure
is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution
in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure
the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With
the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted
and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in
analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident
with supernode representation as compared to conventional or regular graph representation for the Hong Kong
network. Significant improvement in clustering, reduction in path length, and increase in centrality values are
observed in all the three networks with supernode representation. The correlation between topologically central
nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation
method for assigning node weights aids in better identifying the geographically significant nodes in the network. The
impact of these geographically significant nodes on the local traffic behavior is demonstrated by a simple simulation
using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our
results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state
due to the presence of these geographically important nodes. A comparison of the simulation and the empirical
data provides useful information on how the bus operators can better plan their routes and deploy stops considering
the geographically significant nodes.

Keywords: Bus tranport network, spatial analysis, supernode structure, node weight, complex networks, static
demand estimation

1. Introduction

To decipher the dynamics of real-world complex systems, understanding the underlying connectivity and inter-
action of the network components is a prerequisite. The inherent behaviors of complex networks are partly encoded
in their topological properties which can be analyzed using the concepts recently established in network science,
which is a combination of graph theory, statistical physics, control theory and information theory [1]. This research5

work focuses on the graph theory and statistical physics for analyzing the bus transport network of the three cities
namely, Hong Kong, London and Bengaluru.

In a bus transport network, a node represents a bus stop and an edge represents the route between two stops,
commonly known as L-Space modeling in complex networks. The key contributions of this paper are three-fold:

1. Unlike the conventional graph representation, our approach uses a novel supernode graph structuring pro-10

cedure to combine geographically closely associated nodes based on a specific criterion, resulting in a more
compact representation. This re-structuring of the network has significant impact on the analysis of different
network parameters and the information that can be obtained about the actual network behavior.

2. In graph theory, it is a common practice to assign edge weights to generate a weighted network. However, not
much information has been obtained from accurately weighting the nodes [2, 3]. In assigning node weights, a15

static demand estimation method is proposed by considering the points of interests (POIs) and the population
distribution over localized zones in the city. Depending on the POI density and the node occupying index
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(number of people accessing a particular bus stop) over localized zones, a node weight is assigned to every
node in the network.

3. The statistical analysis of various network parameters for the three cities is accomplished to verify the topo-20

logical behavior. Lastly, the end-to-end travel delay is proposed as a measure to evaluate topological efficiency
instead of the conventionally used measure of geodesic distance between nodes. The end-to-end delay method
is validated by simulations using the SUMO tool, which also demonstrates the effect of geographically sig-
nificant nodes over the local traffic behavior. The simulation results are compared with the real-world data
to verify the effect of geographically significant nodes and their distance of separation on the local traffic25

movement.

All the BTN structures analyzed in our study are represented as a single network assuming that a single operator
is operating the routes in the network, rather than considering individual operators and dividing the network into
subnetworks. Every station is identified by a unique node ID, since some stops have the same name in the network.
The graph representation includes both inbound and outbound routes in all the three cities, which makes the30

graph directed. Our choice of the three cities is based on the geographical landscape, the servicing area, passenger
carrying capacity per day and the contribution of the bus transport to the overall public transport. Table 1 shows
the statistical details of the bus transport networks for the three cities [4–7].

Modelling large real-world networks (e.g., WWW, protein network, transportation network) as graphs and ana-
lyzing their behavior from a network perspective facilitates better understanding of the global and local properties35

of the network. Specifically, the study of the internet or the World Wide Web played a major role in the develop-
ment of numerous fundamental properties in network theory. In 1958, Erdos and Renyi [8] proposed the concept
of random graphs where the degree distribution follows a Poisson distribution. But the resonating work done by
Barabasi [9] posed a challenging question about the actual connectivity of real-world networks, i.e., do many of
our real-world networks function seamlessly if they are wired randomly together? This led to the development of40

scale-free network property which shows a significant deviation in the degree distribution from Poisson to power
law. Other significant contributions in the field are credited to Watts and Strogatz [10] for their demonstration
of the small world property, Burt [11] for working on missing links in the networks called structural holes, Katz
[12], Bonacich [13], Page [14], Kleinberg [15] for their contributions to different centrality measures, Latora and
Marchiori [16] for proposing the topological efficiency measure.45

Sienkiewicz and Holyst [17] discussed about the statistical analysis of 22 public transport networks in Poland
with network size varying from 152 to 2881, which is considered one of the earliest, yet exhaustive studies on
application of network theory concepts to public transport networks (PTN). The different cities considered are
modeled in L-Space and P-Space. The study reveals that L-Space degree distribution follows a power law, whereas
the P-Space structure exhibits exponential behavior. The path length distributions follow an asymmetric unimodal50

function and all the networks considered show small world property. Chen et al. [18] investigated urban bus
transport network of four major cities in China: Hangzhou, Nanjing, Beijing and Shanghai. Their empirical results
show that the degree distribution in these four cities has an exponential form. They further investigated the number
of bus routes that pass a stop and the number of stops per route, denoted by R and S respectively. The values of R
and S are used to determine the evolution of the bus transport network. Specifically, a generic model is proposed for55

the evolution of BTN using the values of R and S which fit their empirical results. Xu et al. [19] considered three
cities in China and evaluated the scaling laws and the correlation properties using P-Space modeling, where every
route is represented as a node, and if a few routes share a common set of nodes between them, they are connected
by an edge, and the number of routes sharing these nodes is assigned as an edge weight. The degree distribution of
such a weighted network of shared node representation is evaluated and found to follow a power law distribution.60

Ferber et al. [20] accomplished an exhaustive study of bus transport network by analyzing fourteen major
cities across the world with varied network sizes. They generated simple graphs for the network maps, bipartite
graphs for routes and stations, and one mode projection of the latter to investigate the inter-relations and spatial
embedding properties of routes. Based on empirical observations, they formulated a model with simple growth
rules to verify the scale-free behavior of the network. Chatterjee et al. [21] performed a detailed statistical analysis65

of bus network for six major cities in India. They evaluated various network parameters from degree to network
robustness by modeling the network in L-Space. The weighted degree distribution of all the networks followed a
heavy tailed distribution, the centralities followed a random attachment showing that the network may not be fully
scale-free. The networks showed the small world property and though are robust and resilient to random attacks,
they are degree sensitive. This work also discussed a concept similar to our proposed supernode model, called the70

short-distance station pairs, which combines stops that are geographically close to each other with no direct bus
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connectivity. Hui et al. [22] analyzed the BTN in Beijing where the basic nodal parameter analysis was carried out
in L-Space and all the transfer properties were analyzed in P-Space. The degree distribution of Beijing follows a
shifted power law for degree > 2, indicating that the network is scale free. The network also behaves as a sparse
network because of its very low clustering coefficient value, and shows strong assortative correlation, indicating that75

higher degree nodes are well connected with other higher degree nodes. A weighted complex network analysis of
the travel routes in Singapore was done by Soh et al. [23], in which the topological and dynamical properties of the
graph structure were considered for analyzing the transport network. This was the first paper that discussed the
study of PTN based on geographical properties

The rest of the paper is organized into four sections, Section 2 deals with the restructuring of a conventional80

graph structure into a supernode structure and adding weights to the network. Section 3 describes a detailed
statistical analysis of three bus transport structures. Section 4 evaluates the topological efficiency with the aid of
SUMO simulation. The last section provides a conclusion and a brief plan of future work.

Table 1: Statistical details of bus transport network for the three cities.

Parameter Hong Kong London Bengaluru

Population (millions) 7.3 8.6 8.4
Area (km2) 1104 1579 709
Bus stops 4065 20192 5662
Routes 916 685 2040
Fleet size 5900 9200 6100
Daily passengers (millions) 3.8 5.9 4.9
Overall contribution to PTN (%) 33 21 42

2. Graph representations of bus networks

In this section we first discuss the representation of a bus transport network as a standard graph which is later85

modified with the proposed supernode graph representation. By considering the supernode representation, node
and edge weights are then added to the network. We propose a static demand estimation method to assign node
weights and the the edge weights are assigned by considering the number of routes operating between the two chosen
nodes.

As per conventional graph theory approach, a graph G is a set of V nodes and E edges, i.e., G = (V,E).
Considering the spatial analysis of the network, in the current work, a graph G is represented by G = (V (X,Y ), E)
where V and E are described as:

V = {ni (xi, yi) : i = 1, 2, ..., N, xi = latitude, yi = longitude} (1)

E = {eij → (ni (xi, yi) , nj (xj , yj))∀ (ni (xi, yi) , nj (xj , yj)) ∈ V : i = j = 1, 2, ...., N} (2)

where N = |V | indicates the network size. In the subsequent sections, ni(xi,yi) is represented as ni assuming that90

a particular node is always identified with its latitude and longitude. The graph is generated in L-Space, i.e., a bus
stop represents a node, and there exists an edge between any two nodes if they are consecutive stops on a particular
bus route [20]. Multiple edges between the nodes are not considered in a L-Space representation which makes it the
representation of actual physical connectivity of the network, i.e., the L-Space representation consists of the bus
stops and the presence or absence of connectivity between the stops irrespective of the number of routes between95

the stops. An N ×N adjacency matrix A with entries aij is used to describe the connectivity between nodes, where
aij=1 if there exists a route between nodes ni and nj , and 0 otherwise. The adjacency matrix is converted to a
directed edge list for generating the graph structure. Fig. 1 shows the spatial locations of bus stops and the final
bus transport network structure for the three cities. The geographical locations are represented in WGS84 standard
using ArcGIS tool [24]. Google Earth is used to visualize the spatial location of the bus stops [25], and Gephi tool100

is used for graph structure visualization and analysis [26].

3



(a) (b) (c)

Figure 1: Spatial location of bus stops for the (a) Hong Kong; (b) London; and (c) Bengaluru networks.

2.1. Supernode graph structure

The inspection of spatial embedding of nodes in transport structure analysis has resulted in a new type of
network element called supernode as shown in Fig. 2a. A supernode is a set of geographically closely associated
nodes which satisfy the following condition:105

dij < dth (3)

where dij is the geographic distance between two nodes i and j, and dth is a defined threshold distance. If dij <
dth, nodes i and j are said to be geographically close to each other. The value of dth is set to be 100 m in this paper
assuming that it is a walkable distance to reach any station. The distance between nodes dij is evaluated using the
Haversine formula [27]).

The set of nodes satisfying the above condition are combined to represent a single node called supernode. The
combining of nodes is not physical, however, it is a structural re-organization of the network which makes the
topological analysis more practical. For example, the bus stops located on either sides of a road segment are treated
as a supernode from network analysis perspective. Supernode graph structure can be mathematically defined as

SNV =

{
snj(xj , yj), snj = {nj∀j = 2, 3, ....,m|(dninj

< dth)}, snj(xj , yj) = mean(nj(xj , yj))
∃(snp ∩ snj)p 6=j 6= 0

}
(4)

SNE = {esnj → (sni, snj) | (sni 3 ni) , (snj 3 nj)} (5)

Thus, a supernode graph structure consists of regular nodes, supernodes, regular edges and superedges. While110

defining the supernode structure some of the original nodes will be eliminated due to the geographical combining
of nodes and there might exist self-loops due to the merging of nearby nodes. Such self-loops are eliminated since
they convey little information. The significance of supernode structure can be summarized as follows:

1. Combining the geographically significant nodes in the network improves understanding of the structural
behavior of the network. For example, combining nodes with significant degrees in the network helps identify115

important hubs in the network (discussed in Section 3.6.2)

2. Supernode structure helps to determine the convenient switching points or transfer points which contribute
to efficient routing in the network and improve the overall topological efficiency.

3. Supernode structure aids in assigning node weights which reflect the geographical significance of a node
(discussed in Section 2.2.1)120

4. Supernode structure helps eliminate redundancies in the network for fast computation, i.e., with supernode
structure, we can reproduce a network that is close to the original network with a reduced data set.
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(a) (b)

Figure 2: (a) An example of geographically closely associated nodes in Hong Kong; (b) redundancy distribution for the three cities.

Table 2: Comparison of network size for the three cities with original and supernode representations.

Regular structure Supernode structure % redundancy
Nodes Edges Nodes Edges Nodes Edges

Hong Kong 4065 11672 2251 8497 45 27
London 20192 24117 11271 21488 44 11
Bengaluru 5662 13266 3724 9832 34 26
Average - - - - 41 21

Table 2 gives statistical details of the original networks, the supernode networks, and the percentage redundancy
for the three networks. The redundancy is calculated over a specific geographical area called zone (ward/district),
i.e., redundancy is the total number of nodes present in a particular zone with supernode structure representation125

as compared to the conventional graph representation. Fig. 2b shows that the percentage redundancy graph follows
a normal distribution (with µ equal to 45, 44, 37 and σ equal to 4, 8, 16 for Hong Kong, London and Bengaluru
networks, respectively). It is observed that the redundancy in the Hong Kong bus network is maximum as compared
to the London and Bengaluru networks. The high density of nodes in certain zones causes the network to shrink
more, this is because high density indicates more closely packed nodes, and in the supernode structuring, such close130

associates are joined as supernodes. Thus, from the percentage redundancy, we can also obtain a better insight
into the node distribution pattern of a network. The physical meaning of the redundancy parameter is that with
the proposed supernode graph representation method, a network structure close to the original network can be
reproduced using the reduced dataset. Thus, although we observe an average of 40% redundancy of nodes in the
three cities, only 20% redundancy is observed in the network connectivity (edges), indicating that a major portion135

of the original network structure is still retained in supernode representation.

2.2. Weighted supernode graph structure

In this section, the supernode structure is considered to model the network as a weighted network by assigning
node weight and edge weight. In classical graph theory, assigning weights to edges is a common practice for
generating weighted networks, but assigning weights to nodes is less considered [2, 3]. In this work, we propose140

a static demand estimation method to assign a node weight. The edge weight is represented by considering the
number of routes operating between the chosen two nodes.

2.2.1. Node weight

The necessity of a bus stop by the public is greatly influenced by the presence of points of interests (POIs)
around the bus stop. The POI can be either a hospital, hotel, office, school, sports arena, cinema hall, shopping145
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complex or residential apartment. Information about location of POIs around a bus stop provides more practical
estimation of the demand serviced by a bus stop. The POIs considered in the current work are broadly divided into
four categories, as shown in Table 3. Using these POIs, the node weight can be evaluated by

wi = c1

(
4∑

m=1

dm

)
i

+ c2Pi + c3ki (6)

where wi is the weight of node i, dm is the number of POIs of category m located around node i within a radius of
100 m, Pi is the total number of passengers accessing node i, ki is the node degree, c1, c2 and c3 are scaling factors,150

assumed to be equal to 1 for simplification. In (6), though it is not practical to map certain POIs around a node to
specifically one node (since certain POIs can be equidistant to multiple nodes), such shared POIs can be allocated
to the nearest node with the least distance. To demonstrate the static demand estimation method for assigning
node weight, the Hong Kong bus transport network is taken as an example. However, for the purpose of analysis,
we consider POI density and the number of people accessing a bus stop (node occupying index) over localized zones155

to generate the node weights. Hence, (6) is modified as

(wi)zone =

c1
4∑

m=1
ρm + c2ρp

ρN


zone

+ c3ki ; zone = 1, 2, ...., n (7)

where wi is the weight of node i in a specific zone. We divide the area into smaller units called zones (districts/wards).
Each zone possesses a defined land area, population, POIs and bus stops within it. The term ρm denotes the POI
density of category m in a zone, ρp is the static population density in a zone, ρN is the bus stop density in a
given zone, ki is the node degree (discussed in Section 3.1) and the fraction ((ρm + ρp)/ρN )zone denotes the node160

occupying index. Thus, (7) aids in assigning node weights based on static demand estimated using POIs and
population density.The node weight is normalized to ensure the data integrity in all zones, i.e.,

(wi norm)zone =

(
wi − wmin

wmax − wmin

)
zone

; zone = 1, 2, ...., n (8)

Closer the value of wi norm to one in (8), higher the demand serviced by the node in a zone. Fig. 3a shows a
snapshot of the Kowloon zone in Hong Kong with the bus stops and POI locations in the zone. Fig. 3b shows the
complete list of bus stops and POI locations in the city considered for validating the static demand method. Fig.165

4a shows the nodes (with red color) serving maximum demand in the Hong Kong city based on the normalized
node weight calculated using (8) and Fig. 4b shows the heat map indicating the higher demand zones in the city.
From (7), we can notice that, node weight is a function of four parameters, i.e., ρm, ρp, ρN and ki. As ρm, ρP and
ki increase, wi also increases. However as discussed in [28], the larger the number of bus stops, the less efficient the
network is. Hence, in (7), with wi being inversely proportional to node density ρN , as the number of bus stops in a170

zone increases, the node weight decreases. As compared to the other three parameters, ρp has strong influence on
wi since the growth rate of the population is more drastic as compared to growth rate of the other three parameters.
Table 4 demonstrates the method used to assign node weight to a node in a particular zone using the Hong Kong
government database. [Note: The demand estimation model is verified only for the Hong Kong network currently,
and the POI data considered for demand modeling are obtained from the Hong Kong government database [29],175

which currently has a few categories not freely available, and hence the data list is not complete].

Table 3: Different POI categories considered for static demand estimation method.

Recreation Emergency Education Transportation

Parks, restaurants, performing venues, Hospitals, banks, Schools and universities, Bus stops, taxi-stands
libraries and museums, sports grounds, post-offices, workplaces ferry service,

tourist attractions police-stations metro stations and trams
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Table 4: Illustration of node weight analysis used to assign a normalized weight (wi norm) to a node (i) in a particular zone (Central
and Western district).

Zone Area (km2) ρm ρP ρN
ρm+ρP
ρN

Node(i) ki
ρm+ρP
ρN

+ ki (wi norm)zone

Central and Western 12.55 38 20057 9 2233 180 2 2235 0
242 4 2237 0.1
265 8 2241 0.3
270 3 2236 0.05
272 7 2240 0.25
1026 11 2244 0.45
10003 22 2255 1
10018 5 2238 0.15
10021 10 2243 0.4
10046 18 2251 0.8

2.2.2. Edge weight

The number of bus routes operating between two given nodes is defined as the edge weight in the network, i.e.,

eij =
∑
i 6=j

rij (9)

where rij is the route operating between nodes i and j. The edge weight distribution for all the three cities follows
an exponential distribution as shown in Fig. 5a. The long tail end of the distribution indicates that the edges with180

maximum weights represent the edges with most overlapped routes in the network. From the network perspective,
these overlapped routes cause a few sections of the network to be over-used leading to high traffic congestions during
peak travel hours. These edges also act as starting points for the traffic aggregation leading to slow moving traffic
and may even cause longer waiting time for passengers to board the buses due to multiple buses waiting near the
bus stops. In Fig. 5a, the distribution of eij < 10 is quite expected, whereas the distribution of eij between 10 to185

100 describes the most overlapped routes in the network and the distribution of eij > 100 indicates the probabilistic
occurrence of such large number of overlapped routes are mostly at central business districts (CBD) in a network.
Fig. 5b shows the Bengaluru bus network structure where the maximum edge weights are observed at the city’s
center.

(a) (b)

Figure 3: (a) The Kowloon zone (highlighted in red color) in the Hong Kong city displaying the bus stops and POIs in the zone; (b)
geographic locations of bus stops and POIs in the Hong Kong city in different zones.
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(a) (b)

Figure 4: (a) Bus stop locations in the Hong Kong city with normalized node weight equal to 1 (highlighted in red); and (b) heat map
showing the zones with higher demand in the Hong Kong city.

(a) (b)

Figure 5: (a) Edge weight distribution for the three cities; and (b) Bengaluru bus network with edge weights.

3. Analysis of network parameters190

In this section, the weighted and directed bus network is analyzed with regular and supernode representations for
the Hong Kong, London and Bengaluru networks. A detailed discussion of degree, degree distribution, clustering,
mean path length, centrality measures, scale-free property, and small world behavior of the three networks is given
in this section.

3.1. Degree and average degree195

Degree is the most basic yet very important parameter in network analysis. The degree of a node represents the
total number of edges incident on a node. For a directed network, the total degree of a node i (ktotali ) is equal to
sum of its in-degree (kini ) and out-degree (kouti )) and is given by

ki
in =

∑
j

aji, ki
out =

∑
j

aij , ki
total = ki

in + ki
out (10)

where aij is the adjacency matrix element corresponding to the ith node. The average degree conveys information
on the average number of nearest neighbors that a node is connected to, and for a directed network it is given by200

kavg =
1

N

∑
i

ki
total (11)

8



Table 5: Comparison of average degree for the three networks with regular and supernode representations.

Hong Kong London Bengaluru

Regular structure 2.87 1.20 2.34
Supernode structure 3.77 1.91 2.64

Table 5 shows the average degree for the three networks in regular and supernode representations. It is evi-
dent that the supernode structure increases the average connectivity of nodes in the network as compared to the
regular structure. This is due to merging of nodes in the network. Moreover, this connectivity is an inherent
topological behavior which can be better explained with supernode representation compared to conventional graph
representation.205

3.2. Degree distribution, power law and scale-free property

The degree distribution has assumed a central role in network theory following the discovery of scale-free networks
[30]. The degree distribution gives the probability that a randomly chosen node in the network has degree k, i.e.,

p (k) =
Nk
N

(12)

where Nk is the number of nodes with degree k and N is the total number of nodes in the network. In the network,
a node with zero connectivity is called an isolated node and is often ignored. On the other hand, the node with210

high connectivity is called a hub. A network whose degree distribution follows a power law is called a scale-free
network, i.e.,

p (k) ∝ k−γ ⇒ p (k) = Ck−γ (13)

where 2 <γ <3 is the scaling parameter, k is the node degree and C is a constant. Taking log on both sides of (13),
we have215

ln p (k) ∝ −γ ln k ⇒ ln p (k) = −γ ln k + lnC (14)

Thus, the power law is a straight line in log-log scale with negative slope γ. The fitting of power law distribution to
the empirical data can be achieved by evaluating the value of kmin (the lower bound on power law) and γ (the scaling
parameter) [31] through goodness-of-fit test between the empirical data distribution and the hypothesized power law
distribution and compute the corresponding p-value. Typically, if the value of p ≥ 0.1, the power law distribution
is a plausible hypothesis. The graphs in Fig. 6 and Fig. 7 show the power law fit for in-degree and out-degree220

distributions for the three networks. It is interesting to observe that Hong Kong network fails to satisfy the power
law distribution in regular network representation, but plausibly follows a power law with supernode structuring.
Thus, the Hong Kong bus transport network behaves as a scale-free network with supernode structuring. However,
the London and Bengaluru networks show poor fit to power law, but fit better to Poisson distribution, making the
network appear to be random. Table 6 shows the values of Poisson and power law exponents for the regular and225

supernode structures for the three networks.

Table 6: Poisson and power law exponent values for the three networks with regular and supernode representations.

Regular structure Supernode structure
γ kmin λ γ kmin λ

Hong Kong - - 2.87 3.5 5 -
London - - 1.19 - - 1.91
Bengaluru - - 2.39 - - 2.7

9



(a) (b) (c)

Figure 6: Power law fit for in-degree distribution for (a) Hong Kong; (b) London; and (c) Bengaluru networks in regular and supernode
representations.

3.3. Clustering coefficient

Clustering coefficient, also known as the transitivity of a network, shows how well the neighbors of a node are
connected to each other. For node i with degree ki, the local clustering coefficient for a directed network is defined
as [32]:230

ci =

∑
h

∑
j

(aij + aji) (ajh + ahj) (ahi + aih)

2 [ki (ki − 1)− 2ki
↔]

(15)

where ki
↔ =

∑
i 6=j

aijaji and ki is the total node degree. The global clustering is defined as:

C =
1

N

∑
i

ci (16)

The degree of a node provides no information on connectivity of the nodes neighbor. The clustering coefficient
measures the link density of a node's nearest neighbors by probing into the existence of triangles in the network.
From (15) we can say that nodes of higher degree tend to have a lower clustering coefficient, and vice versa, since
degree and clustering are inversely related. Another reason for the decrease in ci with increasing degree is that235

the vertices group together tightly to form communities [33]. Fig. 8 shows the histogram for the local clustering
coefficient of nodes for the three networks represented by the regular and supernode structures. It is observed that,
with supernode representation, due to combining of nodes, the local connectivity significantly improves. From the
network analysis viewpoint, the clustering coefficient offers better understanding of the local cohesiveness between
nodes in the actual bus transport structure which provides additional useful information, like availability of alternate240

routes for a node at the local level during emergency. Knowing the geographical embedding of these highly-clustered
nodes is an added advantage for the analysis of network behavior.

3.4. Average shortest path length

A path is a route that runs along the edges of the network and the path length represents the number of edges
contained in a path between any chosen nodes i and j. The shortest path between nodes i and j is the path with245

the fewest number of edges between nodes i and j given by

Lavg =
1

N(N − 1)

∑
i 6=j

d(ni, nj) (17)
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(a) (b) (c)

Figure 7: Power law fit for out-degree distribution for (a) Hong Kong; (b) London; and (c) Bengaluru networks in regular and supernode
representations.

where d(ni, nj) is the geodesic distance between nodes i and j, and N is the network size. Fig. 9 shows the average
path length distribution for the three cities with regular and supernode representations. As observed from Fig. 9,
the Hong Kong, London and Bengaluru networks follow normal distribution with a mean of 14, 175, 26, respectively
with conventional graph representation, which is reduced to 8, 102, 22, respectively with supernode representation.250

Large values of L for the three networks at the tail of the graph is the result of considering only bus transport
network in the city, and with the consideration of other transportation like metros, ferries or trams, the average
path length is expected to reduce.

3.5. Small world network

The average path length (L) and the clustering coefficient (C) are the parameters used to quantify the structural255

properties of a small world network. In general, a random network has poor clustering but shorter average path
length, whereas a regular or lattice network has good clustering but longer path length. That is, large C is usually
associated with large L, and small C is associated with small L. However, as proposed by Wattz and Strogatz [10],
there exist many real-world networks with large C and small L, which are defined as small world networks. The
property of small worldness is verified by calculating ω as proposed by Telesford et al. [34], and is given by260

ω(p) =
Lrand

L(p)
− C(p)

Clatt
; 0 ≤ p ≤ 1 (18)

where Lrand is the average path length of a random network, Clatt is the clustering coefficient of a lattice structure
and, L(p) and C(p) are the average path length and clustering coefficient of the network at various rewiring
probability p such that 0 ≤ p ≤ 1. The graph structure is considered lattice at p = 0 and random at p = 1, and the
intermediate structural behavior is analyzed for 0 < p < 1. In the literature, a regular lattice structure is always
considered as the starting point for the evaluation of small world networks. In the current work, the original bus265

network is considered as the starting point, and thus (18) is modified as

ω(p) =
Lrand

L(p)
− C(p)

Cexisting
; 0 ≤ p ≤ 1 (19)

The reason for considering the existing structure as a lattice structure is that a transport structure is seldom expected
to be a fully connected structure. Thus, comparing the existing structure with a fully connected network is of no
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(a) (b) (c)

Figure 8: Histogram of local clustering coefficient for (a) Hong Kong; (b) London; and (c) Bengaluru networks.

(a) (b) (c)

Figure 9: Average path length distribution for (a) Hong Kong; (b) London; and (c) Bengaluru networks with regular and supernode
representations.

practical value. From (19) the physical meaning of ω at different values of rewiring probability reflects the variation
of the average path length of a network structure for a city as compared to the corresponding random network270

structure, since C(p)
Cexisting

is equal to 1 in our consideration. Using the modified equation (19), the corresponding

values of L(0) and C(0) are evaluated for the original structure. Then, the edges in the network are rewired with
different values of rewiring probability p using the rewiring mechanism discussed in [35], and the corresponding
values of L(p) and C(p) are evaluated for the three networks. Using the values of L(p), C(p), L(0) and C(0) ,
the parameter ω is evaluated using (19) and the corresponding plots are shown in Fig. 10. The closer the value275

of ω to zero, the network behaves closer to six degrees of separation [34]. Table 7 shows the variation of average
path length for the Bengaluru network structure at different rewiring probabilities with regular and supernode
representations. Table 8 shows the values of ω for p = 10−4 (i.e., p ≈ 0)for all the three networks in regular
and supernode representations. The values of ω for the three networks from Table 8 show that Hong Kong and
Bengaluru have the potential to behave as small world networks with certain modifications to the existing routes.280

However, the value of ω for London remains much smaller than zero, which indicates that the network requires
significant modification in the routes to behave as a small world network. However, a significant rewiring would
completely change the existing network, which could be undesirable.
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(a) (b) (c)

Figure 10: Small world network behavior for (a) Hong Kong; (b) London; and (c) Bengaluru networks in regular and supernode
representations and the value of ω with p = 10−4.

Table 7: Variation of Lavg for the Bengaluru network at different rewiring probabilities with regular and supernode representations

p=10−4 p=10−3 p=10−2 p=10−1 p=100

Regular structure 26.07 26.06 23.59 17.57 10.5
Supernode structure 22.13 22.05 19.52 12.638 8.83

Table 8: Value of ω for the three cities in regular and supernode representations with p = 10−4.

Hong Kong London Bengaluru

Regular structure -0.45 -0.71 -0.59
Supernode structure -0.45 -0.80 -0.60

3.6. Centrality measures

Centrality is a measure of relative importance of a node or an edge in the network and the different definition285

for importance gives rise to different centrality measures. The simplest centrality is the degree centrality where
the importance of a node is specified by its degree. In this section, we study a few centrality measures which are
relevant to transport network analysis in L-Space modeling.

3.6.1. Eigen vector centrality

The importance of a node can be increased by having connections to other nodes which are important by290

themselves, i.e., a node is more important to the network not only because it has many neighbors (in-degree)
but because it has important nodes as its neighbors. This is the idea behind eigen vector centrality which is
mathematically given by

Cni
= ki

−1
∑
j

ajiCnj
(20)

where ki is the largest eigen value, Cni
and Cnj

are the eigen centrality scores for nodes i and j respectively, aji is
the adjacency matrix element corresponding to node i. Fig. 11 shows a comparison of in-degree with its respective295

eigen vector centrality for a few nodes in the Hong Kong network. It is observed that a high in-degree node can have
a low eigen centrality indicating that the node is less central as compared to some other nodes with low in-degree,
but high eigen centrality indicating that the node is more central. Furthermore, the supernode structuring, along
with improving the in-degree of a node, plays a significant role in identifying central nodes more accurately due
to the merging of geographically closely associated nodes, hence making a few nodes more significant. That is,300
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supernode representation not only improves the node connectivity but also helps to identify nodes which are having
connection to influential nodes. However, the problem with eigen centrality is that, if a node has only outgoing
edges and no incoming edges, the centrality of this node will be zero [36]. Only a few such nodes appear in our
transport networks. Thus, the eigen centrality still conveys useful information on a node's significance to the overall
network.

(a) (b)

Figure 11: Comparison of in-degree and eigen vector centrality values for some nodes in the Hong Kong bus network with (a) regular;
and (b) supernode representations.

305

3.6.2. Hub and authority centrality

A hub is a node that connects to many other nodes in the network and an authority is a node which is pointed by
many hubs in the network. The Hyper Link Induced Topic Search (HITS) algorithm [15] is widely used to find hubs
and authority nodes in a network. In the HITS algorithm, every node is assigned a hub weight and an authority
weight. The algorithm starts by assigning an initial weight. Using this initial weight the hub and authority scores310

are calculated iteratively and are updated by

hi ∝
∑
j

(ujaij) and ui ∝
∑
j

(hjaji) (21)

where hi and ui are hub and authority scores, respectively, and aij is the adjacency matrix element corresponding
to node i in the network. In a BTN, hubs can be the nodes with high degree since they are connected to many
nodes in the network and authorities can be nodes pointed to by these hubs, indicating that these authority nodes
may cater for the highest demand in the city. Fig. 12 shows the nodes with higher order hub and authority scores315

for the London network, as an example. An interesting observation is that in all the three networks, the hub and
authority scores for many nodes are almost the same, indicating that a hub is behaving as an authority, and vice
versa.

3.6.3. Betweenness centrality

The betweenness centrality quantifies the extent to which a node acts as a bridge between any other nodes in320

the network and is mathematically given by

Cb(i) =
∑
i 6=j 6=k

σjk(i)

σjk
(22)

where σjk is the total number of shortest paths between nodes j and k, and σjk(i) is the shortest paths between
nodes j and k passing through node i. Fig. 13 shows the Bengaluru bus network as an example, with high
betweenness centrality nodes (normalized value ≥ 0.8) in the regular and supernode representations. It can be
observed that an increased number of nodes with high betweenness centrality values are better identified with the325

supernode representation as compared to regular representation. The physical significance of this centrality is that
removing these nodes from the network since these nodes potentially control the actual routing behaviors of both
passengers and buses in the network. (Note: Since the shape file (.shp) shows only Bengaluru urban zone and not
the complete urban and rural zones, some nodes lie outside the network).
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(a) (b)

Figure 12: The London bus network showing the nodes with higher (a) hub score; and (b) authority score.

(a) (b)

Figure 13: Bus stops in Bengaluru network with high betweenness centrality (normalized value ≥ 0.8) in (a) regular; and (b) supernode
representations.

3.6.4. Figure of merit330

In this section, the centrality of a node is compared with its geographical centrality to verify the importance
of modeling node weight in the transport analysis. For example, Fig. 14 shows the comparison of highly central
nodes considered in Section 3.6 versus the nodes which are considered geographically more significant as evaluated
using (7). From Fig. 14b it is observed that the geographical significance of the node evaluated at the local level
using (7) yields almost the same result as estimating different centrality measures at the global level, as shown335

in Fig. 14a. That is, a set of 130 nodes were identified in the Hong Kong supernode structure constituting the
higher order values (normalized value > 0.8) for degree centrality, hub centrality, betweeneness and eigenvector
centrality, which are considered highly central nodes in the network. On the other hand, a set of 130 nodes with
the high node weight values (normalized value > 0.8) evaluated using (7) were identified. The comparison of node
centrality and geographical significance of the chosen 130 nodes showed almost 80 nodes in common indicating that340

the proposed demand estimation method using (7) is a better way to assign node weights to signify the geographical
importance of a node. The correlation between topologically central nodes and the geographically central nodes
reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in
better identifying the geographically significant nodes in the network

4. Topological efficiency345

In Section 3, we analyzed different structural properties of the three networks to gain better insight into their
topological behavior. In this section, we first analyze the topological efficiency of the network in terms of distance,
which reflects the inherent contribution of the network to efficiency. We then propose an efficiency modeling in
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(a) (b)

Figure 14: Hong Kong bus transport network in supernode representation with highly central nodes (a) evaluated using different
centrality measures; and (b) evaluated using static demand estimation method.

terms of time, rather than distance, which is more practical for assessing the efficiency of end-to-end travel in a
transport network. As per network theory, topological efficiency of a network is given by350

ηG =
1

N(N − 1)

∑
i 6=j

1

dij
(23)

where dij is the shortest distance path between nodes i and j, and N is the network size. Table 9 shows the
comparison of the topological efficiency of the three networks in regular and supernode structures. From Table 9, it
also evident that the Hong Kong network is topologically more efficient than the London and Bengaluru networks.
Also, the efficiency of the three networks is higher in supernode structure as compared to the regular structure. In
fact, we can say that the actual efficiency of the network is better explained with supernode structuring. Although355

no physical changes are made to the actual network, a slight restructuring in network representation helps to gain
better insight into the actual behavior of the network.

Table 9: Comparison of topological efficiency between three structures in regular and supernode representations.

ηG Hong Kong London Bengaluru

Regular structure 0.099 0.015 0.038
Supernode structure 0.115 0.023 0.057

Equation (23) gives the topological efficiency of the network, conveying information on whether the network
offers shorter distance of travel between any two given nodes on average. However, when a passenger prefers to
travel between two nodes, the end-to-end travel delay between the nodes is taken into consideration rather than the360

distance. Of course, other parameters like minimum transfer, cost effectiveness and convenience are also considered.
In the current work, (23) is remodeled in terms of delay (ηG,t) rather than distance to measure the topological
efficiency and is given by

ηG,t =
1

N(N − 1)

∑
i=1...n−1
j=i+1....n

dij
vij

(24)

In (23), dij is the total number of hops between nodes i and j, but in (24) dij measures the actual geographic
distance of every hop along the shortest distance between nodes i and j. Also, vij is the average velocity of every365

hop along the shortest path between nodes i and j. The term
dij
vij

gives the end-to-end travel delay time between

nodes i and j. Equation (24) is validated by carrying out a simple simulation in SUMO (Simulation of Urban
Mobility) for the Hong Kong network.
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4.1. SUMO simulations

SUMO is a microscopic multi-modal traffic simulator which allows the behavior of each vehicle to be explicitly370

controlled and monitored [37]. In this section, a simple simulation is conducted using SUMO to evaluate the
topological efficiency in terms of the end-to-end delay using (24). Details of the simulation set up are discussed
below:
Step 1. Building a road network topology:
To build a road network in SUMO, we can either import the network from Openstreetmap [38], or we can build the375

network manually. In the current work, we have built the network topology manually. The bus stops are treated as
nodes and the road segment (including the number of lanes per road segment) connecting two bus stops is treated
as an edge. The geographical information of the bus stops, the lanes per road segment, the pedestrian crossing, and
traffic light signal, are extracted from the Openstreetmap. All the traffic lights are generated with a default cycle
of 90 s (40 s green, 5 s amber, 40 s red followed by 5 s amber to switch to the next cycle of Green). The simulation380

in this paper considers the road topology as described above for one specific bus route (Route No. 1) between the
chosen source nodes S (CHUK YUEN ESTATE) and the destination node D (STAR FERRY). The end nodes S
and D, and the specific route between them is chosen for the simulation since the route passes through different
zones of the city with significant POIs, which helps to verify the nodal weight analysis as discussed in Section 2.2.1.
Step 2. Setting up the routes for both buses and other vehicles in the network:385

The route details and the frequency for the bus route are configured according to the official timetable in [39]. We
use activitygen to generate the traffic other than buses [40], which is a tool in the SUMO simulator for generating
traffic in a network based on the activity in a zone. It makes use of the activity-based traffic model to generate
such traffic and is also known as activity based demand generator. An activity can be regarded as a trip going to
or from an office, school, or free time travel. By providing the input data on the number and locations of POIs,390

number of people living in the zone, number of people traveling from other zones to the chosen zone for their work,
and the working hours in a day, activitygen generates activities happening in the zone. Using another tool called
Duarouter [41], every activity in the zone is assigned by a route based on selecting the shortest path between the
source and the destination. The destination could be a POI that the passenger wants to reach and the source could
be a location within the zone or outside the zone where the passenger starts the journey. If the passenger starts395

the journey beyond the chosen zone, a specific location through which he enters the given zone can be explicitly
controlled in SUMO. The routes generated by Duarouter are for vehicles other than buses in the network. These
vehicles enter the network from a source location which is manually configured in SUMO (in the current simulation,
the source location is configured as the location around the starting point of the chosen bus route, i.e., S) and leave
the network from a specific location (manually configured to be around the bus stop location D) and remain in400

the network until the specified time configured in activitygen. Fig. 15a shows a snapshot of the simulation setup
described above, indicating the bus stops, traffic light signals, pedestrian walkways and POIs. Fig. 15b shows a
snapshot of vehicles moving in the network at the time instance of 29400 s (8:10 AM).
Step 3. Simulate the scenario considering the road network as described in step 1 and the route set up as described
in step 2 for the morning peak hour (8:00 to 9:00 am).405

Step 4. Extract the results from the SUMO output files:
Since SUMO is a microscopic simulator, it can log the results of individual vehicles in a trace file with a sampling
period of one second. We can also extract the information on the geographical position of a vehicle, the route
information, the velocity of a vehicle, etc. Using the trace file generated at the end of the simulation in step 3, the
time mean speed of the vehicles (buses) are extracted for every road segment for an hour.410

Step 5. Calculate the end-to-end travel:
The end-to-end travel delay is calculated between the two chosen nodes S and D using (24) where, the geographic
distance between the bus stops is calculated using the Haversine formula [27], and the time mean speed is calculated
as described in step 4. The final result of our simulation set up is compared with the Google map's expected travel
time, the Hong Kong's official e-Transport application and the empirical result from the real-world KMB (Kowloon415

Motor Bus Co.) dataset as tabulated in Table 10.
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Table 10: Comparison of end-to-end travel delay between chosen nodes S and D during morning peak hour.

Parameter HKeTransport Google Maps Simulation result Emperical result

end-to-end delay (min) 65 57 56.5 52

(a) (b)

Figure 15: (a) Snapshot of the SUMO simulator; and (b) vehicles moving in the network.

Figure 16: Generalized flow prediction for dependency of vehicle speed on POI density and distance between the stops.

(a) (b)

Figure 17: (a) The comparison of route details for the chosen bus route no. 1 as shown in the KMB application, SUMO simulation
set-up and the GPS locations obtained from empirical dataset. (The bus stops in the SUMO simulation are not highlighted, instead,
the locations of the traffic light signals configured in the simulation are highlighted); and (b) comparison of the simulation and empirical
result for the dependency of vehicular speed on node weight.
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Another important thing to notice in the simulation is the dependency of the vehicular speed along a road
segment with respect to the node weight (POI density and the node occupying probability as discussed in Section
2.2.1). In our simulation, we observe that, as the number of POIs around a particular bus stop increases, the
maximum speed attained by the vehicles in the particular road segment decreases, considering the peak hour420

simulation. The situation goes worst when the distance between the bus stops decreases and the node weight
increases, i.e., as shown in Fig. 16, the speed of the traffic changes from free flow to critical flow, and finally to a
jammed state as the node weight (POI density and node occupying probability) increases, and the distance between
the bus stops decreases. To validate our simulation results, a real-world data provided from the KMB (Kowloon
Motor Bus Co.) operator (from Hong Kong) is employed. The data is collected for a period of one week during425

October 2017 for the morning (8:00-11:00 AM) and evening peak hours (4:00-7:00PM). The data x (latitude), y
(longitude), t (time), v (velocity at a given time) is sampled with a sampling rate of one second along the chosen
route (Route no. 1). Fig. 17a shows the GPS (Global Positioning System) locations for the chosen bus route no.
1. Using the data, the maximum speed achieved along a road segment is extracted for both morning and evening
peak hours considering an average of 30 trips along the chosen route (a road segment is considered as a segment430

between successive bus stops, i.e., it can be a collection of smaller road segment separated by road junctions or
traffic light signals). Fig. 17b shows the dependency of maximum speed attained along a road segment (Vmax) on
the normalized node weight (wi norm). The comparison of simulation and empirical data show that as node weight
increases, the Vmax decreases. This condition might not be true always, unless we consider the distance between
the successive nodes. Fig. 18 plots distance between any two successive stops (dij), the normalized node weight435

(Wi norm) and the maximum speed achieved along a road segment (Vmax) for the morning and evening peak hours.
We can see from the figure that, the normalized node weight is the node occupying probability, i.e., the number of
people accessing a particular stop as per the real-world data from KMB is considered to be the demand serviced by
a node. From Fig. 18, we can notice that the bus stops no. 9, 10 and 11 (S9, S10, S11) have relatively higher node
weight, however, since the stops S9 and S10 are geographically closer, the Vmax along the road segment is smaller as440

compared to the road segment between the stops S10 and S11. A similar scenario is observed between the stops S17,
S18 and S19. Thus, from our findings we can infer that, with increasing node weight (demand) and geographically
closer bus stops, the maximum speed achieved along the road segment reduces significantly. It is acceptable that
the operators deploy more stops to meet the greater demand, but it should also be considered that closer bus stops
would eventually lead to a state of traffic congestions. Hence, the route planning and the stop deployment needs445

judicious design to overcome the congested travels. Additionally, as shown in Fig. 19, considering the practical
demand serviced by the nodes along the chosen route, it is observed that though certain stops have lower node
weight (demand), their weighted node degree (the number of bus routes servicing the stop) is significantly high.
Such a scenario is observed between stop S19 to S25. On the contrary, there are stops with higher demand and are
serviced by less number of routes, as observed between stops S9 to S11. Thus, the node weight analysis as discussed450

in Section 2.2.1 aids the bus operators to not only plan their routes in a better way considering the node weight, but
also assists in choosing the location of stops along a route. Though the simple simulation carried out in Section 4.1
is primarily to get an idea on the analysis of topological efficiency in terms of end-to-end travel delay, the simulation
gives us the basic idea on the dependency of Vmax on Wi norm and dij which is validated with real-world empirical
data.455

5. Conclusion and future work

The analysis of the topological properties and structural behavior of Hong Kong, London and Bengaluru bus
transport networks in regular and supernode representations revealed that the Hong Kong network is topologically
more efficient as compared to the London and Bengaluru networks. The degree distribution of the Hong Kong
network follows a power law, whereas an exponential distribution is observed for London and Bengaluru networks,460

indicating that only Hong Kong network is a scale-free network. An improved level of clustering has been noticed
in all the three networks due to the merging of nodes. This property reduces the average shortest path required
to travel between two nodes. The Hong Kong and Bengaluru networks with their average path length close to six
degrees of separation under supernode structuring need minor route modifications to behave as small world networks.
However, the London network is extremely sparse. The geographically significant nodes identified with the aid of465

the demand estimation model indicate the importance of the nodes to the network in local zones. Interestingly,
many of these nodes are found to be central nodes in the network from a graph theory perspective. Thus, unlike
previous approaches, which used different centrality measures to evaluate the significance of nodes that gives an
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Figure 18: Dependency of the maximum speed achieved along a road segment (Vmax) on distance between any two successive stops
(dij) and the normalized node weight (Wi norm) for the morning and evening peak hours along the bus route no. 1. The values of Vmax

are scaled by a factor of 100 to ensure the data fits into the range of [0:1] along the y-axis.

idea on the static node behavior, in this work, we assign node weight based on the POIs and population density to
capture the dynamic behavior of nodes in the network, i.e., by understanding the variations in population density470

and POI statistics around a node, a better estimate on its dynamic behavior can be obtained. By understanding
such dynamic behavior of nodes, bus operators can better plan their routes to avoid a congested travel. Finally,
the end-to-end delay model offers a better definition to measure the actual structural efficiency in terms of time
as compared to the distance term employed earlier. The effect of dependency of points-of-interest density and the
distance between two bus stops based on the travel speed shows that the location of the points-of-interest around475

a bus stop has a major influence not only on its demand estimation but also on the end-to-end travel delay or
topological efficiency. As part of future work, the static demand estimation model is to be verified for the London
and Bengaluru networks. The node occupying index

Pj

Nj
considered in the current work is a static and uniform

value across different zones for the time being, which can be made more practical by training with real-world data
on node usage and points-of-interest using deep learning methods. Lastly, the real-time traffic speed can be used480

as the edge weight to analyze the actual network behavior at different time instants throughout the day.
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