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Abstract: SVM has been applied to successfully extract temperature from differential BGSs in 

DPP-BOTDA of different spatial resolution. Compared with LCF, SVM has better performance 

under high spatial resolution and low SNR with shorter processing time. 
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1. Introduction

Differential pulse-width pair Brillouin optical time domain analyzer (DPP-BOTDA) provides a promising way of

distributed sensing with sub-meter spatial resolution [1-4]. In DPP-BOTDA, the sub-meter spatial resolution is

achieved by obtaining the differential Brillouin gain spectrum (BGS) through the subtraction between two

conventional BOTDA traces measured using two pump pulses with slightly different duration. Like in conventional

BOTDA, Lorentzian curve fitting (LCF) is usually used to determine the Brillouin frequency shift (BFS) from the

differential BGS [3, 4]. Since differential BGSs are usually collected at high sampling rate to resolve sub-meter

scale changes, it would take long processing time by LCF for algorithm iteration to find all the BFSs, which is not

satisfactory for real-time monitoring. Recently we have reported direct temperature extraction by using Support

Vector Machine (SVM) in conventional BOTDA [5]. In addition to better accuracy, SVM exhibits a data processing

speed faster than the common LCF by two orders of magnitude. In this paper, we use SVM for temperature

extraction in DPP-BOTDA, which is more attractive in the scenario of high spatial resolution and high sampling rate.

2. SVM training using designed ideal differential BGSs

To train the SVM model, ideal differential BGSs are designed using Lorentzian curve as the gain profile, and 601

temperature classes are formed at a temperature step of 0.1℃ and temperature range from 10℃ to 70℃. The BFSs

of the ideal differential BGSs are determined using the calibrated temperature coefficient of 0.9749MHz/℃ for our

fiber under test (FUT). We determine the bandwidth of ideal differential BGSs according to experimental data using

different pump pulse pairs. For each temperature class, we obtain the ideal differential BGSs with the same BFS but

different bandwidth varying from 20MHz to 40MHz at 2MHz step, in order to take the bandwidth variation along

FUT into account. Thus we have 601×11 ideal differential gain profiles to train the SVM. After training, the SVM

model is applied to process the measured differential BGSs by DPP-BOTDA and directly extract the temperature.

3. Experiment and results

Fig. 1. (a) Differential BGS distribution along FUT measured by using pump pulse pair of 50/48ns; (b) zoom-in view of (a) near the FUT end; 

(c) temperature distribution extracted by SVM from differential BGSs and (d) the zoom-in view near the FUT end.

Fig. 2. Temperature distribution near the FUT end extracted by SVM from differential BGSs measured using pump pulse pair of (a) 50/46ns, 

(b) 50/44ns, (c) 50/42ns, and (d) 50/40ns, respectively.
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We adopt the DPP-BOTDA setup in [2] to measure differential BGSs. 1024 times averaging and 1MHz frequency 

scanning step from 10.75GHz to 10.95GHz are used for the measurement. Our FUT is 5km long with a short section 

(~cm long) and a long section (200m long) at the FUT end heated to 50℃. The short heated section serves as the 

sub-meter hot-spot. The data sampling rate is 1GSample/s, thus there are 2000 sensing points along the last 200m 

heated section, which offers enough data points to evaluate the temperature accuracy by SVM.  

Fig. 1(a) shows the differential BGS distribution along FUT measured by using pump pulse pair of 50/48ns. The 

zoom-in view near the FUT end is given in Fig. 1(b). Here the short heated section is 20cm long and is clearly 

observed. Fig. 1(c) depicts the temperature distribution along FUT extracted from the measured differential BGSs by 

SVM and Fig. 1(d) shows the zoom-in view near the FUT end. The temperature distribution has been exactly 

extracted by SVM, and the temperature uncertainty at the FUT end is calculated to be 2.22℃. We also measure 

differential BGSs by using other pump pulse pairs in order to analyze the performance of SVM in DPP-BOTDA of 

different spatial resolution. The results are given in Figs. 2(a)-(d), showing the temperature distribution near the 

FUT end extracted by the same SVM model for different spatial resolutions, respectively. Note that in the 

experiment of each pump pulse pair, the length of the short heated section is made equal to 40cm~100cm at a step of 

20cm, respectively. Fig. 2 verifies the feasibility of using only one SVM model to extract temperature in DPP-

BOTDA of different spatial resolution. 

The temperature uncertainty by SVM at the FUT end is found to decrease from 2.22℃ to 0.47℃ as pump pulse 

width difference increases from 2ns to 10ns, as shown in Fig. 3(a). This is because smaller pump pulse width 

difference leads to worse signal-to-noise ratio (SNR). The results using LCF to extract temperature are also given in 

Fig. 3(a) for comparison. It is seen that the uncertainty by SVM is lower than that by LCF, especially when the pulse 

width difference becomes small. It implies that SVM is more robust to the pulse width difference and thus still has 

better accuracy at higher spatial resolution. The data processing time of temperature extraction by SVM as a 

function of temperature step is given in Fig. 3(b).  The same 50,000 differential BGSs measured along 5km FUT in 

Fig. 1 are processed by four SVM models, i.e. SVM-0.1℃, SVM-0.2℃, SVM-0.5℃, and SVM-1℃, respectively. 

The four models are formed with 601(0.1℃ step), 30 (0.2℃ step), 121 (0.5℃ step) and 61 (1℃ step) temperature 

classes, respectively, and are separately trained. We can see that the processing time decreases quickly as the 

temperature step increases, e.g. 133.17s for SVM-0.1℃ and 1.12s for SVM-1℃. This is because there are fewer 

binary classifiers constructed at larger temperature step using one-against-one strategy for multi-class classification 

by SVM [6]. The corresponding temperature uncertainty by the four SVM models is also shown in Fig. 3(b), where 

only small uncertainty degradation is observed at large temperature step. Thus one can use SVM-1℃ to extract 

temperature at fast speed but without much accuracy degradation. It is worth mentioning that to process the same 

differential BGSs, LCF consumes 693.55s, which is beyond 5 times and 600 times slower than SVM-0.1℃ and 

SVM-1℃, respectively. 

 
Fig. 3. (a) Temperature uncertainty versus pulse width difference; (b) data processing time and temperature uncertainty by SVM versus 

temperature step for 50/48ns pump pulse pair. 

4.  Conclusion 

We have experimentally demonstrated SVM for temperature extraction in DPP-BOTDA under different spatial 

resolution. SVM shows better accuracy than LCF, especially for the measurement of  differential BGSs at high 

spatial resolution. The data processing time of SVM is much shorter than that of LCF. We believe SVM for 

temperature extraction would be more helpful in the scenario of DPP-BOTDA where the SNR is lower and denser 

sensing points are collected compared with conventional BOTDA. 
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