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ABSTRACT 10 

This paper aims to present histogram-based local descriptors applied to Facial Expression Recognition 11 

(FER) from static images, and provide a systematic review and analysis of them. First, we describe the 12 

main steps in encoding binary patterns in a local patch, which are required in every histogram-based 13 

local descriptor. Then, we list the existing local descriptors, while analysing their strengths and 14 

weaknesses. Finally, we present the experimental results of all these descriptors on commonly used 15 

facial expression databases, with varying resolution, noise, occlusion, and number of sub-regions, as 16 

well as comparing them with the results obtained by the state-of-the-art deep learning methods. This 17 

paper aims to bring together different studies of the visual features for FER by evaluating their 18 

performances under the same experimental setup, and critically reviewing various classifiers making 19 

use of the local descriptors. 20 

1. Introduction21 

Facial expressions, which are an important aspect of non-verbal communication, have been extensively 22 

studied in different fields, such as psychology [7; 8]. Ekman and Friesen [7] identified six facial 23 

expressions (i.e. anger, disgust, fear, joy, sadness, and surprise) as prototypical expressions that are 24 

universal among humans regardless of their age, race and gender. Early research on automatic FER 25 

focused on those six emotions [14; 15; 16]. In recent years, FER has shown its importance in human-26 
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computer interaction (HCI), such as assistive driving [19], embodied agents [22], and in applications 27 

such as diagnosis [27; 28] and computer games [29]. Thus, the demand has been increasing for an 28 

effective FER technology that can determine one’s emotional state, based on face images, regardless of 29 

one’s age, gender or race. Although much progress has been made on recognizing facial expressions, it 30 

is still a difficult task, due to the complexity and variability of facial expressions, and an effective facial-31 

representation method is a vital step to improving the recognition rate in FER.  32 

Facial feature representations proposed in the literature can now be divided into three categories: 33 

geometrical, appearance-based, and deep features. Geometrical features [32] take advantage of shape 34 

and location information of facial components and salient points, i.e. the eyes, lips, nose tip, etc. FER 35 

with Action Unit (AU) recognition is a geometrical feature-based approach, which has achieved more 36 

attention recently with the advancement in deep neural-network structures [35; 36]. However, 37 

geometrical features still require an accurate and reliable reconstruction and tracking of the facial 38 

landmarks. Therefore, it is difficult to achieve in real-life situations. Furthermore, AU-based facial 39 

expression recognition may require training data whose Action Units are already labelled by experts, 40 

which is a labor-intensive and time-consuming process. Recent studies have shown that appearance-41 

based methods can achieve similar or better performance than AU recognition-based methods [10]. 42 

Appearance-based features are based on texture information related to the expressions on a face, 43 

e.g. wrinkles, skin changes, etc., which can be applied to the whole face or specific facial regions. 44 

Appearance-based features do not require the accurate reconstruction of all the facial landmarks, but 45 

only eye-pupil points, since the eyes are usually used to align the faces for further facial representation, 46 

i.e. feature extraction. Furthermore, appearance-based features only need the emotion labels of the 47 

samples for the training process. These advantages make appearance-based methods more favorable in 48 

comparison to geometrical features. One of the first attempts of FER, based on texture classification, is 49 

to use Local Binary Pattern (LBP), which was proposed by Ojala et al. [24]. LBP is one of the most 50 

widely used descriptors, due to its computational simplicity, discriminative power, and insensitivity to 51 

monotonic grayscale changes.  52 

The successful application of LBP on the FER problems has inspired further studies for local 53 

descriptors. These studies focus on enhancing the coding techniques, e.g. different neighbourhood sizes, 54 



processing of input images, e.g. linear filtering, transformations, etc., to emphasize the expression-55 

specific information. Numerous variants of LBP have been proposed for the problems, such as face 56 

recognition [43; 44], facial expression recognition [46], texture classification [47], spatiotemporal 57 

feature representation [50], and medical image analysis [52]. Some comprehensive studies of LBP 58 

variants can be found in [53; 54; 55].  59 

Recently, local binary feature learning methods have been proposed for efficient and data-adaptive 60 

face representation, because LBP and other hand-crafted features require strong prior knowledge of the 61 

problem in order to engineer them by hand [56; 57; 58]. The objective behind the feature learning 62 

methods is to learn a feature mapping using raw pixels to project each local pixel difference (PDV) into 63 

a low-dimensional binary vector that can efficiently represent the face data. Therefore, a codebook 64 

constructed using the learned binary codes can be used to obtain a histogram feature for each image 65 

[58]. To the best of our knowledge, local binary feature learning methods have not been applied to the 66 

FER problem, but only to age estimation [62] and face recognition [63; 64; 65]. As LBP has been 67 

successfully applied to the tasks for facial image analysis, it is worthwhile evaluating the recently 68 

proposed local binary feature learning methods on FER. 69 

Recently, deep neural networks have been studied widely for many pattern-recognition tasks, such 70 

as human pose estimation [66], face recognition [68], gender recognition [69], image recognition [71; 71 

72], which require learning from a large amount of data. The increasing popularity and the success of 72 

deep features are also rooted in the FER problems [1; 3; 4; 12; 17; 20; 25]. Although the increase in 73 

recognition rate for FER is undeniable, the debate between hand-crafted features and deep features is 74 

still active. Benitez-Garcia et al. [23] proposed a local descriptor, i.e. a handcrafted feature, which can 75 

achieve a higher recognition rate than any deep neural-network structure until now. This suggests that 76 

the domain-specific knowledge and the handcrafted features are still effective and favourable for visual 77 

classification. In this paper, we present a comprehensive study of appearance-based facial features, i.e. 78 

handcrafted features, and then we compare their best results with those methods based on recently 79 

proposed local binary feature learning methods and deep features for FER. 80 

The steps of a basic FER framework with the use of appearance-based features can be listed as 81 

follows: 1) detecting and aligning the face images, 2) dividing each face image into several overlapping 82 



or non-overlapping regions, 3) extracting local features from these regions based on the local 83 

descriptors, 4) concatenating the respective local features to form a single feature vector, followed by 84 

unsupervised or supervised dimensionality reduction, 5) training a classifier based on the feature vectors 85 

from training samples, and 6) predicting the class label of a new query based on the trained classifier. 86 

The classification results depend on almost every step listed above. However, most of the recent studies 87 

have focused only on developing more robust local features [23; 31; 73; 75]. A robust feature should 88 

be highly discriminative, easily computed, of low dimensionality, insensitive to noise, such as 89 

illumination changes, and have low intra-class variations. 90 

It is difficult to balance these properties for a local descriptor. For example, LBP is computationally 91 

simple and discriminative, but sensitive to random noise. Similarly, although Gabor-based local 92 

descriptors have shown their achievements, especially in face recognition [38; 76; 77; 78], the features 93 

suffer from the expensive computational requirement and high dimensionality. Thus, developing a 94 

robust local descriptor is still an open issue for many fields of image representation and classification, 95 

such as texture representation [75; 79; 80; 81] and face representation [44; 75]. 96 

In the field of computer vision, popular local descriptors are often applied to different problems or 97 

applications. For instance, although LBP was originally devised for texture classification, it has been 98 

applied to face recognition [82], image retrieval [83], facial expression recognition [16], etc. However, 99 

it might not always be true for a new descriptor. Facial expression recognition is a problem different 100 

from face recognition or other types of recognition. “A good face-recognition local descriptor” should 101 

represent discriminative identity information about face images, while “a good facial-expression local 102 

descriptor” should discard the subject’s identity information and highlight the expression-specific 103 

information of a face. Therefore, it is important to be attentive to the nature of a problem in choosing 104 

an appropriate local descriptor. 105 

The local descriptors, proposed in the literature, often benchmark their results against previously 106 

reported ones. However, the reliability of the benchmarking may not be high, due to the following 107 

reasons: 108 

- A few benchmark databases were used, and the descriptors were evaluated with different 109 

databases. 110 



- Each of the databases may have a different set of expression categories. 111 

- Different image preprocessing techniques, e.g. face alignment, illumination, different 112 

normalization, etc., are used in experiments. 113 

- The evaluation procedures/testing protocols, e.g. the choice of the classifier, the cross-114 

validation scheme used, etc., are different. 115 

- The overall experiments cannot be reproduced because not all the experimental setup is known. 116 

In the literature, there have been several attempts to compare the performances of LBP-like 117 

descriptors using the same experimental settings. One of the most recent experimental studies on the 118 

LBP-like descriptors was conducted by Liu et al. [84], which evaluated thirty-two LBP variants for 119 

texture classification. However, there are still many other texture descriptors for facial expression 120 

recognition, which should be compared. 121 

Kristensen et al. [55] presented an overview of “binary flavored features” for FER. Although a set 122 

of commonly used terms was defined so as to encourage consistency in terminology and to explain the 123 

current challenges, the depth of the survey in terms of performance comparison is limited. Another aim 124 

of this paper is to fill this gap by providing a comprehensive performance analysis on those recent local 125 

descriptors used for FER. 126 

In this paper, we compare the performances of 27 local descriptors on four popular databases with 127 

the same experimental setup, including the use of two classifiers, different image resolutions, and 128 

different numbers of sub-regions. In addition to their accuracy, other important aspects, such as face 129 

resolutions for best performances, are also studied. Moreover, we compare the results achieved by 130 

handcrafted features, e.g. histogram-based local features, with the results obtained by the “Compact 131 

Binary Face Descriptor (CBFD) [57]” and the state-of-the-art deep features. We also evaluate the 132 

robustness of the respective local descriptors in the scenario of a cross-dataset facial expression 133 

recognition problem. In our evaluation, we found that the best overall performances are obtained by 134 

Local Phase Quantization (LPQ) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS), with 135 

consistency across most of the databases used in our experiments. 136 

The rest of the paper is organized as follows: Section 2 introduces a taxonomy for histogram-based 137 

local descriptors and highlights the representative examples of the specific steps. In Section 3, the 138 



experimental setup is first described, then comprehensive experimental results are presented. Section 4 139 

concludes the paper. 140 

2. Construction of the histogram-based local descriptors 141 

Histogram-based local descriptors compute local statistical information at key points, and describe the 142 

features in a region using a histogram representation. Almost all the local statistical feature (LSF) 143 

methods, as described in [43], have two main parts: statistical histogram feature extraction and statistical 144 

feature combination. Unlike [43] which divides the statistical histogram feature extraction further into 145 

three steps, we divide it into five steps in this paper, in order to describe different local descriptors in 146 

more detail. In the rest of this section, each step is explained while the corresponding representative 147 

descriptors are highlighted with their strengths and weaknesses. 148 

2.1. Local variation coding 149 

Histogram-based local-feature descriptors represent the centre pixel of a local region as a decimal 150 

number, according to its values compared to its neighbouring pixels. Regardless of the input image, 151 

local variation coding is a general method used to encode the pattern features in a local patch. For each 152 

local patch, with a given neighbourhood, a typical local variation coding has five steps, including linear 153 

filtering, quantization, binarization, encoding and binary to decimal conversion. In the following sub-154 

sections, these five steps will be explained in detail. 155 

2.1.1. Linear filtering 156 

The first step of local variation coding is to convolve a patch with a predefined set of linear filters. The 157 

most commonly used linear filters in histogram-based local descriptors are Kirsch [33; 34], Prewitt [5; 158 

6; 33], Sobel [5; 6; 13; 33; 40], and Derivative-Gaussian [33].  159 

From the computational point of view, Sobel operators are more efficient than the Kirsch operators, 160 

as less pixels and multiplications are involved. These linear filters operate on a local patch with a 3×3 161 

mask, and custom linear filters, which consider higher-order derivatives, have also been proposed. For 162 

example, Local Arc Pattern (LAP) [21] and Local Monotonic Pattern (LMP) [45] encode the first and 163 

the second-order derivatives of a local patch in different orientations, using a set of custom filters. 164 

Although LAP and LMP can represent a bigger micro pattern with multiple radii, they use intensity 165 



values, as LBP, and are therefore sensitive to non-monotonic changes. Local Transitional Pattern (LTrP) 166 

[59] and Local Monotonic Pattern (LMP) [45] encode the transition of intensity change in different 167 

directions over a local patch. Local Derivative Pattern (LDP) [85] encodes the second and higher-order 168 

derivatives of a local patch. Although the higher-order derivatives can represent local variations with 169 

more details, the dimensionality of the resulting feature vector will become higher, as well as the 170 

computational cost. 171 

2.1.2. Quantization 172 

The second step of the local variation coding is the quantization of the linear-filter responses. The most 173 

common way of quantization used in the different descriptors is the unit step function. The local 174 

descriptors, such as LBP, Median Binary Pattern (MBP) [51], etc., quantize their filter responses using 175 

the unit-step function. However, this will generate inconsistent binary codes in uniform and near-176 

uniform face regions, because the filter responses may vary slightly around the threshold value, usually 177 

zero. Local Ternary Pattern (LTeP) [51], Median Ternary Pattern (MTP) [51], Gradient Directional 178 

Pattern (GDP) [5; 6], and Gradient Local Ternary Pattern (GLTeP) [10; 13] add an extra level of 179 

thresholding, which facilitates the generation of more consistent codes for local patterns in smooth 180 

facial regions, as well as highly textured regions. 181 

Quantization of the filter responses does not necessarily result in binary values. A common way of 182 

non-binary quantization is the k-bin method. Histogram of Oriented Gradients (HOG) [86] and 183 

Pyramids of Histogram of Oriented Gradients (PHOG) [70] are two examples, which quantize the 184 

gradient angles to k intervals, and then count the gradient magnitudes of those pixels whose gradient 185 

orientations are within a specific interval. Another method of non-binary quantization of the filter 186 

responses, such as the angle or phase information, is to use the quadrant information [37; 43; 76], i.e. 187 

the 2-D Cartesian coordinate system, where four quadrants are defined by the x- and y-axes.  188 

2.1.3. Binarization 189 

After quantization, the filter responses of some descriptors, such as LBP [24], GDP [5; 6], have already 190 

been in binary form, i.e. 0 and 1. However, the other descriptors need a binarization process. The filter 191 

responses can be binarized in two ways:  192 



Binarization by splitting into different levels of binary codes: One example of this method is LTeP [51], 193 

which has three levels after thresholding. A common way of encoding these three-level responses is to 194 

split the responses into two binary codes: “1” and “0” form one binary code, while “0” and “-1” form 195 

the other one. Therefore, two histograms are formed, and this results in a higher dimensional feature 196 

vector. 197 

Binarization by logical operators: This method can be utilized in two different circumstances: when 198 

the quantized values are in binary form [45; 59], or not in binary form [37]. The common logical 199 

operators are “AND” [45] and “XOR” [18; 59]. These two logical operators have their unique 200 

advantages in information encoding. “AND” encodes the alikeness/sameness of the values, while 201 

“XOR” encodes the opposition between the values. 202 

2.1.4. Encoding 203 

The bits in a binary codeword correspond to the binarized responses of the different abovementioned 204 

filters. A basic way of creating a codeword is to use all the resultant binary codes to form a string. In 205 

the case of 3×3 neighborhood, i.e. 8 neighbours, each code string will be 8-bit long, which forms a 206 

decimal value between 0 and 255. LBP, LTeP, MBP, MTP and GDP utilize this basic code. Local 207 

Directional Pattern (LDiP) [26] computes the eight directional edge responses, by using the Kirsch 208 

masks. However, as the response values are not equally important in all the directions, LDiP encodes 209 

the k most prominent directions, i.e. a customized codeword. LDiP can provide more stable codes, in 210 

the presence of gray-level distortion, such as noise and non-monotonic illumination changes. High-211 

frequency regions in a face carry more information about texture information, such as the human eye 212 

regions. Therefore, to achieve a more competent face representation, textural regions with high 213 

contrast/frequency should influence the LDiP code more. However, LDiP considers both low and high-214 

frequency regions equally. To incorporate this importance into the LDiP codes, an extension of LDiP, 215 

named Local Directional Pattern Variance (LDiPv) [30], was proposed, which introduces the variance 216 

of the codes as weights in constructing the histograms. However, both LDiP and LDiPv consider the 217 

filter responses in absolute value, which lose the important direction information, e.g. different 218 

transitions in a region. Furthermore, they are sensitive to rotation variations, because a fixed start 219 



position has to be defined for encoding a binary string, and they are profoundly dependent on the 220 

number of the most prominent directions considered. Local Directional Number Pattern (LDN) [33] 221 

also encodes the principal directions, i.e. the most positive and negative directions, so a more 222 

discriminative representation of directions can be achieved. Local Directional Texture Pattern (LDTP) 223 

[34] also encodes the principal directions, which discards the insignificant details that may vary on the 224 

samples belonging to the same class. However, different from the other descriptors, LDTP encodes both 225 

the principal directions and the intensity information (the intensity difference of the two principal 226 

directions). Therefore, LDTP is robust against both rotation and illumination changes. 227 

Recently in the fields of texture classification, image retrieval, and facial feature representation, an 228 

extensive amount of customized coding schemes has been proposed [44; 75; 80; 81]. All these coding 229 

schemes aim at producing robust features, which are important for the image-classification problem. 230 

2.1.5. Binary to decimal conversion 231 

The last step of local variation coding is to convert a binary codeword into a decimal value, which 232 

represents the local pattern of the pixel under consideration. After computing the feature values for all 233 

the pixels in a patch, the statistics of these numbers, in the form of a histogram, can be used to represent 234 

the patch. 235 

2.1.6. Local Binary Pattern and other local variation coding schemes 236 

LBP, as a local variation coding method, has four steps as discussed previously: linear filtering, 237 

quantization with the unit step function, encoding the binary codeword, and binary to decimal 238 

conversion. LBP has also been extended to use different neighbourhood sizes, as well as uniform LBP 239 

codewords, i.e. those codewords have no more than two transitions from 1 to 0 or 0 to 1. A codeword 240 

is non-uniform if it has more than two transitions. This idea was inspired by the fact that the uniform 241 

codewords occur more frequently than those non-uniform codewords in images. 242 

LBP encodes the relationship between the central pixel and its neighbours. Some local descriptors 243 

extract high-order local information. A high-order descriptor can capture more detailed discriminative 244 

information. Other local descriptors also encode different distinctive spatial relationships in a local 245 

region. More information about LBP variants can be found in [84]. 246 



2.2. Local feature representation 247 

LBP and other histogram-based local descriptors encode the distribution of local variation codes within 248 

a region. A frequency-based or weighted-vote-based histogram constructed for a whole face image will 249 

lose the spatial information about the patterns encoded by a local descriptor. To represent the facial 250 

features more effectively, face images are divided into a number of overlapping or non-overlapping 251 

small sub-regions. Local features extracted from the sub-regions can achieve better recognition rates 252 

than those using holistic features, such as Eigenfaces and Fisherfaces [87]. 253 

Different regions in a face carry different amount of information about an expression. To eliminate 254 

the excessive and non-informative features for face or expression recognition, weighted histogram 255 

representation has been adopted. In this representation, weights are often set according to the 256 

discriminability of the regions [16], e.g. a small weight near the image’s borders, and a higher weight 257 

around the eye and mouth regions. 258 

Another local-feature representation uses only those regions that carry salient information about 259 

facial expressions. Benitez-Garcia et al. [23] developed an algorithm to detect salient regions based on 260 

fiducial points for feature extraction. In [15], we observed that the features extracted from the eye and 261 

mouth regions can achieve higher recognition rates than the features extracted from the sub-regions 262 

divided from a whole face. 263 

2.3. Inputs to local variation coding 264 

Most of the early descriptors extract local features from intensity information, using a local variation 265 

coding method. However, the intensity information is sensitive to noise and illumination variations. 266 

Therefore, other types of input have been considered for local variation coding. Since gradients are 267 

more stable than intensity under the presence of illumination variations, several descriptors utilize 268 

gradient information to encode local variations. For example, GDP encodes gradient angles, while 269 

GLTeP encodes gradient magnitudes. 270 

After the successful applications of LBP, several descriptors, which are based on Gabor filtering 271 

with a predefined number of scales and orientations, have been proposed. Examples of these descriptors 272 

include Local Gabor Binary Pattern Histogram Sequence (LGBPHS) [38], Local Gabor Directional 273 



Pattern (LGDiP) [39], and Local Gabor Transitional Pattern (LGTrP) [42]. These descriptors often 274 

encode the magnitude information of the transform, i.e. the Gabor Magnitude Image, because the 275 

magnitude information is robust to misalignment. Gabor features are robust to image variations in terms 276 

of illumination and noise, but extracting the features is computationally expensive and the resulting 277 

feature vector has a high dimensionality. 278 

Binary Pattern of Phase Congruency (BPPC) [2] applies wavelet transform to the logarithmic Gabor 279 

features, followed by computing the phase congruency (PC). PC is a dimensionless quantity, and can 280 

be considered as the gradient where high energy values of PC occur on edges, corners, etc. Monogenic 281 

signal analysis [88], which is a 2-D generalization of the 1-D analytic signal, is an alternative method 282 

to Gabor filtering. Monogenic signal analysis can estimate the multi-resolution amplitude, orientation, 283 

and phase components of a signal, which represent the signal energetic, structural, and geometric 284 

information, respectively. One advantage of monogenic signal analysis over Gabor transformations is 285 

that it has a lower time and space complexity. 286 

In 2010, two local descriptors, which use monogenic signal analysis, were proposed for texture 287 

classification [89] and face recognition [90], where only the monogenic phase information and both the 288 

amplitude and orientation information, respectively, are encoded. Several other this kind of local 289 

descriptors exist in the literature [44; 91; 92]. Monogenic signal analysis has also been used for 290 

spatiotemporal facial expression recognition, with the local descriptor named “Spatiotemporal Local 291 

Monogenic Binary Patterns (STLMBP)” [93]. However, to the best of our knowledge, Monogenic 292 

Binary Coding (MBC) [43] is the only descriptor that applied monogenic signal analysis to static facial 293 

expression images [61]. MBC encodes the amplitude (MBC_A), phase (MBC_P), and orientation 294 

(MBC_O) information separately. 295 

Local Phase Quantization (LPQ) [48] is a local descriptor, which extracts features from the discrete 296 

Fourier transform (DFT) over an image. LPQ is robust against blur and low resolution because it 297 

quantizes the phase information in local neighbourhoods. However, LPQ requires the point spread 298 

function (PSF) to be positive and valued in the low-frequency domain. Local Frequency Descriptor 299 

(LFD) [37], which also extracts information from DFT, encodes both the magnitude and phase 300 



information using LBP and Local XNOR Pattern (LXNORP). LFD does not require PSF to be positive, 301 

and can carry more information than LPQ, but the dimension of the feature vector is doubled. 302 

Weber Local Descriptor (WLD) [69, 70] was inspired by the Weber’s Law, which states that the 303 

significance of a change in the stimuli depends on the initial value of the stimuli. WLD, which computes 304 

the differential excitation and the orientation of an image, forms a joint histogram for the differential 305 

excitation and the orientation. WLD has been applied to several problems successfully, including facial 306 

expression recognition [74]. However, WLD discards the orientation information of the differential 307 

excitation and neighbouring pixel pairs. 308 

Recently, Jang et al. [18] proposed an extension of WLD, named Improved Weber Binary Coding 309 

(IWBC), to solve the drawbacks of WLD. IWBC generates two images, which are called the Novel 310 

Weber Magnitude Image and the Novel Weber Orientation Image, which are then encoded using Local 311 

XOR Pattern and LBP, respectively. Although IWBC can represent a face more accurately than WLD 312 

by including the orientation information about the neighbouring pixels, it suffers from the problem of 313 

high dimensionality. To the best of our knowledge, IWBC has never been applied to the FER problem. 314 

Since IWBC has been shown to outperform WLD on the face recognition problem, so we include IWBC 315 

in our experiments to evaluate its performance as a local descriptor for FER. 316 

3. Experiments 317 

In this section, a number of histogram-based local descriptors are evaluated for facial-expression 318 

recognition, with the same experiment settings. We will first describe the experimental setup, including 319 

the benchmark databases, pre-processing, feature extraction, and classification schemes, and then 320 

analyse the experimental results. 321 

3.1. Experimental setup 322 

3.1.1. Databases and the corresponding numbers of expression classes 323 

The performances of the local descriptors are compared on commonly-used, acted databases, as well as 324 

spontaneous databases. The facial-expression databases used in our experiments are BAUM-2 [94], 325 

CK+ [95], JAFFE [96], and TFEID [97]. 326 



The CK+ database, which is one of the acted facial-expression databases mostly used, contains a 327 

total of 593 posed sequences across 123 subjects. 327 of the sequences were labelled with one of the 328 

seven discrete expressions — anger, contempt, disgust, fear, happiness, sadness, and surprise. The last 329 

three frames of each sequence and their landmarks provided are used for experiments. JAFFE and 330 

TFEID are two acted face databases with six prototypical expressions and the neutral expression, which 331 

contain 213 images from 10 Japanese females and 268 images from 40 Taiwanese subjects, 332 

respectively. The BAUM-2 database consists of expression videos extracted from movies. The 333 

expressions in the videos are in the close-to-real-life conditions, i.e. with pose, age, and illumination 334 

variations. In our experiments, the image dataset, namely BAUM-2i, consisting of images with peak 335 

expressions extracted from the videos in BAUM-2 are considered. There are 1,057 face images from 336 

250 subjects, which have seven discrete expressions and the neutral expression in BAUM-2i. 337 

The abovementioned databases have their own characteristics in terms of where the expression 338 

images were taken, the expression classes, the race, age and gender of the participants, etc. 339 

A list of the descriptors, and the corresponding feature dimensions, used in our experiments. 
 Abbreviation Descriptor Name Dimension 

1 BPPC [2] Binary Pattern of Phase Congruency 1062 

2 GDP [5; 6] Gradient Directional Pattern 256 

3 GDP2 [9] Gradient Direction Pattern 8 

4 GLTeP [10; 13] Gradient Local Ternary Pattern 512 

5 IWBC [18] Improved Weber Binary Coding 2048 

6 LAP [21] Local Arc Pattern 272 

7 LBP [24] Local Binary Pattern 59 

8 LDiP [26] Local Directional Pattern 56 

9 LDiPv [30] Local Directional Pattern Variance 56 

10 LDN [33] Local Directional Number Pattern 56 

11 LDTP [34] Local Directional Texture Pattern 72 

12 LFD [37] Local Frequency Descriptor 512 

13 LGBPHS [38] Local Gabor Binary Pattern Histogram Sequence 256 

14 LGDiP [39] Local Gabor Directional Pattern 280 * 

15 LGIP [40] Local Gradient Increasing Pattern 37 

16 LGP [41] Local Gradient Pattern 7 

17 LGTrP [42] Local Gabor Transitional Pattern 256 

18 LMP [45] Local Monotonic Pattern 256 

19 LPQ [48; 49] Local Phase Quantization 256 

20 LTeP [51] Local Ternary Pattern 512 

21 LTrP [59; 60] Local Transitional Pattern 256 

22 MBC [43; 61] Monogenic Binary Coding 3072 * 

23 MBP [51] Median Binary Pattern 256 

24 MRELBP [67] Median Robust Extended Local Binary Pattern 800 

25 MTP [51] Median Ternary Pattern 512 

26 PHOG [70] Pyramid of Histogram of Oriented Gradients 168 * 

27 WLD [73; 74] Weber Local Descriptor 32 * 

* the feature dimension used in our experiments 



3.1.2. Descriptors 340 

From the list of descriptors in [55], we select those descriptors based on spatial features, because this 341 

paper considers FER on static images only. The descriptors described in this paper and used in FER are 342 

also included in the experiments. Because of numerous LBP variants, only the basic LBP variants and 343 

MRELBP [67], which achieved the best performances in a recent comparative study for texture 344 

classifications [84], are chosen for our comparative analysis. The other local descriptors, which are not 345 

based on LBP, but inspired by LBP, for facial expression recognition are also included. Most of the 346 

descriptors presented and evaluated in this paper belong to the sixth category defined in [84], which is 347 

called “other methods inspired by LBP”. A feature learning method, named “Compact Binary Face 348 

Descriptor (CBFD) [57]”, is also used in our experiments to evaluate its performance on FER, in 349 

comparison to other state-of-the-art methods. 350 

The descriptors (represented by their abbreviations), evaluated in our experiments, are listed in 351 

Error! Reference source not found.. To conduct a more detailed performance analysis, the best ten 352 

descriptors, along with the corresponding input information used and coding methods, are listed in 353 

Table 2. It is worth noting that MRELBP, IWBC, and CBFD are applied for the first time to the FER 354 

problem. 355 

Table 1. A list of selected descriptors for our experiments and a comparison of the types of input data 

used and the local variation coding methods. 

Descriptors Input for local variation coding Local variation coding 

IWBC 
Weber magnitude, Weber 

orientation 

Local Xor Pattern (LXP) and 

Local Binary Pattern (LBP) 

LAP Intensity 
first- and second-order derivatives 

using a set of custom filters 

LBP Intensity - 

LGBPHS Gabor image Local Binary Pattern (LBP) 

LGIP Intensity 
Horizantal and vertical responses 

of sobel masks 

LMP Intensity 

Local And Pattern with sign 

information of two level intensity 

differences 

LPQ Phase from Fourier Transform Quantization 

LTeP Intensity Two-level LBP 

MBC_P 
Phase, orientation or amplitude 

from Riesz transform 
Local Nand (not and) Pattern 

WLD 
Differential excitations and 

orientations 
Quantization 

 



3.1.3. Pre-processing and feature extraction 356 

For the first set of experiments, face images from the different databases are scaled to different 357 

resolutions, including 50×50, 75×75, 100×100, 125×125, and 150×150. Then, features are extracted 358 

from the images with different numbers of sub-regions. 359 

In the second set of experiments, face images from the different databases are all scaled to the size 360 

of 126189 pixels, with a distance of 64 pixels between the two eyes. To locate the eye and mouth 361 

windows, the facial landmarks, i.e. the eye and mouth corners, are used. If facial landmarks are not 362 

Table 2. The recognition rates for different resolutions, different numbers of sub-regions, on the 

CK+ database. “-” means that the corresponding results are unavailable because the dimensionality 

of the feature vectors are too high for experiments. 
Database CK+ – LOSO – 6-class 

Resolution 50x50 75x75 100x100 125x125 150x150 

# of sub-regions 3x3 3x3 5x5 5x5 7x7 5x5 7x7 9x9 5x5 7x7 9x9 11x11 

1 BPPC [2] 85.33 85.76 90.40 89.75 90.83 90.40 90.40 89.86 87.06 90.40 89.21 89.86 

2 GDP [5; 6] 74.54 75.73 83.82 86.30 86.62 86.30 85.98 86.84 85.65 85.76 86.08 86.08 

3 GDP2 [9; 10; 11] 57.71 57.39 83.06 81.98 90.51 82.20 89.97 92.45 83.06 89.43 94.28 94.82 
4 GLTP [13] 82.85 85.98 91.15 92.66 92.66 92.34 91.69 91.05 92.13 93.64 91.59 92.99 

5 IWBC [18] 88.67 90.72 91.69 90.51 93.42 91.15 93.10 94.82 90.83 92.13 93.31 92.99 

6 LAP [21] 83.17 80.26 89.75 89.21 91.69 90.29 91.26 93.42 91.05 91.05 93.42 94.17 
7 LBP [24] 84.68 84.03 92.23 91.48 91.69 91.91 93.53 93.85 91.80 93.20 93.74 95.25 
8 LDiP [26] 68.72 71.52 86.73 85.44 89.00 86.08 89.54 89.54 84.68 89.64 89.32 89.75 
9 LDiPv [30; 31] 68.93 71.20 83.17 82.85 86.95 83.50 87.70 89.00 85.11 85.98 88.67 89.21 

10 LDN [33] 80.91 82.96 88.46 88.24 90.29 90.40 91.15 92.66 90.83 90.40 92.66 91.91 

11 LDTP [34] 82.74 80.69 85.87 85.65 90.08 86.19 89.75 93.10 83.60 87.06 93.53 89.75 
12 LFD [37] 86.62 82.09 90.61 88.78 90.51 87.38 89.43 89.21 86.62 88.57 88.78 87.49 

13 LGBPHS [38] 86.19 87.27 92.02 92.88 92.99 91.26 90.72 91.48 90.29 89.75 91.48 95.25 
14 LGDiP [39] 71.09 69.15 75.19 80.15 79.72 77.35 78.86 79.07 80.04 83.39 80.80 78.64 
15 LGIP [40] 83.28 84.14 93.20 91.59 92.88 91.69 92.66 93.96 91.69 92.34 93.31 95.15 
16 LGP [41] 50.70 51.13 79.50 77.13 87.38 76.27 85.33 92.45 76.27 86.41 93.10 93.31 
17 LGTrP [42] 48.76 50.16 62.46 64.51 68.72 65.26 64.40 66.67 62.03 69.26 64.40 68.82 
18 LMP [45] 86.30 87.38 90.83 92.23 92.34 92.99 95.04 95.25 91.59 94.50 93.85 93.96 

19 LPQ [48; 49] 90.08 92.45 93.96 94.39 93.31 93.31 94.28 94.17 92.77 93.74 93.74 93.64 

20 LTeP [51] 88.35 89.10 91.80 92.45 93.31 92.99 93.96 95.69 92.56 94.50 95.04 94.93 
21 LTrP [59; 60] 74.76 75.73 85.65 85.44 88.13 84.36 87.70 88.24 87.38 89.54 89.43 87.27 

22 MBC_A [43; 61] 92.56 89.54 89.97 90.51 88.35 89.43 89.43 - 90.08 89.32 - - 

23 MBC_P [43; 61] 88.89 89.32 92.88 94.28 90.51 91.80 93.42 - 92.56 92.45 - - 
24 MBC_O [43; 61] 88.89 87.81 92.02 91.80 91.37 90.94 92.56 - 92.56 92.02 - - 

25 MBP [51] 83.71 82.85 90.08 90.61 90.94 91.05 91.48 93.53 90.40 91.69 93.42 94.07 

26 MRELBP [67] 87.70 88.13 92.13 90.29 92.45 90.72 92.02 93.53 91.05 92.88 92.88 93.31 
27 MTP [51] 90.72 87.92 90.51 90.08 89.97 89.64 89.97 92.77 89.43 89.00 91.59 90.94 

28 PHOG [70] 87.59 89.54 89.54 90.29 89.32 89.00 91.80 90.72 89.21 90.83 90.51 90.40 

29 WLD [73; 74] 81.45 79.61 91.37 90.94 92.23 90.83 93.10 95.90 92.23 93.31 95.47 95.47 

 

Figure 1. Examples of the sub-regions used in our experiments: (a) regular sub-

regions in an image, and (b) the sub-regions for the eye window and mouth window. 
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provided for a database, the required facial-feature points are marked manually. The eye window and 363 

the mouth window are further divided into 12 and 8 sub-regions, respectively. Figure 1 shows examples 364 

of selected sub-regions in both the first and the second set of experiments. 365 

3.1.4. Dimensionality reduction and classification 366 

In the first two sets of experiments, the local descriptors listed in Error! Reference source not found. 367 

were first extracted. Then, the subspace-learning method, Soft Locality Preserving Projection (SLPM) 368 

[98], is applied for manifold learning and dimensionality reduction. SLPM is a graph-based subspace-369 

learning method, which uses the k-neighborhood information and the class information. The key feature 370 

of SLPM is that it aims to control the level of spread of the different classes, because the spread of the 371 

classes in the underlying manifold is closely connected to the generalizability of the learned subspace. 372 

In our experiments, we employ SLPM for dimensionality reduction and for increasing the 373 

discriminative ability of the extracted features. Finally, the nearest neighbour (NN) classifier is used for 374 

classification. The third set of experiments were conducted, with the best setting for each of the 375 

databases, using the Support Vector Machine (SVM) classifier, with the linear kernel. The results are 376 

Table 3. The recognition rates for different resolutions and different numbers of sub-regions, on the 

BAUM-2i database. “-” means that the corresponding results are unavailable because the 

dimensionality of the feature vectors are too high for experiments. 
Database BAUM-2i – 10-fold – 6-class 

Resolution 50x50 75x75 100x100 125x125 150x150 

# of sub-regions 3x3 3x3 5x5 5x5 7x7 5x5 7x7 9x9 5x5 7x7 9x9 11x11 

1 BPPC [2] 51.18 52.48 53.90 56.26 58.98 54.37 59.10 57.45 56.15 55.67 57.21 54.85 

2 GDP [5; 6] 40.78 45.39 50.71 46.10 52.84 45.98 50.83 51.89 46.22 50.24 51.89 49.76 
3 GDP2 [9; 10; 11] 23.88 26.12 29.91 27.90 37.35 28.01 40.54 48.94 28.84 40.66 48.11 53.31 
4 GLTP [13] 50.00 54.14 57.57 55.44 59.57 53.90 59.10 58.27 54.73 59.22 57.57 60.05 
5 IWBC [18] 55.67 57.33 59.22 58.39 58.16 56.97 57.92 57.57 57.09 57.21 56.86 56.26 

6 LAP [21] 46.22 44.80 53.66 48.70 51.77 48.35 50.24 56.03 49.05 50.24 56.03 56.38 

7 LBP [24] 48.35 48.23 54.26 54.02 56.62 53.07 56.86 58.63 53.31 54.61 56.62 59.46 
8 LDiP [26] 27.30 30.61 43.62 45.39 53.07 48.70 52.25 53.66 45.15 52.60 56.03 56.03 
9 LDiPv [30; 31] 24.11 28.25 40.19 36.05 49.88 40.54 48.94 52.25 40.78 48.82 52.84 53.90 

10 LDN [33] 37.23 34.16 48.11 47.52 51.06 47.28 54.14 55.67 47.16 54.61 55.91 60.99 
11 LDTP [34] 30.26 34.04 48.11 43.38 48.82 42.79 46.81 49.41 44.33 47.64 46.81 51.06 
12 LFD [37] 46.69 44.56 53.90 50.59 57.21 51.77 56.74 57.57 51.06 54.73 56.50 57.92 
13 LGBPHS [38] 49.41 50.00 56.62 57.57 59.46 59.22 60.28 60.76 59.81 61.11 62.41 57.92 

14 LGDiP [39] 30.97 32.62 39.60 42.67 44.09 41.25 46.10 47.52 39.83 42.55 44.44 43.85 
15 LGIP [40] 30.50 30.97 49.88 47.04 54.61 49.17 54.02 56.74 48.11 52.96 55.44 58.39 
16 LGP [41] 23.40 21.75 23.52 26.36 31.32 25.41 32.98 42.43 25.30 30.02 41.84 46.22 
17 LGTrP [42] 24.47 23.05 31.44 30.38 31.09 32.03 34.04 35.11 31.68 36.29 40.07 36.29 
18 LMP [45] 49.76 50.35 55.91 56.86 58.75 56.50 58.16 60.64 52.36 55.32 58.27 60.17 

19 LPQ [48; 49] 56.38 56.03 61.35 61.35 60.28 59.46 61.47 61.23 57.68 59.57 60.28 61.47 
20 LTeP [51] 52.36 50.59 55.32 52.96 58.87 52.96 59.46 59.22 54.02 59.57 60.28 60.28 
21 LTrP [59; 60] 35.34 38.89 42.79 46.22 51.06 45.15 49.17 52.01 46.57 50.47 51.77 53.78 
22 MBC_A [43; 61] 56.62 56.62 59.81 57.57 59.34 56.38 58.63 55.08 56.03 55.67 55.20 - 

23 MBC_P [43; 61] 56.03 54.96 59.93 59.81 61.58 59.57 61.47 61.94 59.46 60.87 62.06 - 
24 MBC_O [43; 61] 57.68 55.79 61.35 61.82 60.99 60.05 60.17 61.23 58.27 60.99 60.40 - 

25 MBP [3; 4; 51] 43.62 47.04 54.37 54.37 54.49 53.55 55.32 59.46 52.60 53.43 55.08 57.33 

26 MRELBP [67] 46.34 48.70 55.56 56.86 57.68 57.80 57.92 59.34 57.45 57.57 58.98 59.34 
27 MTP [51] 43.97 41.96 51.54 50.24 54.02 47.87 53.78 51.65 42.91 51.65 52.13 52.60 

28 PHOG [70] 47.52 50.35 51.42 53.43 53.90 51.77 54.26 52.96 54.14 54.02 54.61 53.43 

29 WLD [73; 74] 30.26 24.82 51.77 46.10 57.80 47.52 55.44 56.15 46.93 54.73 55.79 58.75 

 



then compared to those based on the nearest neighbour classifier. Two different cross-validation 377 

schemes are adopted in our experiments: Leave-One-Subject-Out (LOSO) to encourage the 378 

reproducibility of the experiments, and 10-fold cross-validation, which is used when there are sufficient 379 

number of images for each subject in the database, i.e. BAUM-2i. Furthermore, both the 10-fold and 380 

LOSO cross-validation schemes are used for comparison on the JAFFE and TFEID databases.  381 

3.2. Experimental results 382 

In this section, the experiment results on the four facial-expression databases (BAUM-2i, CK+, JAFFE, 383 

TFEID) under different experimental settings are presented and discussed. The experiments are 384 

designed to measure the performances of the respective descriptors, for face images at different 385 

resolutions and divided into different sub-regions, and with different classifiers. 386 

3.2.1. Performance analysis for varying resolution and number of sub-regions 387 

All the face images are first aligned based on the positions of the two eye pupils, and cropped to the 388 

different resolutions. For each resolution, face images are divided into different numbers of sub-regions, 389 

say l l, where l varies from 3 to 11.  390 

Table 3 and Table 4 present the results on CK+ and BAUM-2i for all the descriptors. As observed 391 

from the results shown in Tables 3 and 4, in general, the classification performances improve when the 392 

image resolution and the number of sub-regions increase. Therefore, higher resolution and more sub-393 

regions lead to better classification performances. However, with more sub-regions, the feature 394 

dimension will become very high. In other words, the better performance is at the expenses of higher 395 

computational requirements. 396 

Table 4. The comparison of recognition rates obtained by the selected local 

descriptors on the BAUM-2i database (the best of sub-regions) using 10-fold cross 

validation. 6-class: AN, DI, FE, HA, SA, and SU. 7-class: AN, CO, DI, FE, HA, 

SA, and SU. 8-class: AN, CO, DI, FE, HA, NE, SA, and SU. 
 BAUM-2i 

 6-class 7-class 8-class 

IWBC 59.22 55.53 52.53 

LAP 56.38 54.97 49.00 

LBP 59.46 58.32 52.44 

LGBPHS 62.41 57.99 54.15 

LGIP 58.39 54.75 49.86 

LMP 60.64 57.54 52.53 

LPQ 61.47 58.99 54.73 

LTeP 60.28 57.21 52.63 

MBC_P 62.06 58.10 54.25 

WLD 58.75 54.41 50.53 

 



For more detailed performance analysis, the best ten descriptors, which have achieved promising 397 

results, were chosen to repeat the first set of experiments on the four databases separately with different 398 

numbers of expression classes, as well as the two different classification schemes. Table 5 shows the 399 

best classification rates on BAUM-2i with different numbers of expression classes. In Tables 6 to 8, the 400 

columns named “best of sub-regions” show the best classification rates for the number of sub-regions 401 

being used. We only show the best results, otherwise there are too many data to be shown. 402 

3.2.2. Performance analysis of the eye and mouth regions 403 

The second set of experiments was conducted with the features extracted from the eye and mouth 404 

windows of face images. The CK+, JAFFE and TFEID databases are used to test the performances of 405 

the respective features extracted from the eye and the mouth regions. The BAUM-2i database is not 406 

used because it consists of images in the wild. Labelling the facial landmarks is a complicated task. In 407 

Tables 6 to 8, the two columns under “eye and mouth windows” show the classification accuracies of 408 

the selected features, using the LOSO and 10-fold cross-validation schemes. 409 

As observed from the tables, using the features extracted from the eye and the mouth windows 410 

achieves lower classification accuracies than that using features extracted from the sub-regions of whole 411 

face images. However, for the results based on sub-regions, we show the best classification accuracies 412 

achieved for the five different resolutions and the five different numbers of sub-regions. Furthermore, 413 

each descriptor achieves the best performance on a different resolution and a different number of sub-414 



regions. Experiment results show that there are not a particular resolution and a particular number of 415 

sub-regions that can work the best for all the descriptors. 416 

3.2.3.  Performance analysis of the classifiers 417 

Table 9 presents the experiment results obtained with the NN and the SVM classifiers. We can observe 418 

that both LGBPHS and LPQ achieve similar performances in the use of NN and SVM. However, the 419 

Table 5. The recognition rates of selected local descriptors on the CK+ database, with 6 

classes (AN, DI, FE, HA, SA, and SU) and 7 classes (AN, CO, DI, FE, HA, SA, and SU), 

using LOSO. 
 CK+ 

 Eye and mouth windows Best of sub-regions 

 6-class 7-class 6-class 7-class 

IWBC 94.61 93.68 94.82 94.50 

LAP 91.37 91.44 94.17 92.86 

LBP 93.31 92.56 95.25 93.99 

LGBPHS 92.23 90.72 95.25 93.99 

LGIP 91.26 92.35 95.15 94.50 

LMP 94.71 94.19 95.25 94.90 

LPQ 94.61 94.90 94.39 94.19 

LTeP 93.53 93.17 95.69 94.80 

MBC_P 91.69 89.40 94.28 92.46 

WLD 93.31 91.44 95.90 94.80 

 

Table 6. The recognition rates of the selected best local descriptors on the JAFFE database. 
 JAFFE 

 Eye and mouth windows Best of sub-regions 

 LOSO 10-fold LOSO 10-fold 

IWBC 58.69 88.73 65.73 90.61 

LAP 68.08 90.61 68.54 94.84 

LBP 61.50 86.38 65.73 93.43 

LGBPHS 63.38 93.90 71.83 93.90 

LGIP 62.91 87.32 66.20 93.90 

LMP 60.09 85.92 67.14 93.43 

LPQ 67.61 92.02 69.95 93.43 

LTeP 61.03 89.20 62.44 94.37 

MBC_P 63.38 92.96 66.67 93.90 

WLD 63.38 86.85 69.01 96.24 

CBFD 66.20 89.67 - - 

 

Table 7. The comparison of recognition rates obtained by the selected local descriptors on 

the TFEID database. 
 TFEID 

 Eye and mouth windows Best of sub-regions 

 LOSO 10-fold LOSO 10-fold 

IWBC 89.55 90.67 92.91 91.79 

LAP 91.04 91.04 94.40 95.15 

LBP 91.79 92.54 93.66 94.78 

LGBPHS 94.40 91.04 95.15 93.66 

LGIP 89.18 86.19 94.78 93.28 

LMP 91.42 92.16 94.03 94.03 

LPQ 94.40 93.28 94.03 94.40 

LTeP 90.30 92.16 94.40 95.15 

MBC_P 94.30 91.79 94.40 93.66 

WLD 92.16 91.42 94.78 94.40 

CBFD 93.66 92.16 - - 

 



NN classifier can achieve equal or higher performance than the SVM classifier if a supervised 420 

dimensionality reduction method is employed. In our experiments, we utilize SLPM for dimensionality 421 

reduction. 422 

3.2.4. Performance analysis of cross-dataset facial expression recognition 423 

In real-life applications, query samples are often different from the training samples in terms of 424 

uncontrolled variations such as illumination. Therefore, it is important for a local descriptor to have a 425 

good generalization power, and the descriptor can still achieve a good performance when the training 426 

and test sets are from different databases. In this paper, we also conduct experiments to test the 427 

robustness and accuracy of the best selected descriptors in the scenario of cross-dataset FER.  428 

Table 10 shows the experiment results when the training and the testing sets are two different datasets, 429 

which have different acquisition conditions. As you can observe in Table 10, the recognition rates for 430 

the 6 basic emotions decrease significantly, because cross-dataset FER is a challenging task. Although 431 

no local descriptor can perform consistently better than the others, MBC_P achieves the highest 432 

recognition rates when the model is trained using JAFFE while tested on TFEID, and vice versa. 433 

MBC_P uses monogenic signal analysis to estimate the phase component of the images, which 434 

represents the images’ geometric information. Since the JAFFE database consists of images of Japanese 435 

women, while TFEID consists of images of Taiwanese men and women, we can observe that the phase 436 

information of the monogenic signal analysis is insensitive to cross-cultural face representation for FER. 437 

Table 8. The comparison of the recognition rates obtained with features extracted from 

the eye and mouth regions by the nearest neighbor classifier (NN) and SVM classifier 

using LOSO. 
 CK+ JAFFE TFEID 
 SLPM + NN SVM SLPM + NN SVM SLPM + NN SVM 

LGBPHS 92.23 91.91 63.38 61.50 94.40 94.40 

LPQ 94.61 94.93 67.61 67.14 94.40 94.40 

 

Table 9. The comparison of the recognition rates of the ten selected descriptors on cross-dataset 

facial expression recognition, with features extracted from the eye and mouth windows. 
Trained on CK+ JAFFE TFEID 

Tested on JAFFE TFEID CK+ TFEID CK+ JAFFE 

IWBC 25.00 33.77 34.52 42.98 38.30 30.98 

LAP 29.89 32.46 24.16 42.98 45.85 26.63 

LBP 21.74 34.65 29.02 44.74 35.81 28.26 

LGBPHS 18.48 33.33 37.22 60.09 39.48 44.02 

LGIP 30.43 31.14 31.18 41.23 42.61 31.52 

LMP 29.35 32.46 37.32 48.25 37.32 23.37 

LPQ 19.57 38.16 32.58 50.44 42.07 35.33 

LTeP 19.57 35.96 25.03 25.88 26.86 35.87 

MBC_P 25.54 31.14 37.00 63.60 38.83 47.28 

WLD 15.76 35.09 27.18 32.89 42.61 24.46 

 



3.2.5. Comparison with deep features 438 

Recently, convolutional deep neural networks have been applied to FER [1; 3; 4; 12; 17; 20; 25]. Table 439 

11 presents the performances of deep learning methods applied on the CK+ database. 3DCNN-DAP [1] 440 

adapts a deformable parts learning component to detect discriminative facial action parts for 441 

spatiotemporal FER, where a Boosted Deep Belief Network [3] (BDBN) is used to learn and select the 442 

expression-related facial features to develop a strong classifier in a unified loopy framework iteratively. 443 

Iterative learning of the BDBN framework strengthens the discriminative capabilities of the features. 444 

STM-ExpLet [4] learns a spatiotemporal manifold (STM) from low-level features from each expression 445 

video clip, followed by learning a universal manifold model that statistically unify all the STMs. With 446 

this method, expression videos are also aligned. Different from these methods, DTAGN [12] trains two 447 

models, with temporal geometry features and temporal appearance features, respectively, from image 448 

sequences, and these two features are complementary to each other. In [17], a network, which consists 449 

of two convolutional layers with max pooling and four inception layers, was proposed. The network 450 

was evaluated for its generalizability by experiments, with cross-database classification. To boost the 451 

generalizability of learning, [20] presented a peak-piloted deep network (PPDN), which uses the 452 

samples with high-intensity expressions to supervise the samples with low-intensity expression that are 453 

hard to classify. Until now, FN2EN [25], which uses a two-stage training algorithm, achieved the best 454 

performance on the CK+ dataset. FN2EN, in the first stage, trains the convolutional layers, whose 455 

outputs from the last pooling layer are used to supervise the expression net in the second stage. 456 

As observed in Table 11, LPQ with NN outperforms several deep learning methods. LFC + FFD 457 

[23] is also a histogram-based feature extraction method, which achieves higher classification accuracy 458 

Table 10. The comparison of recognition rates of deep learning methods and 

the best recognition rate obtained with handcrafted features 

Method  Feature Type  Accuracy (%) 

3DCNN-DAP [1]  Deep features  92.4 

BDBN [3]  Deep features  96.7 

STM-ExpLet [4]  Deep features  94.2 

DTAGN [12]  Deep features  97.3 

Inception [17]  Deep features  93.2 

PPDN [20]  Deep features  97.3 

LFC + FFD [23]  Handcrafted features  97.9 

FN2EN [25]  Deep features  98.6 

LPQ-SLPM-NN  Handcrafted features  95.9 

 

 



than all the listed methods, except FN2EN [25]. To the best of our knowledge, FN2EN achieves the 459 

highest classification accuracy on the CK+ database. However, expensive computational cost is a 460 

drawback of most of the methods based on deep convolutional neural networks. Furthermore, the CK+ 461 

database consists of images taken under controlled environments, i.e. posed expressions and the number 462 

of expression samples are limited in the CK+ database. These factors direct us the need of a large-scale 463 

facial-expression database in the wild. There have been several attempts to collect facial-expression 464 

images in the wild [99; 100; 101]. [102] and [103] are two recently published databases, which contain 465 

large-scale face images with varying expressions. These databases will be very useful for FER based 466 

on deep learning. 467 

4. Conclusion 468 

This paper provides a systematic review and analysis of current histogram-based local feature 469 

descriptors, which have been applied for facial-expression recognition. The weaknesses and strengths 470 

of the existing descriptors, as well as their underlying connections, have also been discussed and 471 

analysed. Then, a comprehensive evaluation of the performances of different descriptors for facial-472 

expression recognition is conducted and presented. In total, 27 local descriptors have been applied on 473 

four facial-expression databases, under the same experimental settings. The robustness of the respective 474 

local descriptors is tested under different conditions, such as varying image resolutions and number of 475 

sub-regions, and the classifiers. Moreover, a brief performance comparison with seven recent deep 476 

features and two handcrafted features has been conducted. 477 

Several remarks from the experiment results are listed as follows: 478 

 The databases have different characteristics, which affect the choice of the ideal descriptor for 479 

a particular database. Even the number of expression classes can also affect the performances 480 

of the descriptors. 481 

 The results show a trade-off between the number of sub-regions and the overall classification 482 

accuracy. The use of the eye and the mouth windows decreases the number of sub-regions and 483 

the dimensionality of the resulting feature vectors, with a slight loss in terms of accuracy. 484 



 The resolution of face images and the number of sub-regions are the two most important factors 485 

that affect the overall classification accuracies. 486 

 The highest classification accuracies are obtained mostly by LGBPHS and LPQ. This shows 487 

that Gabor wavelets and phase information are important features for representing expression-488 

specific information. However, we should keep in mind that Gabor features suffer from high 489 

computational cost. 490 

 According to the comprehensive analysis shown in this paper, the best local descriptors for 491 

FER, by considering the feature length, computational cost, and the classification accuracy 492 

simultaneously, is LPQ. 493 

 Deep neural-network-based methods indeed can achieve excellent classification accuracies on 494 

FER. However, these methods also suffer from time and space complexities as LGBPHS. 495 

In conclusion, our comprehensive experiment results show that the trade-off between the computational 496 

cost and the classification accuracy still exists today.  497 
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